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Abstract

Generating texts in scientific papers requires
not only capturing the content contained
within the given input but also frequently ac-
quiring the external information called con-
text. We push forward the scientific text
generation by proposing a new task, namely
context-aware text generation in the scien-
tific domain, aiming at exploiting the contri-
butions of context in generated texts. To this
end, we present a novel challenging large-
scale Scientific Paper Dataset for ConteXt-
Aware Text Generation (SciXGen), consisting
of well-annotated 205,304 papers with full ref-
erences to widely-used objects (e.g., tables,
figures, algorithms) in a paper. We compre-
hensively benchmark, using state-of-the-arts,
the efficacy of our newly constructed SciX-
Gen dataset in generating description and para-
graph. Our dataset and benchmarks will be
made publicly available to hopefully facilitate
the scientific text generation research.

1 Introduction

Text generation in the scientific domain has been
increasingly received attention recently due to
its wide range of applications such as summa-
rization (Lu et al., 2020), paragraph genera-
tion (Wang et al., 2019) and table description gener-
ation (Moosavi et al., 2021). Though recent works
have brought breakthroughs (Lu et al., 2020; Wang
et al., 2019; Moosavi et al., 2021), how to faithfully
generate texts/paragraphs remains challenging. As
a case study shown in Table 1, generating plausible
table descriptions always requires not only tabular
data itself as the input, but also numerous refer-
ences to the external information (e.g., body text)
as the context. To this end, we promote a new task
of context-aware text generation (i.e., generating
text given a context), a new branch of text genera-
tion research in the scientific domain. This task can
be straightforwardly extended to several specific
requirements where we, in this paper, investigate

Body text (Context)
. . . languages: Telugu (te) and Turkish (tr). . . Turkish
(tr) vocabulary has been censored to contain no overlap
with the Telugu. . . we evaluate these models using a
recall@k metric defined as . . .

Table
Result te+en + tr % Change
Recall@1 17.0 17.6 +3.5%
Recall@10 23.9 25.0 +4.6%
Recall@20 26.3 27.7 +5.3%

Generated description w/o context (table only)
Table shows when te+en is replaced with tr, the effect of
different change is very small, although the performance
of tr method gets really strong.
Generated description w/ context (body text + table)
Table summarizes the recall@1 measures and the per-
centage of the incremental improvement across lan-
guages for both tasks. The average incremental improve-
ment across languages is about 4% in these cases, despite
there being no overlap between in Telugu and Turkish.

Table 1: An example in table description generation
(table-to-text) task. Highlighted texts in red denote the
factual incorrectness (hallucination), and texts in blue
indicate the fact that can be referred from the context.
We can see that tables in the scientific domain contain
terms and abbreviations that are mentioned in its body
text (i.e. tr and te). With the help of the context, the
generated description becomes more plausible.

context-aware description generation (i.e., generat-
ing description for paper objects such as tables and
figures, given the body text as context), and context-
aware paragraph generation (i.e., generating a para-
graph given cited papers as context). Therefore,
context-aware text generation yields helpful tools
to generate scientific papers automatically, yet it
has not been well explored in literature.

For conducting experiments on context-aware
text generation, a well-developed dataset with com-
plete contextual information is required. However,
existing corpora (Radev et al., 2013; Clement et al.,
2019; Lo et al., 2020; Saier and Färber, 2020) are
not applicable in our task. Radev et al. (2013)
and Clement et al. (2019) directly extract data from
PDF, failing in capturing the paper structure and
other objects (e.g., citations). Their datasets thus
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only provide raw texts without any contextual in-
formation. Recently, S2ORC(LATEX) (Lo et al.,
2020) and unarXive (Saier and Färber, 2020) draw
out the data from the widely-used format in a scien-
tific paper (i.e., LATEX) to better preserve the paper
structure. S2ORC(LATEX) (Lo et al., 2020) steps
further in enriching the data by introducing the ref-
erences to tables, figures and equations. Though
S2ORC(LATEX) (Lo et al., 2020) contains contex-
tual information to some extent, it still has several
limitations: 1) Their tables and figures are not in
a machine-readable format. 2) Some objects, such
as algorithms and theorems, are not retained. 3)
A considerable amount of tables and figures lose
content due to their low-quality LaTeX parser.

Inspired by the above observations, we intro-
duce a novel large-scale scientific paper dataset
(SciXGen) designed explicitly for context-aware
text generation. Our dataset consists of 205,304
papers with references to all types of objects in a
paper, yielding fully complete contextual informa-
tion. We believe our dataset can be served as a
testbed for research and evaluation on the task of
text generation in the scientific domain. We also
provide a benchmark to illustrate the importance of
contextual information in the text generation prob-
lem. More precisely, we evaluate several state-of-
the-arts in context-aware description and paragraph
generation tasks under various scenarios.

Our contributions can be summarized as follows:

• We address a new task of context-aware text
generation in the scientific domain. To the best of
our knowledge, this paper is the first fully exploring
the contributions of context in scientific text gener-
ation. In addition, we define two primary tasks in
this problem: context-aware description generation
and context-aware paragraph generation.

• We introduce a novel large-scale challenging
dataset (SciXGen) to promote context-aware text
generation research. Samples in our dataset can be
found in paperparser.com/display1.

• We provide benchmarks for context-aware de-
scription generation and context-aware paragraph
generation tasks. In particular, we slightly modify
state-of-the-art methods to adapt the requirements
of these tasks and extensively evaluate the models
under various scenarios.

1This website is anonymous for double-blind reviewing at
the time of submission.

2 Related Work

2.1 Datasets of scientific papers

Existing datasets of scientific papers can be classi-
fied roughly into two groups: corpus-level datasets
and task-specific datasets. The former group of-
ten uses a PDF parser to draw out the raw texts
from a paper. ACL Anthology (Radev et al., 2013),
Arxiv CS (Clement et al., 2019) and PubMed2 con-
sist of 25K, 90K and 2.6M papers, contributing to
computational linguistics, computer science and
biomedical, respectively. However, these datasets
do not contain the citations, equations and paper
structures due to the limitation of the PDF parser.

Recently, unarXive (Saier and Färber, 2020) and
S2ORC (Lo et al., 2020) parses 1.5M papers from
their source (i.e., LATEX), providing the possibility
to deal with different types of objects (e.g., tables,
figures and more). On the other hand, task-specific
datasets are tailored for specific tasks, such as para-
phrase generation (Dong et al., 2021), summariza-
tion (Lu et al., 2020) and table-to-text (Moosavi
et al., 2021). Most of them are built upon the
corpus-level datasets and add task-specific features
for different tasks.

In this paper, we propose SciXGen, a corpus-
level dataset, which parses the body text more pre-
cisely to retain more information from the papers.
Thus, task-specific datasets can be easily obtained
for different tasks in context-aware text generation.

2.2 Text generation in scientific domain

Text generation in the scientific domain has
achieved progress in several ways. Wang et al.
(2019) generates the paper abstract from the input
title along with predicted entities in the related pa-
pers and further generates the paragraphs for the
conclusion and future work. Demir et al. (2019)
generates the LATEX source code with a sequence-
to-sequence model in a straightforward manner.
Lu et al. (2020) and An et al. (2021) summarize the
abstracts from cited papers to generate a paragraph
for related works. Moosavi et al. (2021) learns
from the tables in the paper to generate the tex-
tual description. However, none of aforementioned
works make full use of the contextual information
within the papers. In this work, we propose context-
aware text generation tasks that allow the model to
access complete contextual information, which is
more similar to reading and writing papers.

2https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

paperparser.com/display
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3 The SciXGen Dataset

3.1 Dataset construction
This section details our construction process
for SciXGen. As with the previous work
(S2ORC(LATEX) and unarXive (Saier and Färber,
2020)), we construct our SciXGen using the source
data from arXiv Bulk Data (Clement et al., 2019).
We employ 225,495 papers in computer science be-
tween 2012.1 and 2020.11 from arXiv, where each
paper is in the LaTeX format. We, in what follows,
summarize the main procedure. It is worth not-
ing that we finally obtained 205,304 high-quality
papers out of 225,495 original ones.

Processing LATEX source. Since the LaTeX
format is not machine-readable, we thus follow
S2ORC(LATEX) to first parse the latex format
to a machine-friendly one, namely XML. Unlike
S2ORC(LATEX), we employ an up-to-date tool
(i.e., LaTeXML3) which is capable of better rec-
ognizing uncommon symbols than that used in
S2ORC(LATEX) (i.e., Tralics4).

However, we observe that LaTeXML would not
work correctly if a paper contains symbols that
are not pre-defined in its tools. To parse the pa-
pers more precisely, we introduce an auxiliary la-
tex parser as compensation to LaTeXML. We re-
mark that the auxiliary LaTeX parser is used when
LaTeXML encounters a systematic error or loses
objects inside. Our main parser parses the file in
an intermediate format (i.e. XML), while our aux-
iliary LaTeX parser can directly parse the source
file (i.e. LaTeX). Both parsers obtain the body text
and extract the objects from each file. In addition,
we group all the objects into seven classes (see Ta-
ble 3 and more details in A.1.1 and A.1.2). Our
system successfully parses (almost) all objects in
the paper, maintaining more valuable details than
previous works, as seen later in Section 3.2.

Linking bibliographies to papers. In this step,
we link the bibliography entries to the papers with
full text. This step requires to first extract the infor-
mation from the bibliography entries (e.g., authors,
titles and more), and then link the extracted infor-
mation to the cited papers with full text.

Saier and Färber (2020) first collected 500
human-annotated bibliography entries from the
Cora dataset5 as training data. They then trained an

3https://dlmf.nist.gov/LaTeXML/
4http://www-sop.inria.fr/marelle/tralics/
5https://relational.fit.cvut.cz/dataset/CORA

LSTM-based Neural ParsCit (Prasad et al., 2018)
model to recognize and locate the entities such as
titles and authors inside the bibliography entries.
However, their data are heavily biased to the old
papers, making it difficult of applying their method
to recent papers covering a wide range of topics.

Based on the above observation, we incremen-
tally improve the model in Saier and Färber (2020)
by collecting more training data and re-training the
model. To be more specific, we first manually an-
notate additional 1,500 samples, randomly selected
in our dataset. As a result, we have 2,000 training
samples in total. Next, we replace LSTM in (Saier
and Färber, 2020) by BERT (Devlin et al., 2019)
to better identify named entities from bibliography
entries. As a consequence, we achieve an average
accuracy score of 99% over all the entities.

Next, we resolve the citation links in our data
between the papers with full text in S2ORC(full) by
matching the author and title information extracted
from the bibliography entries to the metadata in
S2ORC(full). We use S2ORC(full) as an external
database because it is the largest corpus of papers,
and contains both full-text data extracted from PDF
and LaTeX files. As a result, S2ORC(full) provides
many links between the citations to the full-text
papers, thus, providing more fruitful contextual
information across the cited papers.

Postprocessing and adding more features.
This step helps to improve the quality of our dataset.
To this end, we transform the objects including ta-
bles and figures into a machine-readable format,
and highlight the equation. For tables, we con-
vert the tabular text from a heavily structured XML
parsed from LaTeXML into a linear string with spe-
cial tokens to separate the rows and columns. For
figures, we consistently transform all the figures
into PNG format. For equations, we continue to
use the LaTeX format as it is already a machine-
friendly format. Nevertheless, we make our effort
to replace the user-defined commands in the equa-
tions to minimize the negative consequences of
massive symbols. Moreover, we use $*$ to cover
the inline equations and special tokens 〈equation〉
* 〈/equation〉 for the regular ones. Additionally,
we mark out the emphasized words in the content
(i.e., bold and italic font) to distinguish them from
ordinary words. We step further in post-processing
by filtering out the papers that either lack section
information or contain an excessive (>12,000) or
insufficient number of (<1,000) words, and finally
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Corpus Papers Source References
to objects

Postprocess
to objects Linked Scope

AAN (Radev et al., 2013) 25K PDF none - ACL Anthology comp ling
arXiv CS (Clement et al., 2019) 90K PDF none - arXiv cs
CiteSeerX (Huang et al., 2015) 1.0M PDF none - CiteSeerX multi
PubMed Central(OA) 2.3M PDF partial no PubMed bio
S2ORC(PDF) (Lo et al., 2020) 8.1M PDF partial no S2ORC(full) multi
unarXive (Saier and Färber, 2020) 1.5M LATEX none - MAG physics,math,cs
S2ORC(LATEX) (Lo et al., 2020) 1.5M LATEX partial no S2ORC(full) physics,math,cs
SciXGen 205K LATEX complete yes S2ORC(full) cs

Table 2: Overview of main datasets in scientific domain. SciXGen is the first dataset which contains complete
references to all objects and all objects are post-processed into machine-readable text.

obtain 205,304 paper data in total.
Besides, we add two additional features for the

future research. 1) We first use SPECTOR (Cohan
et al., 2020) on each paper to obtain document-level
representations and then identify 300 papers that
share similar representations across the dataset. 2)
We merge our data with paperwithcode dataset6 to
provide links to the original code.

3.2 Dataset specifications and statistics
Our SciXGen contains a total of 205,304 papers,
each of which is with an average of 5,296 words.
Besides, we obtain 484,609 tables, 341,564 figures,
134,253 algorithms and 764,724 theorems. In the
body text, 98.76% of citations can find references
to the bibliography entries, and 41.62% of them
can link to the papers with full texts. Table 2 sum-
marizes the statistics for some primary datasets in
this research community. Despite the relatively
small capacity of our dataset, we obtain references
to all types of objects that well post-processed for
the text generation tasks. We show the types of
objects included in each dataset in Table 3. Note
that we categorize all types of human-defined ob-
jects into seven classes. For example, the object
type “proof” and “lemma” are categorized into the
theorem as they share similar content (i.e., words
and equations).

Table 3 also shows the percentage of objects that
contain content in the following formats: tabular
data for tables, image paths for figures, and text
for all other objects. For a fair comparison, we
compare the datasets using parsed results for same
papers. We see that S2ORC(LATEX) loses nearly
half of its content in the form of image paths and
tabular data, while SciXGen retains most of them.
The auxiliary parser further helps us retain 1.9%
tabular data and 4.2% image path to the figures. We
are currently producing data only in the computer

6paperswithcode.com

Objects(%) SciXGen S2ORC
(LATEX) unarXive

Table 100.0(+1.9) 50.1 -
Figure 93.7(+4.2) 59.7 -
Equation 100.0(+0.0) 99.9 -
Algorithm 100.0(+0.0) - -
Theorem 100.0(+0.0) - -
Verbatim 100.0(+0.0) - -
Text 100.0(+0.0) - -

Table 3: The percentage of objects that contain con-
tents. The numbers in the brackets show the improve-
ment of using the auxiliary parser. We can see that
S2ORC(LATEX) loses almost half contents in the ob-
jects, while SciXGen preserves almost all of them.

science field, while our LaTeX parser can be ap-
plied to any LaTeX sources regardless of the field.
We plan to publish the remaining papers later.

4 Context-Aware Text Generation

We conduct the experiments on two primary tasks
in context-aware text generation: context-aware
description generation (i.e., generating description
for paper objects such as tables, figures, algorithms
and theorems given the body text as context), and
the context-aware paragraph generation (i.e., gen-
erating a paragraph given cited papers as context).

4.1 Context-aware description generation

Let x denote the content of an object to be de-
scribed where x can be an image for the figure, a
tabular text for the table, or a text for other objects
such as algorithm and theorem. We define the tar-
get text as t̃ and the context supporting the object
as C. Formally, our model receives a tuple of x, a
token for separation, and C as its input and outputs
the target description t̃.

We heuristically estimate t̃ and C as follows.
We use the passage that describes the object as the
target t̃ = ci,j , where ci,j denotes the passage that
begins with the i-th sentence and ends with the j-th
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sentence within the body text. Context then can
be C = c0,i−1, which is the entire previous texts
to the target description. Our heuristic strategy is
based on our two empirical observations. First,
the object description always starts with a sentence
that first refers to the object; it ends when reaching
the last sentence in the paragraph or encountering
a sentence that refers to another object. Second,
the essential information to describe the objects
should be located in the previous text to the target
description. Note that we do not use table/figure
captions text as the target since most of them do not
provide any in-depth explanation inside the data.

We employ various ways to concatenate the ob-
ject content x and the context C. To be specific, all
objects can be concatenated to C (see Section 3.1
for postprocessing) except for figures, because they
do not have textual information. Therefore, we use
ViT (Dosovitskiy et al., 2020) to obtain the features
from the image before concatenation.

4.2 Context-aware paragraph generation
One of the primary objectives of scientific paper
generation is to assist researchers with paper writ-
ing. To enable the model to generate plausible
paragraphs, we introduce context-aware paragraph
generation, which is a task that aims to generate
paragraphs for the “Introduction” section. Unlike
previous works, which generates paragraph using
limited information (e.g., abstract) (Wang et al.,
2019; Demir et al., 2019; Lu et al., 2020), we pro-
vide the model with substantial contextual infor-
mation C, which are the body texts in the cited
papers. For simplicity, we only use the cited papers
involved in the “Introduction” section and ignore
the objects in them. Thus, the input can be defined
as the tuple of the abstract a and the context C,
while the target t̃ is the “Introduction” paragraph.

4.3 Dataset split
We conduct the experiments using the data derived
from SciXGen. Table 4 shows statistics of each
task. In the context-aware description generation
task, we obtain over 100K data for all the objects
except the algorithm from SciXGen (#num in Ta-
ble 4). Among them, the number of descriptions for
the table and the figure are competitive with those
in existing datasets in other domains (Parikh et al.,
2020; Chen et al., 2015). For figures, we only use
the chart and bar images, as an excessive variety of
image types would degrade the performance of text
generation. For tables, we exclude those not hav-

Input #num #avg_out_len #cand
Table 136K 74.05 199.93
Figure (chart/bar) 155K 76.60 179.35
Algorithm 56K 67.94 227.65
Theorem 175K 65.00 192.44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Abstract 205K 698.61 221.11*

Table 4: Split dataset statistics for the context-aware
description generation task (first four rows) and the
context-aware paragraph generation task (last row).
#num, #avg_out_len and #cand denotes the number of
samples, the average length of the target passages and
the number of sentences or passages(*) that support the
task as context, respectively.

ing any equal number of columns in each row, as
extracting alignment information from such tables
is quite challenging. For algorithms and theorems,
we only retain data with a token count between 200
and 500, as the token count rapidly increases when
a theorem or algorithm involves an excessive num-
ber of math equations. We also filter out the data
less than 30 words in the target sentences, resulting
in an average target t̃ length of 71 (#avg_out_len
in Table 4). Apart from the object, each sample
contains approximately 200 sentences (#cand in
Table 4) from the context C that are used to sup-
port the generation. Due to the high computational
costs associated with such large-scale data, we use
a random subset of 30,000/5,000/5,000 samples to
train/validate/test our model.

In context-aware paragraph generation, to per-
form the generation in a fixed domain, we select
39,523 papers in computer vision. We use 30,000
of them for training, 5,000 for testing, and the rest
4,523 for validation. Among them, 61.1% of the
cited papers in the “Introduction” section can find
full-text data, which we believe is adequate for an-
alyzing the quality of using contextual information
in paragraph generation. As a result, each data con-
tains a target paragraph with an average of 698.61
words and over 200 passages from the cited papers
that support the generation.

5 Experiment

5.1 Model architectures

Ordering-sensitive Fusion-in-Decoder (OFiD).
Fusion-in-Decoder (FiD) (Izacard and Grave, 2020)
is used as the retrieval-augmented model in the
context-aware description generation tasks. We
propose to retrieve appropriate sentences from
the context to minimize the input length, thus
reduce computational cost. Normally, the order
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relation between retrieved sentences is ignored
since each sentence in the context is treated in-
dependently. However, the order of the retrieved
sentences is critical for comprehending their se-
mantics when they are retrieved from the con-
text with sentences in order (i.e., previous sen-
tences to the target). Thus, we propose Ordering-
sensitive Fusion-in-Decoder (OFiD) to process sen-
tences independently in the encoder but joint them
with their original order to the decoder. To be
more specific, we obtain the retrieved sentences
z ∈ top-k(p(· | x)), reorder them according to
their initial index in the context and concatenate
them with the object [x; zi1 ; zi2 ; . . . ; zik ] as input,
where i1 < i2 < . . . < ik. Then the generator
attends to the input and generates the description.

One disadvantage of the FiD-based model is that
the retriever cannot be updated because of this con-
catenation process. Therefore, we design a special
reward and define the policy gradient as follows:

∇θJ(θ) = R (zi)∇θ log pθ(zi | x)
R(v) = ‖σ(t̃)− σ(v)‖,

where pθ(zi | x) denotes the probability of select-
ing a sentence zi for the object x. The rewardR(zi)
is the euclidean distance between the sentence em-
bedding σ(t̃) and σ(v). As a result, the retriever
learns to retrieve the sentences that share similar
semantic information with the target t̃.

Retrieval-Augmented generator (RAG-
sequence). RAG-sequence is used in the
context-aware paragraph generation task. It
considers the to-be-retrieved passages (300 words)
independently, generating an output sequence
for each concatenated inputs (i.e., abstract and
retrieved passages) separately and marginalizing
over the output generations. The context in
paragraph generation is the full text over different
cited papers, in which no order relation retains.
Additionally, the retriever can be automatically
updated through the back-propagation of cross-
entropy loss from the generator. As above, we
believe that RAG-sequence is an appropriate
model for the context-aware paragraph generation

task. The model can be formalized as:

pRAG-sequence(y | a) ≈∑
z∈top−k(p(·|a))

pη(z | a)
N∏
i

pθ (yi | a, z, y1:i−1) ,

where pη(z|a) denotes the retrieval mechanism
probability of selecting passages z for the abstract
a and the generator outputs the token yi, given the
abstract a, the retrieved passages z and the previous
generated tokens y1:i−1.

5.2 Implementation details

Longformer-Encoder-Decoder (LED) (Beltagy
et al., 2020), which can accept at most 16,327 to-
kens, is used as the baseline model. For a fair com-
parison, we also utilize LED as the generator in
OFiD and RAG. It receives inputs (i.e., x/a and C)
and outputs the targets (i.e., t̃). For training all the
baseline models, we used the AdamW (Loshchilov
and Hutter, 2018) optimizer. The learning rate was
initialized at 4e-5 and got a linear schedule with
warm-up at the first 10,000 iterations. We finetune
the models in all tasks for 10 epochs with the same
random seed, record the evaluation of each epoch
and report the best results. We run the experiments
using 4 Nvidia A100 GPU with a batch size of 4.

5.3 Evaluation metrics

We use automatic metrics BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014)
and a neural-based metric MoverScore (Zhao et al.,
2019). As automatic scores remain tricky for cor-
rectly evaluating the text quality, we conduct hu-
man evaluation. As this task requires professional
knowledge in computer science, we hire five anno-
tators with a degree in computer science (2 Master
students, 2 PhD students, and 1 Postdoc). We test
the performance in terms of Fluency, Faithfulness,
Entailment and Overall. Fluency evaluates the lan-
guage modelling. Faithfulness assesses how rele-
vant the generated texts and the given inputs are.
Entailment only evaluates in the context-aware de-
scription generation task to show the likelihood that
the sentences can be put into the location after the
last sentence in the context. Overall is a subjective
criterion that shows the preference by annotators.
During the evaluation, we show the annotators the
contextual information, the objects (abstract for the
context-aware paragraph generation) and the gen-
erated texts by different baselines. We assign 50
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object Input PPL BLEU-4 METEOR MOVERS Fluency Faith. Entail. Overall

Table

x 21.34 0.76 15.23 0.08 2.37 1.57 1.80 1.69
C(20) 18.29 1.33 17.52 0.11 2.52 1.39 1.98 1.51
x+C(20) 15.82 1.86 17.67 0.12 2.47 1.73 2.05 1.75
x+C(10)+OFiD(10) 15.12 2.03 18.43 0.13 2.50 1.73 2.09 1.77
x+C(∞) 13.64 2.39 18.82 0.14 2.60 1.86 2.13 1.82
Gold - - - - 2.96 2.61 2.80 2.79

Figure

x 28.56 0.77 13.24 0.04 2.62 1.24 1.46 1.20
C(20) 18.54 1.98 18.68 0.12 2.66 1.22 1.88 1.54
x+C(20) 16.35 2.21 19.62 0.13 2.70 1.70 1.96 1.62
x+C(10)+OFiD(10) 17.10 2.15 19.25 0.12 2.64 1.64 2.04 1.60
x+C(∞) 14.61 2.36 19.70 0.14 2.68 1.72 2.02 1.65
Gold - - - - 2.82 2.66 2.64 2.54

Algorithm

x 14.64 2.57 15.47 0.10 2.60 1.80 1.96 1.56
C(20) 12.87 2.45 18.56 0.12 2.58 1.62 1.84 1.58
x+C(20) 11.30 2.95 18.95 0.13 2.66 2.04 2.26 1.80
x+C(10)+OFiD(10) 11.06 2.98 18.45 0.14 2.54 2.02 2.24 1.86
x+C(∞) 10.47 3.10 18.97 0.14 2.54 2.01 2.08 1.72
Gold - - - - 2.74 2.42 2.66 2.26

Theorem

x 9.69 2.34 17.59 0.13 2.34 1.84 1.88 1.50
C(20) 8.75 2.17 18.43 0.14 2.64 1.84 1.94 1.70
x+C(20) 7.53 3.19 19.80 0.16 2.56 2.06 2.08 1.86
x+C(10)+OFiD(10) 7.61 3.18 19.45 0.15 2.60 2.02 2.08 1.82
x+C(∞) 6.88 3.85 21.07 0.17 2.60 1.98 2.18 2.00
Gold - - - - 2.70 2.36 2.22 2.22

Table 5: Evaluation results on context-aware description generation. We both report the scores from automatic
metrics and human evaluation. In human evaluation, Faith. and Entail. denote Faithfulness and Entailment,
respectively. The human evaluation is rated from 1 to 3, representing the low to high quality. We emphasize the
best score and underline the second-best score for each task.

Figure 1: Analysis of possible relevant sentences in the
paper. We manually label 10 relevant sentences to the
target description from 50 samples for each object. Dis-
tance indicates the number of sentences between the se-
lected sentences and the target description.

samples in total for each task to the annotators.

5.4 Experiment on description generation

In this section, we introduce several baselines in
context-aware description generation. First of all,
we input the object alone (x) into the model to
create a baseline without context. Then, to deter-
mine which sentences in the context are potentially
crucial for description generation, we ask the an-
notators to mark the sentences in the context that
would be necessary to infer the target descriptions.
Figure 1 shows the results. The distance indicates
the number of the sentences between the marked
sentences and the target descriptions. We can see
that most of the relevant sentences locate near the
target descriptions, which encourages us to use
the closest sentences as input context rather than

Precision(%) Rand(10) Dist(11-20) OFiD(10)
Table 5.58 12.73 14.83
Figure 5.00 12.81 8.31
Algorithm 4.39 16.75 17.84
Theorem 5.20 14.00 9.31

Table 6: The sentence retrieval accuracy with differ-
ent methods. Rand(10) denotes randomly selecting
10 sentences from the context. Dist(11-20) denotes
the 11th to 20th sentences before the target description.
OFiD(10) denotes the 10 sentences retrieved by OFiD.

entire sentences in the context to save the compu-
tational cost. Thus, we propose baselines that use
the closest 20 sentences (usually <1,000 tokens) to
the target descriptions as input (C(20)) and in con-
junction with the object (x+C(20)). Besides, we
keep the 10 closest sentences and use the proposed
OFiD to retrieve another 10 sentences from the
context (x+C(10)+OFiD(10)). The final baseline
incorporates all sentences in the context (x+C(∞))
to show the upper-bound performance of using a
pre-trained language model in this task.

We summarize the results in Table 5. We can
see that 1) Baselines that consider only one com-
ponent (x) or C(20)) perform worse than those
that consider both, indicating that both are critical
in text generation in this task. 2) C(20) achiev-
ing better performance than x reveals that the tar-
get descriptions are highly related to the context.
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Input PPL BLEU-4 METEOR MOVERS Fluency Faithfulness Overall Hallucination(%)
a 10.80 5.00 32.82 0.18 2.80 2.50 2.23 68.58
a+RAG(10) 10.23 5.04 32.90 0.17 2.76 2.62 2.30 51.28
a+RAG(10)∗ 9.67 5.23 33.00 0.18 2.78 2.58 2.40 48.40

Table 7: Evaluation results on context-aware paragraph generation. Same as in the description generation, we both
report the scores from automatic metrics and human evaluation.

3) In the table and algorithm, retrieval-augmented
methods outperform direct use of the closest 20
sentences, while in the figure and theorem, the re-
sult shows the contrary. To analyze the reason,
we measure the accuracy of the retrieval by using
the same sentences marked in Figure 1. Table 6
shows the results. Rand(10) denotes randomly se-
lecting 10 sentences from the context. Dist(11-20)
denotes the sentences with indices i− 20 to i− 11
(i.e., ci−20,i−11), preceeding the target description.
OFiD(10) denotes the 10 sentences retrieved by
OFiD. The performance gap between x+C(20) and
x+C(10)+OFiD(10) is caused by using different
sentences in Dist(11-20) and OFiD(10) as input.
From the result, we can deduce that retrieval per-
formance positively affects the quality of text gen-
eration, as both the generation and the retrieval
have a similar propensity toward performance. 4)
Although x+C(∞) achieves the best performance
among the baselines, in practice, it requires three
times more memory space than other baselines due
to its extremely long input size. As a result, it
remains worthwhile to develop a more efficient re-
trieval approach that improves generation quality
while using less memory. Moreover, even if this
baseline can attend to all the contextual informa-
tion, the results are far from perfect, indicating that
this task remains challenging.

5.5 Experiment on paragraph generation

In this section, we show the results of context-
aware paragraph generation. We compare three
baselines with different inputs: 1) abstract only
(a), 2) abstract with additional retrieved 10 ab-
stracts from cited papers (a+RAG(10)), 3) ab-
stract with 10 retrieved passages from cited papers
(a+RAG(10)∗). Table 7 shows the results. We can
see that with the context from cited papers, the
generated paragraphs achieve better performance.
Moreover, compared with the previous work (Lu
et al., 2020; An et al., 2021) that utilizes only the ab-
stract in the cited papers, retrieving passages from
full text in cited papers achieves a higher score
in automatic metrics and overall scores in human
evaluation, thus, indicating the significance of our

proposed dataset and tasks. In addition, we also ask
the annotators to measure the hallucination of gen-
erated paragraphs. In details, we ask the annotators
to check each reference (i.e., given cited papers)
whether they are used in the generated paragraph.
We report hallucination score as the percentage of
the papers that have not been mentioned in any
place of the generated paragraph (the lower, the
better). Table 7 indicates that retrieving from con-
text can reduce hallucination from the generator.
With more contextual information provided to the
model, it can generate more plausible paragraphs
with less hallucination.

5.6 Ablation Studies

5.6.1 Performance of various pre-trained
language models

In the experiment, we use LED-base as the gener-
ator for all baselines. In this section, we conduct
several ablation studies by using different language
models. We conduct the experiment on context-
aware description generation for tables and input
x+C(20)). We test on BART-base (Lewis et al.,
2019), BART-large, T5-base (Raffel et al., 2020)
and T5-large. As shown in Table 8, the language
model achieves superior performance using the
same model architecture but more parameters(*-
base and *-large). However, the text generation
performance varies significantly across different
architectures. BART models outperform others in
most of the automatic metrics while getting higher
perplexity compared with T5. That might be related
to the different corpora that are used during their
training. The inconsistency of perplexity and other
automated metrics further points out the drawback
of using automatic criteria in these tasks.

5.6.2 FiD vs OFiD
In context-aware description generation, we use
OFiD as our retrieval-augmented model. We also
compare OFiD with original FiD, which ignores the
order information in the context. We take x+C(20)
as our input. As shown in Table 9, OFiD outper-
forms FiD in automatic scores, that proves the or-
der information is critical when retrieving from the
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Input #P(M) #Mem(GB) PPL BLEU4 METEOR MOVERS
Bart-base 129 6.6 14.43 2.01 17.85 0.14
Bart-large 406 16.0 14.15 2.43 20.64 0.15
T5-base 220 9.6 9.97 1.74 17.52 0.13
T5-large 770 23.7 9.11 2.16 18.22 0.13
LED-base 162 *6.8 15.82 1.86 17.67 0.12

Table 8: Automatic results with different pre-trained language models. We report the parameter numbers and the
memory usage for batch size 1 to each model. * means the input token length is limited to 1024.

Input PPL B-4 M MS
x+C(10)+OFiD(10) 17.81 2.03 18.43 0.12
x+C(10)+FiD(10) 18.30 1.88 17.88 0.12

Table 9: Results using OFiD and FiD to retrieve sen-
tences. As previously mentioned, OFiD retains the or-
der between sentences, while the original FiD ignores
it. PPL, B-4, M and MS denotes perplexity, BLEU-4,
METEOR and MoverScore.

context with sentences in order.

6 Conclusion

This paper addresses the novel yet challenging
problem of context-aware text generation in the sci-
entific domain. To promote this task, we present a
novel large-scale SciXGen dataset. We thoroughly
investigate the efficacy of our dataset in two pri-
mary tasks: context-aware description generation
and context-aware paragraph generation. Despite
achieving remarkable results in our experiments,
using context in text generation still has room for
improvement as above discussions. We believe
that our dataset can serve as a valuable testbed for
various tasks in scientific paper research, includ-
ing summarization with full-text cited papers, and
image-text multimodal text generation.
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