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Abstract

Pre-trained language models have shown re-

markable results on various NLP tasks. Never-

theless, due to their bulky size and slow infer-

ence speed, it is hard to deploy them on edge

devices. In this paper, we have a critical in-

sight that improving the feed-forward network

(FFN) in BERT has a higher gain than im-

proving the multi-head attention (MHA) since

the computational cost of FFN is 2∼3 times

larger than MHA. Hence, to compact BERT,

we are devoted to designing efficient FFN as

opposed to previous works that pay attention

to MHA. Since FFN comprises a multilayer

perceptron (MLP) that is essential in BERT

optimization, we further design a thorough

search space towards an advanced MLP and

perform a coarse-to-fine mechanism to search

for an efficient BERT architecture. Moreover,

to accelerate searching and enhance model

transferability, we employ a novel warm-

up knowledge distillation strategy at each

search stage. Extensive experiments show our

searched EfficientBERT is 6.9× smaller and

4.4× faster than BERTBASE, and has com-

petitive performances on GLUE and SQuAD

Benchmarks. Concretely, EfficientBERT at-

tains a 77.7 average score on GLUE test, 0.7

higher than MobileBERTTINY, and achieves

an 85.3/74.5 F1 score on SQuAD v1.1/v2.0

dev, 3.2/2.7 higher than TinyBERT4 even with-

out data augmentation. The code is released

at https://github.com/cheneydon/

efficient-bert.

1 Introduction

Diverse pre-trained language models (PLMs) (e.g.,

BERT (Devlin et al., 2019)) have been intensively

investigated by designing new pretext tasks, ar-

chitectures, or attention mechanisms (Yang et al.,

2019; Jiang et al., 2020; Beltagy et al., 2020). The

performances of these PLMs far exceed the tra-

ditional methods on a variety of natural language
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Figure 1: Final score vs. latency tradeoff curve. Final

score refers to the average score on the GLUE test set.

processing (NLP) tasks. Nevertheless, their short-

comings are still evident (including a considerable

model size and low inference efficiency), limiting

real-world application scenarios.

To alleviate the aforementioned limitations,

many model compression methods have been pro-

posed, including quantization, weight pruning, and

knowledge distillation (KD) (Shen et al., 2020;

Michel et al., 2019; Jiao et al., 2020). Among

them, KD (Hinton et al., 2015) that transfers the

knowledge from larger teacher models to smaller

student models with minimal performance sacri-

fice is most widely used due to its plug-and-play

feasibility and its scalability in the rapid delivery

of new models. Specifically, KD allows us to train

our own BERT architecture significantly faster than

training from scratch. Hence, we adopt KD in this

paper. Besides, inspired by the impressive results

by neural architecture search (NAS) in vision tasks

(Howard et al., 2019; Li et al., 2020; Cai et al.,

2020), adopting NAS to further boost the perfor-

mance of PLMs or reduce the computational cost

has attracted increasing attentions (So et al., 2019;

Wang et al., 2020a; Chen et al., 2020).

Although considerable progress has been made

https://github.com/cheneydon/efficient-bert
https://github.com/cheneydon/efficient-bert
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in the field of KD for PLMs, the compression of

the feed-forward network (FFN) has been rarely

studied. This contradicts the fact that the computa-

tional cost of FFN is 2∼3 times larger than that of

the multi-head attention (MHA). In addition, Dong

et al. (2021) have proved that the multilayer per-

ceptron (MLP) in FFN can prevent the undesirable

rank collapse caused by self-attention and thus can

improve BERT optimization. These motivate us to

investigate the nonlinearity of FFN in BERT.

In this paper, we make the first attempt to com-

press and improve the barely-explored multilayer

perceptron (MLP) in FFN and propose a novel

coarse-to-fine NAS approach with warm-up KD

to find the optimal MLP architectures, aiming to

search for a universal small BERT model with

competitive performance and strong transferabil-

ity. Specifically, we design a rich and flexible

search space to discover an excellent FFN with

maximal nonlinearity and a minimal computational

cost. Our search space contains various mathemati-

cal operations, stack numbers, and expansion ratios

of intermediate hidden size. To efficiently search

from our vast search space, we progressively shrink

the search space in three stages.

• Stage 1: Perform a coarse search to explore the

entire search space (i.e., jointly searching the

mathematical operations, stack numbers, and ex-

pansion ratios)(Figure 2 (a)).

• Stage 2: Fix the stack numbers and expansion

ratios, performing a fine-grained search for the

optimal mathematical operations (Figure 2 (b)).

• Stage 3: Fix the mathematical operations, per-

forming a fine-grained search for optimal stack

numbers and expansion ratios (Figure 2 (c)).

Even with this elegant coarse-to-fine search strat-

egy, pre-training each candidate model still needs a

lot of time to converge during searching. To solve

this problem, different from the conventional KD

strategy (Jiao et al., 2020), we propose a warm-up

KD strategy to fast transfer the knowledge, where

a pre-trained supernet is additionally introduced to

perform a joint warm-up for all candidate models.

Note that the warm-up strategy in the third stage is

slightly different from that of the first two stages.

During the first two stages, each candidate model

initially inherits its weights from a frozen warmed-

up supernet to accelerate searching. But in the third

stage, since there is no need to search mathemat-

ical operations, an unfrozen warmed-up supernet

sharing weights across different candidate models

is allowed, i.e., each model can inherit weights

from this activated warmed-up supernet for a quick

launch and is then trained with weight sharing in a

multi-task manner to enhance transferability.

Extensive experimental results show that our

searched architecture, named EfficientBERT, is

6.9× smaller and 4.4× faster than BERTBASE,

and has competitive performance. On the test set

of GLUE benchmark, EfficientBERT attains an

average score of 77.7, which is 0.7 higher than

MobileBERTTINY, and achieves an F1 score of

85.3/74.5 on the SQuAD v1.1/v2.0 dev dataset,

which is 3.2/2.7 higher than TinyBERT4 even with-

out data augmentation.

2 Related Work

Compression for Pre-trained Language Models.

For the past few years, pre-trained language models

(PLMs) have demonstrated their strong powers on

a variety of NLP tasks with the trend of larger and

larger model size as well as better results. However,

it is hard to deploy them on resource-limited edge

devices for practical usage. To solve this problem,

many efficient PLMs have been proposed (Turc

et al., 2019; Lan et al., 2020). For example, Turc

et al. (2019) directly pre-train and fine-tune smaller

BERT models. In addition, many compression tech-

niques for PLMs have been proposed recently to

reduce the training cost, including quantization,

weight pruning, and knowledge distillation (KD)

(Shen et al., 2020; Sajjad et al., 2020; Jiao et al.,

2020). Among them, KD (Hinton et al., 2015) is

widely used due to its plug-and-play feasibility,

which aims to transfer the knowledge from larger

teacher models to smaller student models without

sacrificing too much performance. For example,

BERT-PKD (Sun et al., 2019) jointly distills the in-

termediate and last layers during fine-tuning. Distil-

BERT (Sanh et al., 2020) distills the last layers with

a triple loss during pre-training. MobileBERT (Sun

et al., 2020) designs an inverted-bottleneck model

structure and progressively transfers the knowl-

edge during pre-training. MiniLM (Wang et al.,

2020b) performs a deep self-attention distillation

during pre-training. TinyBERT (Jiao et al., 2020)

introduces a comprehensive Transformer distilla-

tion method during pre-training and fine-tuning.

Nevertheless, the compression of the feed-

forward network (FFN) has not been well studied,

although its computational cost is 2∼3 larger than

the multi-head attention (MHA) as pointed out by
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Figure 2: An overview of the search procedure of our EfficientBERT. The teacher model is BERTBASE (left), and

the search space of our student model is designed towards achieving better nonlinearity of FFN, which contains

mathematical operations, stack numbers, and intermediate expansion ratios (right). During searching, we progres-

sively shrink the search space and divide the search process into three stages to conduct NAS ((a)-(c)). Both in

the search and retraining stages, we use a novel warm-up knowledge distillation to transfer the teacher model’s

knowledge (middle). Specifically, each candidate or retrained subnet first inherits the weights from a frozen or

activated warmed-up supernet, then conducts pre-training and fine-tuning with single-task or multi-task dataset.

Iandola et al. (2020). In contrast, compressing FFN

is our main focus in this work.

Neural Architecture Search. Motivated by the

success of neural architecture search (NAS) in com-

puter vision (Howard et al., 2019; Li et al., 2020;

Cai et al., 2020), increasing attention has been paid

to applying NAS to NLP tasks (So et al., 2019;

Wang et al., 2020a; Chen et al., 2020), aiming to

automatically search for optimal architectures from

a vast search space. Evolved Transformer (So et al.,

2019) employs NAS to search for a better Trans-

former architecture with an evolutionary algorithm.

HAT (Wang et al., 2020a) applies NAS to search

for efficient hardware-aware Transformer models

based on a Transformer supernet. AdaBERT (Chen

et al., 2020) searches for task-adaptive small mod-

els with KD and differentiable NAS method. NAS-

BERT (Xu et al., 2021) proposes a task-agnostic

NAS method for adaptive-size model compression,

where several acceleration techniques (including

block-wise search, search space pruning, and per-

formance approximation) are introduced to speed

up the searching process.

Differently, in this paper, we design a compre-

hensive search space towards the nonlinearity of

multilayer perceptron (MLP) in FFN, and pro-

pose a novel coarse-to-fine NAS approach with

warm-up KD to find the optimal MLP architec-

tures. Unlike AdaBERT, we apply NAS to search

Table 1: Mathematical operations of FFN. Following

the original papers of GeLU (Hendrycks and Gimpel,

2016) and Leaky ReLU (He et al., 2015), we let c1 =
0.5, c2 =

√

2/π, c3 = 0.044715, c4 = 0.01.

Operation Expression Arity

Add x + y 2
Mul x × y 2
Max max(x, y) 2

GeLU c1x(1 + tanh(c2(x+ c3x
3))) 1

Sigmoid 1/(1 + e−x) 1

Tanh (ex − e−x)/(ex + e−x) 1
ReLU max(x, 0) 1
Leaky ReLU x if x ≥ 0 else c4x 1
ELU x if x ≥ 0 else ex − 1 1

Swish x/(1 + e−x) 1

for a small universal BERT with competitive per-

formance and strong transferability. And unlike

NAS-BERT, we design a much more flexible search

space and use warm-up KD with a coarse-to-fine

searching paradigm to accelerate searching and en-

hance model transferability.

3 Our EfficientBERT

We aim at discovering a lightweight MLP architec-

ture with better nonlinearity in each FFN layer, en-

suring the searched model can achieve compelling

performance. We first present the search space

towards better nonlinearity of MLP in FFN, as de-

scribed in Section 3.1. Then we propose a novel
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coarse-to-fine NAS method with warm-up KD as

discussed in Section 3.2.

3.1 Search Space Design

In a standard Transformer layer, there are two main

components: a multi-head attention (MHA) and

a feed-forward network (FFN). Theoretically, the

computation (Mult-Adds) of MHA and FFN is

O(4Ld2 + L2d) and O(2 × 4Ld2) respectively,

where L is the sequence length and d is the chan-

nel number. As d gets larger, the computation of

FFN gets larger than MHA. And as pointed out by

previous works (Iandola et al., 2020), the latency

of MHA and FFN in each layer of BERTBASE ac-

counts for about 30% and 70% on a Google Pixel 3

smartphone, and the parameter numbers for MHA

and FFN are about 2.4M and 4.7M, respectively.

These demonstrate the potential of compressing

FFN, i.e., compressing FFN may be more promis-

ing than squeezing MHA. In addition, as discussed

by Dong et al. (2021), the MLP in FFN can prevent

an optimization problem, i.e., rank collapse, caused

by self-attention; thus, the nonlinearity ability of

FFN deserves to be investigated. Hence, our main

focus is compression and improvement of FFN.

We then design a search space towards the non-

linearity of MLP in FFN to search for a model

with better nonlinearity of FFN and increase the

performance. Many factors determine the FFN non-

linearity, such as the mathematical operations and

the expansion ratios of intermediate hidden size.

Inspired by MobileBERT (Sun et al., 2020), we

find that by increasing the stack number of FFN,

the model performance can also be remarkably im-

proved. We integrate all of the above factors into

our search space, including the mathematical oper-

ations, stack numbers, and intermediate expansion

ratios of FFN. (1) Mathematical operation: We

define some primitive operations (including several

binary aggregation functions and unary activation

functions) and search their different combinations,

as shown in Table 1. (2) Stack number: The stack

number of FFN is selected from {1, 2, 3, 4}. (3)

Intermediate expansion ratio: The intermediate ex-

pansion ratio is selected from {1, 1/2, 1/3, 1/4}.

Note that the stack number and the intermediate ex-

pansion ratio are jointly considered to balance the

computation cost, e.g., network parameters. We use

a directed acyclic graph (DAG) to represent each

FFN architecture when searching the mathematical

operations. The mathematical operations and linear

operations are optionally placed in the intermediate

nodes to process the hidden states. More details of

our search space can be found in Figure 2.

3.2 Neural Architecture Search

Base Model Design. As discussed by previous

BERT compression works (Jiao et al., 2020; Sun

et al., 2020), there are several strategies to reduce

the model size, including the embedding factoriza-

tion and model width/depth reduction. However,

most of the recent works only consider part of these

strategies. In our work, we design a base model

with all these strategies to make a comprehensive

compression. Besides, we find that the expansion

ratio of intermediate hidden size in FFN contributes

a lot to the model size and inference latency. Thus

the reduction of the intermediate expansion ratio is

also considered. The detailed settings of our base

model can be found in Section 4.2.

Coarse-to-Fine NAS with Warm-up KD. To

speed up the search in the vast search space, we

propose a coarse-to-fine NAS method by progres-

sively shrinking the search space. The search pro-

cess is divided into three stages where a coarse-

grained search is conducted in the first stage to

jointly search all of the factors in our search space,

and fine-grained searches are conducted in the last

two stages to search for partial factors.

In the first search stage, we jointly search all of

the factors in our search space, including the math-

ematical operations, stack numbers, and intermedi-

ate expansion ratios. We use a DAG computation

graph described in §3.1 to represent each MLP ar-

chitecture. The initial search candidates are based

on our base model, but different stack numbers and

intermediate expansion ratios of FFN are allowed.

During searching, each candidate model is first

sampled by a learnable sampling decision tree as

proposed in LaNAS (Wang et al., 2019). Then

warm-up KD is employed on each candidate model

to accelerate the search process. Since we need

to search for the mathematical operations, we can-

not share the weights of different candidate models

to avoid the potential interference problems. In-

stead, we first build a warmed-up supernet based

on our base model with the maximum FFN stack

number and intermediate expansion ratio in our

search space. The supernet is pre-trained entirely

(i.e., complete graph) with KD. The weights of the

supernet are then frozen. When training each can-

didate model, we first inherit its weights from the
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supernet. Precisely, the weights of each stacked

FFN are sliced from bottom to top layer; and the

weights of each linear operation are sliced from

left to right channel. After that, we only need to

pre-train and fine-tune each model for a few steps

via KD to adjust the inherited weights. This signifi-

cantly reduces the search cost.

In the second search stage, to discover more

diversified mathematical operations and evaluate

their effects, we search them individually with the

same method in the first search stage. The ini-

tial search candidates are built upon the searched

model of the first search stage (i.e., we fix the stack

numbers and expansion ratios). The sampling and

KD strategies are the same as the first search stage.

In the third search stage, we jointly search the

stack numbers and intermediate expansion ratios in

the search space to explore their potentials further.

The initial search candidates are based on the sec-

ond search stage’s searched model; the searched

mathematical operations are fixed, but different

stack numbers and intermediate expansion ratios

of FFN are allowed. We also apply warm-up KD

to accelerate the searching. Specifically, we first

warm up the supernet entirely (i.e., complete graph)

via KD again but do not freeze its weights. Then

we share the weights of different candidate models

(i.e., subgraphs of the supernet) during pre-training

and fine-tuning to make acceleration. Each candi-

date model is sampled uniformly. Compared with

the first two search stages, the search cost is dra-

matically reduced, enabling us to leverage more

downstream datasets to enhance the model trans-

ferability. Inspired by MT-DNN (Liu et al., 2019),

each candidate model is fine-tuned in a multi-task

manner on different categories of downstream tasks.

The weights of the embedding and Transformer

layers for all tasks are shared, while those of the

prediction layers are different.

Warm-up KD Formulations. In our warm-up

KD, each candidate/retrained model initially inher-

its the weights from a warmed-up supernet. We

use BERTBASE (Devlin et al., 2019) as the teacher

model. Following TinyBERT (Jiao et al., 2020), we

jointly distill the attention matrices, Transformer-

layer outputs, embeddings, and predicted logits

between the student and teacher models. In detail,

the attention loss at the m-th student layer Lm
attn is

calculated by the mean square error (MSE) loss as:

Lm
attn =

1

h

h
∑

i=1

MSE(AS
i,m,AT

i,n), (1)

where AS
i,m and A

T
i,n refer to the i-th head of atten-

tion matrices at m-th student layer and its matching

n-th teacher layer, respectively, and h is the number

of attention heads. The Transformer-layer output

loss at the m-th student layer Lm
hidn and the embed-

ding loss Lembd can be formulated as:

{

Lm
hidn = MSE(HS

mWh,H
T
n )

Lembd = MSE(ES
We,E

T )
, (2)

where H
S
m and H

T
n are the Transformer-layer out-

puts at m-th student layer and its matching n-th

teacher layer, respectively. E is the embedding,

and two learnable transformation matrices Wh and

We are applied to align the mismatch dimensions

between the student and teacher models. More-

over, the prediction loss Lpred calculated by the

soft cross-entropy (CE) loss can be formulated as:

Lpred = CE(zS/t, zT /t), (3)

where z is the predicted logits vector, and t is the

temperature value. Finally, we combine all of the

above losses and derive the overall KD loss as:

L =
M
∑

m=1

(Lm
attn+Lm

hidn)+Lembd+γLpred, (4)

where M is the number of Transformer layers in

the student model, γ controls the weight of the

prediction loss Lpred.

4 Experiment

This section demonstrates the superior performance

and transferability of our EfficientBERT on a wide

range of downstream tasks.

4.1 Datasets

We evaluate our model on two standard bench-

marks for natural language understanding, i.e.,

the General Language Understanding Evaluation

(GLUE) benchmark (Wang et al., 2018) and the

Stanford Question Answering Dataset (SQuAD).

The GLUE benchmark contains nine classifica-

tion datasets, including MNLI (Williams et al.,

2018), QQP (Chen et al., 2018), QNLI (Rajpurkar

et al., 2016), SST-2 (Socher et al., 2013), CoLA
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Table 2: Results on the test set of GLUE benchmark. The architectures of different models are as follows.

BERTTINY & TinyBERT4: (M=4, d=312, di=1200); BERTSMALL: (M=4, d=512, di=2048); BERT-PKD4 &

DistilBERT4: (M=4, d=768, di=3072); BERT-PKD6 & DistilBERT6: (M=6, d=768, di=3072). The latency is the

average inference time over 100 runs on a single GPU with a batch size of 128.

Model #Params Latency MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg

BERTBASE (Google) 108.9M 362ms 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6

BERTBASE (Teacher) 108.9M 362ms 84.8/83.8 71.6 91.3 93.1 53.9 85.3 89.2 68.9 80.2

BERTTINY (Turc et al., 2019) 14.5M 43ms 75.4/74.9 66.5 84.8 87.6 19.5 77.1 83.2 62.6 70.2

BERTSMALL (Turc et al., 2019) 28.8M 75ms 77.6/77.0 68.1 86.4 89.7 27.8 77.0 83.4 61.8 72.1

BERT-PKD4 (Sun et al., 2019) 52.8M 129ms 79.9/79.3 70.2 85.1 89.4 24.8 79.8 82.6 62.3 72.6

BERT-PKD6 (Sun et al., 2019) 67.0M 193ms 81.5/81.0 70.7 89.0 92.0 43.5 81.6 85.0 65.5 76.6

DistilBERT4 (Sanh et al., 2020) 52.8M 129ms 78.9/78.0 68.5 85.2 91.4 32.8 76.1 82.4 54.1 71.9

DistilBERT6 (Sanh et al., 2020) 67.0M 193ms 82.6/81.3 70.1 88.9 92.5 49.0 81.3 86.9 58.4 76.8

TinyBERT4 (Jiao et al., 2020) 14.5M 43ms 81.8/80.7 69.6 87.7 91.2 27.2 83.0 88.5 64.9 75.0

MobileBERTTINY (Sun et al., 2020) 15.1M 96ms 81.5/81.6 68.9 89.5 91.7 46.7 80.1 87.9 65.1 77.0

EfficientBERTTINY 9.4M 52ms 82.4/81.0 70.3 88.5 91.2 37.5 80.9 87.8 64.6 76.0

EfficientBERT w/o Warm-up KD 15.7M 83ms 83.1/82.0 71.0 89.5 90.8 42.1 82.1 88.4 67.2 77.4

EfficientBERT 15.7M 83ms 83.3/82.3 71.0 90.2 92.1 43.8 82.9 88.2 65.7 77.7

EfficientBERT+ 15.7M 83ms 83.0/82.3 71.2 89.3 92.4 38.1 85.1 89.9 69.4 77.9

EfficientBERT++ 16.0M 103ms 83.0/82.5 71.2 90.6 92.3 42.5 83.6 88.9 67.8 78.0

Table 3: Results on the dev set of GLUE benchmark compared with other NAS methods. † indicates the results

with data augmentation.

Model #Params MNLI-m QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg

AdaBERT (Chen et al., 2020) † 6.4∼9.5M 81.3 70.5 87.2 91.9 - - 84.7 64.1 -

NAS-BERT10 (Xu et al., 2021) 10M 76.4 88.5 86.3 88.6 34.0 84.8 79.1 66.6 75.5

NAS-BERT30 (Xu et al., 2021) 30M 81.0 90.2 88.4 90.5 48.7 87.6 84.6 71.8 80.3

EfficientBERTTINY 9.4M 81.7 86.7 89.3 90.1 39.1 79.9 90.1 63.2 77.5

EfficientBERT 15.7M 83.1 87.3 90.4 91.3 50.2 82.5 91.5 66.8 80.4

(Warstadt et al., 2019), STS-B (Cer et al., 2017),

MRPC (Dolan and Brockett, 2005), RTE (Ben-

tivogli et al., 2009), and WNLI (Levesque et al.,

2011). The SQuAD task aims to predict the an-

swer text span of the given question in a Wikipedia

passage, which contains two datasets: SQuAD

v1.1 (Rajpurkar et al., 2016) and SQuAD v2.0 (Ra-

jpurkar et al., 2018). The metrics can be found in

Wang et al. (2018) and Rajpurkar et al. (2016).

4.2 Model Settings

The embedding factorization strategy of our base

model is the same as MobileBERT (Sun et al.,

2020), the number of Transformer layers M is set

to 6, the hidden size of the model d is set to 540,

and the intermediate expansion ratio of FFN is set

to 1 with intermediate hidden size di of 540. The

remaining structures are the same as BERTBASE.

We retrain our searched model of the third search

stage by employing the warm-up KD method used

in the first two search stages described in Section

3.2, referring to as EfficientBERT. EfficientBERT+

is obtained by inheriting the weights of Efficient-

BERT from the multi-task fine-tuned supernet and

then directly fine-tune on each downstream task.

Moreover, to verify the importance of model depth,

we extend our EfficientBERT from 6 layers to 12

Table 4: Results on the SQuAD dev datasets. The archi-

tectures of MiniLM4 and MiniLM6 are (M=4, d=384,

di=1536) and (M=6, d=384, di=1536), respectively. †

indicates the results with data augmentation.

Model #Params
SQuAD v1.1 SQuAD v2.0

EM/F1 EM/F1

BERTBASE (Google) 108.9M 80.8/88.5 -/-

BERTBASE (Teacher) 108.9M 80.5/88.2 74.8/77.7

BERT-PKD4 (Sun et al., 2019) 52.8M 70.1/79.5 60.8/64.6

BERT-PKD6 (Sun et al., 2019) 67.0M 77.1/85.3 66.3/69.8

DistilBERT4 (Sanh et al., 2020) 52.8M 71.8/81.2 60.6/64.1

DistilBERT6 (Sanh et al., 2020) 67.0M 78.1/86.2 66.0/69.5

TinyBERT4 (Jiao et al., 2020) † 14.5M 72.7/82.1 68.2/71.8

MiniLM4 (Wang et al., 2020b) 19.3M -/- -/69.7

MiniLM6 (Wang et al., 2020b) 22.9M -/- -/72.7

EfficientBERTTINY 9.4M 74.8/83.6 68.6/71.9

EfficientBERT 15.7M 77.0/85.3 71.4/74.5

EfficientBERT++ 16.0M 78.3/86.5 73.0/76.1

layers by affinely repeating each layer in Efficient-

BERT twice and shrink the hidden size from 540

to 360, forming EfficientBERT++. The weights are

initially inherited from the warmed-up supernet of

EfficientBERT in the same manner. In addition,

to ensure a fair comparison with TinyBERT4, we

further shrink the hidden size of our EfficientBERT

from 540 to 360, forming EfficientBERTTINY,

which has similar latency with TinyBERT4.1

1Our searched model, i.e., EfficientBERT, can be seen in
Figure 6 of the Appendix A.
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Table 5: Results of searched models at different search stages on the GLUE test set. Wiki and Books refer to the

pre-training corpora of English Wikipedia and BooksCorpus, respectively.

Model (Pre-train Dataset) #Params MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg

Base Model (Wiki) 15.3M 82.5/81.6 71.0 89.0 91.4 37.3 82.1 86.1 65.8 76.3

Search Stage 1 (Wiki) 15.4M 82.8/82.0 71.0 89.7 91.8 37.4 82.2 87.7 65.3 76.7

Search Stage 2 (Wiki) 15.4M 82.8/82.3 70.9 89.8 92.2 38.3 82.1 88.5 65.7 77.0

Search Stage 2 (Wiki+Books) 15.4M 82.8/82.0 71.1 89.7 92.1 42.5 82.2 88.2 66.3 77.4

EfficientBERT (Wiki+Books) 15.7M 83.3/82.3 71.0 90.2 92.1 43.8 82.9 88.2 65.7 77.7

Table 6: Effectiveness comparison between single-

stage searching and our coarse-to-fine NAS method.

Method Best Score #Searched Arch Search Cost

Single stage 76.7 2,700 84 GPU days

Search stage 1 76.7 1,900 54 GPU days

Search stage 1, 2 77.0 2,000 56 GPU days

Coarse-to-Fine NAS 77.7 5,000 58 GPU days

4.3 Implementation Details

In the first two search stages, the frozen super-

net sliced by each candidate model is pre-trained

for ten epochs, and we use 2% of the English

Wikipedia corpus to pre-train each candidate model

for one epoch. During fine-tuning, we use the first

10% training set of MNLI to train each model for

three epochs and the last 1% training set for eval-

uation. In the third search stage, the activated su-

pernet is pre-trained and fine-tuned for ten epochs,

and each candidate model is optimized for one step.

We use the entire corpora of English Wikipedia and

BooksCorpus as the pre-training data, the combina-

tion of 90% training set of each downstream GLUE

task as the fine-tuning data, and the rest 10% train-

ing set of MNLI as the evaluation data. The batch

size at each search stage is set to 256. The learning

rates for pre-training and fine-tuning at each stage

are set to 1e-4 and 4e-4, respectively.

During retraining, each searched model is first

pre-trained for ten epochs based on the inherited

weights from the warmed-up supernet and is then

fine-tuned on downstream tasks for ten epochs ex-

cept for CoLA. Note that CoLA is fine-tuned for

50 epochs following the widely-used protocol. The

batch sizes for pre-training and fine-tuning are set

to 256 and 32, respectively. The learning rate for

pre-training is set to 1e-4. The learning rates for

fine-tuning on GLUE and SQuAD datasets are set

to 5e-5 and 1e-4, respectively.

In all of our experiments, γ is set to 0 and 1

for pre-training and fine-tuning, respectively. t is

set to 1. The maximum sequence length is set to

128. We use Adam with β1 = 0.9, β2 = 0.999, L2

weight decay of 0.01, warm-up proportion of 0.1,

and linear decay of the learning rate.

4.4 Results on GLUE

We compare our searched models with BERTTINY,

BERTSMALL (Turc et al., 2019) and several state-

of-the-art compressed BERT models, including

BERT-PKD (Sun et al., 2019), DistilBERT (Sanh

et al., 2020), TinyBERT4 (Jiao et al., 2020), and

MobileBERTTINY (Sun et al., 2020). For a fair

comparison, TinyBERT4 is re-implemented by re-

moving the data augmentation and fine-tuning from

the official general distillation weights2. The exper-

imental results on the test set of GLUE benchmark

are listed in Table 2 and Figure 1.

From the results in Table 2, we can observe that:

(1) Our EfficientBERT is 6.9× smaller and 4.4×

faster than BERTBASE and has achieved a com-

petitive average GLUE score of 77.7, which is 0.7

higher than its counterpart MobileBERTTINY. (2)

Our EfficientBERT+ has better transferability than

EfficientBERT across different GLUE tasks with an

improvement of 0.2 on the average score, demon-

strating the effectiveness of our multi-task training

strategy in the third search stage. (3) Our Efficient-

BERT++ has achieved state-of-the-art performance,

which outperforms MobileBERTTINY by 1.0 on

the average score. (4) Our EfficientBERTTINY out-

performs TinyBERT4 by a 1.0 average score with

fewer parameters and similar latency. (5) With-

out our warm-up KD during retraining, i.e., pre-

training the model from scratch rather than from

the warmed-up supernet, the average score of Ef-

ficientBERT decreases by 0.3, demonstrating the

advantage of retraining with our warm-up KD. And

from the results in Figure 1, we can see that all of

our searched models outperform other compared

models with similar or lower latency.

Furthermore, to verify the effectiveness of our

proposed NAS method, we compare with several

related NAS methods on the GLUE dev set, includ-

2We use the 2nd version from https://github.com/

huawei-noah/Pretrained-Language-Model/

tree/master/TinyBERT

https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
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Table 7: Results of our EfficientBERT with different base models on the GLUE test set.

Model (Base Model) #Params MNLI-m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg

TinyBERT6 67.0M 83.8/83.2 71.4 89.8 92.0 38.8 83.1 89.0 65.8 77.4

EfficientBERT (TinyBERT6) 70.1M 84.1/83.2 71.4 90.4 92.6 46.2 83.7 89.0 67.7 78.7

74 75 76
82.0

82.5

83.0

=0.89

MNLI-m

74 75 76
86.8

87.1

87.4

=0.91
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74 75 76
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Figure 3: Results of model ranking correlation between

the search and retraining phases on the GLUE dev set

in the first search stage.

ing AdaBERT (Chen et al., 2020) and NAS-BERT

(Xu et al., 2021). The results are shown in Table

3. As can be seen, with similar parameters, our

EfficientBERTTINY has better performance than

AdaBERT and NAS-BERT10; and our Efficient-

BERT outperforms NAS-BERT30 even with much

fewer parameters. These results demonstrate the

superiority of our NAS method.

4.5 Results on SQuAD

To measure the transferability of our searched mod-

els across different types of tasks, we further evalu-

ate our models on SQuAD dev datasets, as shown

in Table 4. We choose BERT-PKD, DistilBERT,

TinyBERT4, and MiniLM (Wang et al., 2020b)

as the baseline models. From the results, we can

see that our EfficientBERT still achieves competi-

tive performances, which outperforms TinyBERT4

by 3.2/2.7 F1 score on SQuAD v1.1/v2.0 dev

dataset even without data augmentation, and sur-

passes MiniLM6 by 1.8 F1 score on SQuAD v2.0

dev dataset. Besides, our EfficientBERTTINY can

also outperform TinyBERT4 on both SQuAD dev

datasets. These results indicate the strong perfor-

mance and transferability of our searched models.

0 200 400 600 800
Step

5

10

Lo
ss

w/o Warm-up KD
Warm-up KD

Figure 4: Efficiency comparison results between

searching with and without our warm-up KD.

4.6 Discussion

Effectiveness of Coarse-to-Fine NAS Method.

To measure the effectiveness of our coarse-to-fine

NAS method, we first compare the performances

of the searched models at different search stages

on the GLUE test set in Table 5. It can be observed

that the searched model in the first search stage

has better performance than our base model, which

proves the effectiveness of the coarse-grained NAS

process. And from the first to the third search

stages, the performances of the searched models

are gradually enhanced, which shows the effective-

ness of the fine-grained strategies and the necessity

of each factor in our search space.

Then we compare the effectiveness between

single-stage searching and our coarse-to-fine NAS

method in Table 6. As shown, our coarse-to-fine

NAS method has higher efficiency than single-

stage searching, saving 26 GPU days. It can also

search for 2,300 more architectures and observe

better architecture with a higher GLUE test score.

Effectiveness of Warm-up KD. To evaluate the

model ranking effectiveness of our warm-up KD

method between the search and retraining phases,

we first randomly sample eight candidate models

in the first search stage, whose search scores range

from 77.6 to 79.3. Then we retrain each model

and obtain its final score on the GLUE dev set, as

shown in Figure 3. The Kendall Tau τ (Kendall,

1938) for each downstream task is also calculated.

From the results, we can see that the search and re-

training phases have strong positive correlations on

most downstream tasks, demonstrating the strong

ranking capability of the warm-up KD strategy.

Next, to test the efficiency, we compare the

fine-tuning losses of our base model in the first
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Figure 5: Visualization towards the FFN nonlinearity

of (a) BERTBASE, (b) our EfficientBERT, (c) our base

model, and (d)-(f) randomly selected candidate models

with worse performances in the first search stage.

search stage between searching with and without

our warm-up KD strategy, as shown in Figure 4.

From the results, we can observe that the loss with

our warm-up KD can reach a lower value with

much fewer steps.

Transferability across Different Base Models.

To test the transferability of our EfficientBERT

across different base models, we replace the archi-

tecture of TinyBERT6 with that of the Efficient-

BERT and evaluate it on the GLUE test set. For

both models, we use English Wikipedia to pre-train

for three epochs from scratch to be consistent with

Jiao et al. (2020). Note that the intermediate ex-

pansion ratio in our search space is applied to the

original intermediate hidden size of TinyBERT6

(i.e., 3072). The results are shown in Table 7. From

the results, we can observe that our EfficientBERT

with the base model of TinyBERT6 outperforms the

original TinyBERT6 on most of the downstream

tasks, and has gained an improvement of 1.3 on the

average GLUE score, showing the strong transfer-

ability of our EfficientBERT.

Visualization of FFN Nonlinearity. In Figure

5, we typically visualize the FFN nonlinearity of

BERTBASE, our EfficientBERT, our base model,

and three randomly selected candidate models with

worse performances in the first search stage. The

input embedding of each model has two dimen-

sions serving as axes X and Y, whose values are

uniformly selected from -15∼5 to approximate the

distribution of the embedding in BERTBASE. The

average output of the last Transformer layer is re-

garded as the value of axis Z. Besides, we remove

the MHA, replace the layer normalization with the

simple average operation, and set the weights and

bias in each linear operation to 1 and 0, respec-

tively, in order to alleviate their impacts. From the

results, we can observe that the curves of (a)-(c) are

more fluent and have less sudden increase regions

than (d)-(f); and from (a) to (c), the curve complex-

ity gradually decreases. It reflects that BERTBASE

(our teacher model) has the best FFN nonlinearity,

and our EfficientBERT has better nonlinearity than

the base model and the randomly selected candi-

date models. This verifies the superiority of our

method in gaining better nonlinear mapping ability.

More visualization of the nonlinearity can be seen

in Figure 7-8 of the Appendix B.

5 Conclusion

In this paper, we focus on the compression and

improvement of FFN and design a profound search

space over the nonlinearity of MLP in FFN, aiming

at searching for better MLP architectures to im-

prove the model performance. Due to the enormous

search space, we conduct NAS in a progressive

manner and employ a novel warm-up KD strategy

at each search stage to accelerate searching and en-

hance model transferability. Extensive experiments

show that our searched architecture EfficientBERT

is 6.9× smaller and 4.4× faster than BERTBASE,

and has competitive performance and strong gen-

eralization ability. In the future, we will leverage

NAS to discover more dynamic PLMs w.r.t differ-

ent hardwares and downstream tasks.
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Appendix

A Visualization of Searched Models

We visualize the architectures of our base model,

the searched models of the first two search stages,

and our EfficientBERT in Figure 6 from (a) to

(d). From the architecture, we can observe that

our EfficientBERT is more efficient since most of

the searched intermediate expansion ratios are 1/2

while most of the searched stack numbers are less

than 2. Besides, in our EfficientBERT, lower layers

tend to have more FFN stack number or intermedi-

ate expansion ratio (e.g., layer 1, 2) so as to enrich

the semantic representation to the maximum extent

for processing by higher layers. In comparison,

higher layers tend to learn more complex math-

ematical formulas (e.g., layers 4, 5) to enhance

the nonlinearity of lower enriched representations.

This could bring many inspirations for efficient and

effective backbone design.
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B Visualization of Model Nonlinearity

To further show the superior nonlinearity of our

searched models, we visualize the attention maps

in twelve attention heads for BERTBASE, our Ef-

ficientBERT, TinyBERT6, and our EfficientBERT

(TinyBERT6) in Figure 7, respectively. As can

be seen, the feature maps of our EfficientBERT

are close to those of BERTBASE. This verifies the

nonlinear mapping ability of our EfficientBERT in

fitting the teacher model. Moreover, the attention

distributions of our EfficientBERT (TinyBERT6)

are closer to BERTBASE than TinyBERT6 in most

of the attention heads. This proves the excellent

nonlinear representation ability of our Efficient-

BERT (TinyBERT6) again.

Then, we visualize the feature maps of FFN

outputs for the above four models, as shown in

Figure 8. The observations in Figure 8 are similar

to that of Figure 7, once again demonstrating the

superior nonlinear representation ability of our

EfficientBERT and EfficientBERT (TinyBERT6).
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Figure 6: Architectures of (a) our base model, (b)-(c) the searched models of the first two search stages, and (d)

our EfficientBERT.
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(a) BERTBASE

(b) EfficientBERT

(c) TinyBERT6

(d) EfficientBERT (TinyBERT6)

Figure 7: Visualization for the attention distributions of (a) BERTBASE, (b) our EfficientBERT, (c) TinyBERT6,

and (d) our EfficientBERT (TinyBERT6) in the last Transformer layer.

(a) BERTBASE

(b) EfficientBERT

(c) TinyBERT6

(d) EfficientBERT (TinyBERT6)

Figure 8: Visualization for the FFN output distributions of (a) BERTBASE, (b) our EfficientBERT, (c) TinyBERT6,

and (d) our EfficientBERT (TinyBERT6) in the last Transformer layer.


