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Abstract

Although abstractive summarization models
have achieved impressive results on document
summarization tasks, their performance on di-
alogue modeling is much less satisfactory due
to the crude and straight methods for dialogue
encoding. To address this question, we pro-
pose a novel end-to-end Transformer-based
model FinDS for abstractive dialogue sum-
marization that leverages Finer-grain univer-
sal Dialogue semantic Structures to model di-
alogue and generates better summaries. Ex-
periments on the SAMsum dataset show that
FinDS outperforms various dialogue summa-
rization approaches and achieves new state-
of-the-art (SOTA) ROUGE results. Finally,
we apply FinDS to a more complex scenario,
showing the robustness of our model. We also
release our source code'

1 Introduction

The field of abstractive summarization has recently
seen impressive progress in document scenarios,
while less attention has been paid to dialogue sum-
marization. Previous research on dialogue summa-
rization is based on successful document summa-
rization models (Nallapati et al., 2016; See et al.,
2017; Nikolov et al., 2018; Liu et al., 2018) which
model the dialogue in a crude and straight manner.
Taking the example of Table 1, the truth in this
dialogue is that Mark lied to Anne, and that pass-
port belongs to Mark, but the summary generated
by Pointer-Generator Network (PGN) makes some
factual error, which is denoted by (the comparison
between) red and blue text in Table 1. Moreover,
the predicted summary omits the critical informa-
tion in the dialogue, as shown in the text.
Such factual errors indicate that it is not suitable
to transfer the document summarization model to
the dialogues summarization model. This is mainly
*The first two authors contributed equally. Weiran Xu is

the corresponding author.
"https://github.com/apexmeister/FINDS

Dialogue Scripts

Anne: You were right, he was lying to me :/.
Irene: Oh no, what happened?
Jane: Who? That Mark guy?
Anne: Yeah, he told me he’s 30,
today I saw his passport - he’s 40.
Irene: You sure it’s so important?
Anne: He lied to me Irene.
Ground-Truth Summary:

Mark lied to Anne about his age.
Pointer-Generator Prediction:
Anne was lying today.

Anne saw her passport today.

Table 1: A dialogue example from SAMsum (Gliwa
et al., 2019) with a ground-truth summary and a sum-
mary predicted by Pointer Generator Networks.

because, unlike the document, the dialogue serves
the purpose of information exchange. It naturally
contains more than one participants (Zhang et al.,
2019) and multiple topics in many turns of utter-
ances, (Xiao and Carenini, 2019) and hence the
core information is distributed randomly. Besides,
every speaker talks in a first-person perspective,
which brings referral and coreference due to hu-
man language habit (Lei et al., 2021; Chen and
Yang, 2021a). Straightly concatenating and sequen-
tially understanding the dialogue might capture
some erroneous and redundant semantic relation-
ships between speakers and utterances. (Gao et al.,
2020) Therefore, the dialogue summarization task
is facing different challenges from document sum-
marization:

* Compared with the structural and logical writ-
ting style of document, dialogue is always
unstructured, informal, and complex. Core in-
formation is randomly distributed in the whole
dialogue. Sequential encoding is difficult to
capture key information correctly.

* There are naturally multiple speakers in the
dialogue, and how to capture the dependency
between different speakers and utterances are
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important for the understanding of dialogue.

Based on the understanding of these potential
risks of dialogue scenario, recent work focuses on
developing methods suitable for this dialogue sum-
marization: Shang et al. (2018) developes an un-
supervised multi-sentence compression algorithm,
while Zhao et al. (2019) proposes a self-adaptive
learning model to learn the segmentation strat-
egy of utterances and topics. These methods are
modified based on document summarization meth-
ods. Others also introduces some models designing
specially for dialogue summarization: Liu et al.
(2019b); Li et al. (2019); Zou et al. (2020) lever-
ages the topic information that flows in the dialogue
to help generate topic-aware summaries, Goo and
Chen (2018); Liu et al. (2019a) manually anno-
tates the dialogue to construct some prior structural
knowledge which helps the model obtain a more
informative and accurate context. Chen and Yang
(2020) introduces two model-annotated dialogue
structural views to help encode the utterances. Un-
fortunately, these jobs remain at a coarse level that
can not correctly capture the relationships between
speakers and utterances and topics. Some of them
are time and labor-consuming or contain error su-
perposition because of some handcrafted or model-
based label.

Accordingly, we propose a novel end-to-end
Transformer-based (Vaswani et al., 2017) model
FinDS equipped with four Finer-grain universal
Dialogue semantic Structures. To meet the first
challenge, we propose Inner Utterance seman-
tic Structure (IUS) and Global Topic semantic
Structure (GTS) that helps the understanding of
the dialogue from utterance-level to topic-level:
The TUS only focuses on the information inside
each utterance, as Figure 1(a) shows. The GTS con-
nects utterances according to the topic that they are
talking about, as Figure 1(b) shows. In response to
the second challenge, we introduce Inner Speaker
semantic Structure (InSS) and Inter Speaker se-
mantic Structure (ItSS) to help model clarify the
correct relationships between speakers and their
topics: The InSS only focuses on the informa-
tion from the same speaker, as Figure 1(c) shows.
The ItSS interacts with the information from one
speaker to other speakers except for himself, as Fig-
ure 1(d) shows. All these structures are constructed
based on the universal characteristic of dialogue
previously in an automatic method. With the help
of these finer-grain universal dialogue semantic

structures, our FinDS model performs effectively
and robustly for dialogue summarization. Our con-
tributions are three-fold:

(1) We develop a novel end-to-end Transformer-
based model FinDS for abstractive dialogue sum-
marization which models the dialogue with four
pre-constructed universal dialogue semantic struc-
tures.

(2) We propose to construct four kinds of dia-
logue semantic structures in an automatic method
to assist FinDS for better dialogue summarization:
IUS focuses on the information inside each utter-
ance; GTS connects utterances with the same topic;
InSS focuses on the information from the same
speaker; ItSS interacts the information from one
speaker to other speakers except for himself.

(3) Extensive experiments on the SAMsum
dataset present a comparable result compared
with many strong baselines. The further analysis
presents that FinDS performs robust and effective
when the dialogue scenario getting complex.

2 Related Works

2.1 Document Summarization

Document summarization has received extensive
attention in recent years, on which a lot of works
have been done, and has achieved many suc-
cesses. Rush et al. (2015) proposes an abstractive
text summarization method by using sequence-to-
sequence models originally. To address the out-of-
vocabulary problem, See et al. (2017) introduces
a pointer-generator network to allow the model to
copy tokens from the source document. Paulus
et al. (2017); Chen and Bansal (2018) achieves
the goal of generating summarization by selecting
appropriate content in the original document as
summary sentences on the reinforcement learning
framework. The performance of document summa-
rization has also been further improved by using
large-scale pre-trained language models proposed
by Liu and Lapata (2019b); Raffel et al. (2019);
Lewis et al. (2019), and Zhang et al. (2020) designs
a new pre-training task for document summariza-
tion and achieved remarkable success.

2.2 Dialogue Summarization

While document summarization gains such great
success, intensive research on dialogue summa-
rization is also underway. Shang et al. (2018)
introduces Multi-Sentences Compression Graph
(MSCQG) for meeting summarization, by choos-
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Figure 1: The construction of four universal dialogue semantic structures including IUS, GTS, INSS, and ITSS.

ing the correct path to compress sentences. Zhao
et al. (2019); Zhu et al. (2020) proposes hierar-
chical models to obtain multi hierarchical-grain
semantic representations to identify the turns, or
utilizes role vectors to capture dialogue informa-
tion. A few research also focus on utilizing ex-
ternal knowledge as features of the conversation.
Goo and Chen (2018) captures the dialogue states
changing during the dialogue by recording the dia-
logue acts. Other features like key points sequence
(Liu et al., 2019a) and topics sequence (Liu et al.,
2019b; Li et al., 2019) are also applied in dialogue
summarization methods. However, such external
knowledge is a human-annotated or model-based
label which might be time and labor-consuming or
include extra errors.

3 Method

To capture the core topics and build up a correct
dependency between speakers and utterances at a
finer-grain level, we propose to model the complex
dependencies in the dialogue with the following
procedures: (1) Constructing IUS, GTS, InSS, and
ItSS in an automatic way (Section 3.2). (2) En-
coding the dialogue by modifying self-attention
processing with four dialogue semantic structures
(Section 3.3). (3) The decoder receives the context
from the encoder to predict a summary.

3.1 Motivation of Semantic Structures

To understand a dialogue, firstly, we must tell the
model what each utterance is telling exactly. Be-
cause each speaker is talking sequentially and they

are talking about a different topic sometimes. So
we build up IUS to model the single utterance first.
Once the model is able to understand the dialogue
utterance by utterance, we can go further to teach
the model to distinguish the topic of each speaker
and the relationships between topics by building up
InSS and ItSS. However, the topics flow in differ-
ent speakers is sometimes facing interrupting and
jumping. We need to construct closer relationships
between topics and utterances. So we leverage the
ConceptNet to build up the GTS to captures those
relationships.

3.2 Semantic Structures Construction

This section describes the automatic construct-
ing process of our four universal dialogue struc-
tures. Formally, for a given dialogue D =
{Wg,oa w(1)707 . w;"n} with [ words in total, we can
figure out the speaker of each utterance according
to the first word of each utterance, which is the
speaker’s name. So we denote w}", as the [-th word
in the n-th utterance from the m-th speaker. Then
we take words as the Elementary Discourse Units
(EDUs) to construct four dialogue semantic struc-
tures, G'US(Section 3.2.1), G°T5(Section 3.2.2),
G'"55(Section 3.2.3), and G"55(Section 3.2.4):

3.2.1 Inner Utterance Semantic Structures

Utterances in dialogue are not organized sequen-
tially as documents due to the repetition and in-
terruption, which also explains why core contents
of the same speaker randomly distributed in the
dialogue. And there is naturally more than one
speaker in the dialogue, which makes it harder to
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Figure 2: The overall architecture of FinDS is demonstrated and it is enhanced by four different universal dialogue

semantic structures IUS, InSS, ItSS, and GTS.

capture the correct dependencies between speakers
and their topics. For example, speaker A claims "/
like to eat apple", while the other speaker B says
"I prefer banana". In this situation, If we model
the dialogue in a document summarization way, the
attention might confuse speaker A’s and speaker
B’s favorite fruits. Hence, before building up the
relationships between speakers and their topics, we
capture the local dependencies (Liu and Lapata,
2019a; Jin et al., 2020) inside each utterance by
constructing Inner Utterance semantic Structure
(IUS) as a graph G'VS = (D, E'US), where D is the
set of nodes that represent EDUs and E'US is the
adjacent matrix that describes the connection of
each node inside the same utterance as Figure 1(a)
shows.

3.2.2 Global Topics Semantic Structures

As mentioned above, the topics of different speak-
ers are distributed randomly in the dialogue. and
the meaning of each utterance is not isolated (Qin
et al., 2017). Therefore we follow (Feng et al.,
2020) to build up the Global Topic semantic Struc-
tures (GTS) as a graph G°75 = (D, E9TS), where
D is the set of nodes that represent EDUs and E¢TS
is the adjacent matrix that describes the connection
of each node according to the topic information.
The topic information was collected by the com-
monsense knowledge graph ConceptNet (Speer and
Havasi, 2012). For any subject s in the Concept-
Net, it will have an object o and the relationship r

between them with a confidential weight w. They
will form a concept tuple like ¢ = (s,r,0,w). We
input all words in the dialogue except real names
and stopwords into ConceptNet and get concept tu-
ple sets C = {c1,1,¢2.1,..-,Cifs---sCm,1 }> Where ¢;
represents a concept tuple obtained by using the
word w{_ « as the query for ConceptNet. And if any
two concept tuples from different utterances Cijs
Cp,q has the same object o, we consider that the ut-
terances they belong to are talking about the same
topic. For example, if speaker A says "I don’t have
his number" while speaker B says "I called him
yesterday", we can search the same object "phone
calling" by matching the query word "number and
called from the ConceptNet. Then we believe they
are talking about the same topic "phone calling.
According to such topic information, we can pre-
construct the GTS for capturing the dependencies
between topics and utterances as Figure 1(b) shows.

3.2.3 Inner Speaker Semantic Structures

Building up the dependencies between speakers
and utterances (Murray et al., 2006) are of the same
importance as the dependencies between utterances
and topics. Because, a topic might have multi-
ple participants, and the utterances from different
speakers are usually unstructured and illogical be-
cause of the alternation and informality (Jackson
and Moulinier, 2007) of utterances. So, we pro-
posed to regroup the utterances and initially under-
stand the main ideas of every speaker. We construct
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the Inner Speaker semantic Structure (InSS) as a
graph G'"S5 = (D,E"S5), where D is the set of
nodes that represent EDUs and E’™S is the adja-
cent matrix that describes the connection of each
node from the same speaker as Figure 1(c) shows.

3.2.4 Inter Speaker Semantic Structures

The ideas of every speaker are not narrated isolat-
edly. Because dialogue carries the function of infor-
mation exchange between people. To capture the
dependencies between different speakers, we con-
struct the Inter Speaker semantic Structures (ItSS)
as a graph G"SS = (D, E"SS), where D is the set of
nodes that represent EDUs and E'*5S is the adjacent
matrix that describes that every node connects to
those nodes coming from other speakers as Figure
1(d) shows.

3.3 Encoder

Given a dialogue and its pre-constructed dialogue
semantic structures, we propose a Structures Fu-
sion Encoder (SFE) to obtain a structure-aware
dialogue hidden representation by combining and
interacting dialogue with four structures as Figure
2 shows.

3.3.1 Structures Fusion Encoder

We initialize our Structures Fusion Encoder Fsrg (.)
with a pre-trained encoder, i.e., BART-large (Lewis
et al., 2019), and incorporate four structures into
the self-attention calculation processing to encode
all words D = {W8,07W(1),o> -..;w]’, } in dialogue into
its hidden representation. To do so, we regard four
pre-constructed structures as four mask matrixes
MIUS MGTS ppinSS pgltSS that have the same shape
with the similarity matrix calculated by the Carte-
sian product by query and key. Then, we combine
this similarity matrix and four mask matrix to in-
fluence the final attention weights and the hidden
representation:

{hg,Oa ...,h;’fn} = Forg (D,MIUS’MGTS’MInSS’MItSS)
(D

Then, we introduce the Structures Fusion(SFA)
Self-Attention to fuse the dialogue hidden repre-
sentation with four structure mask matrixes:
Structures Fusion Self-Attention(SFA) The SFA
module follows standard multi-head attention
(MHA) to calculate four different attention results
by superposing different structure mask matrixes

SAMsum Train  Validation  Test
Sizes 14732 818 819
Max.Speakers 4 12 9
Max.Turns 46 30 27
Avg.Speakers 2.40 2.39 2.36
Avg.Turns 11.17 10.83 11.25
Most.Speakers | 2(10723) 2(605) 2(624)
Most.Turns 6(1309) 6(87) 6(86)

Table 2: Details of SAMsum

directly to the original attention weights to mod-
ify original attention scores, and finally obtain a
structure-aware hidden representation:

SFA = Concat{heads™, ..., heads™ YW*  (2)
heads™i = {head] head), ...,head]}  (3)
M€ {MIUS MGTS MInSS MItSS} (4)
7] ) ) ’
: W2 (KWK . M;
headij:Softmax(Q ) KW) LywY (5)

Vg

where, W2, WK, WW_ WL are trainable parameters,
0.K,V are query, key, value in the self-attention
calculation process.

3.4 Decoding and Training

At decoding stage, FinDS follows standard trans-
former decoding approach. The decoder Fp
receives the [ — 1 previous generated tokens
t1,t,....t;—1 and predicts the /-th token with the
finer-grain structure-aware context from SFE:

c=Fp{ti,t2,....t1—1},Fspe(D))
P(ﬁ|l<1,C1) = Softmax(Wpcl)

(6)
(N

where, W, is a parameter to be learned.
And the training objective is to minimize the
cross entropy loss:

L= —ZlogP(t}\t<l,cl) 8)
Additionally, we also apply the teacher forcing
strategy: When training, the inputs of decoder are
previous tokens from the ground truth summary.

And ,at test time, the inputs are previous tokens
predicted by the decoder.
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4 [Experiments

4.1 Experiment Settings

We evaluate our FinDS on a dialogue summariza-
tion dataset SAMsum (Gliwa et al., 2019)* which is
written by langugage experts. Details of the dataset
conditions are shown in Table 2. We load? the
pre-trained sequence-to-sequence model "BART-
large"* (Lewis et al., 2019) as our baseline, and
modify the encoder as our Graph-Interactive En-
coder. Normally, We use the Sharpening Interac-
tion(SI) to involving four commonsense semantic
graphs. Our model consists of 12 layers in total,
768 model dimensions, 12 heads. And fine-tune
it with 3¢~ learning rate, 4 batch size, 512 max
sequence length, and 15 max training epoch. All of
our experiments are running on an Ubuntu 18.04
platform with two NVIDIA GeForce GTX 2080Ti
GPUs. At testing stage, we follow (Chen and Yang,
2020) use the pltrdy-rouge’ tool to calculate the
ROUGE (Lin, 2004) scores. The baselines our
model compares with are describing in the Ap-
pendix.

4.2 Experiment Baselines

¢ Pointer Generator (See et al., 2017): We in-
put each utterances of the dialogue as divi-
sion into the model, following (Gliwa et al.,
2019). Through pointer mechanism, we gen-
erate the summary by generating or copying
tokens from origin dialogue.

¢ Fast Abs RL (Chen and Bansal, 2018): This
method first select important sentences from
origin text and then rewrite these sentences to
an abstractive pattern with sentence-level pol-
icy gradient methods. We also follow (Gliwa
et al., 2019) to concatenate all utterances into
one block.

¢ Transformer (Vaswani et al., 2017): This
model utilizes the self-attention mechanism
to parallelize the input text to generate sum-
maries, and has achieved great results on the
text summarization task. We use fully visible
self-attention on this model, that is, do not

’https://www.tensorflow.org/datasets/
catalog/samsum
3https://github.com/huggingface/
transformers
‘https://huggingface.co/facebook/
bart-base
Shttps://github.com/pltrdy/rouge

make any changes to the original mask matrix.

* LightConv (Wu et al., 2019): To address the
problem of the limited ability of self-attention
to process long-span sentences, this model
proposes a lightweight convolution module.
We regard this model as one of our baseline
models testing on SAMsum dataset.

* DynamicConv (Wu et al., 2019): Different
from lightweight convolution module, the dy-
namic convolution module only changes in
the weight parameters of the convolution. The
weight parameters of the former are fixed on
each feature map, and the weight of the latter
needs to be the dot product based on the fixed
value of the former and the feature point of
the current position, and its outputs is used as
the new wight.

* Multi-View BART (Chen and Yang, 2020):
This is the first attempt on modeling dia-
logue with some dialogue structure informa-
tion. Specifically, it introduces two extra rel-
atively complicated dialogue-views to model
the topics and stages in the dialogue and reach
a State-Of-The-Art result on SAMsum so far.

* S-BART (Chen and Yang, 2021b): This work
leverages the discourses relationships and
speakers’ actions to build up two graph ex-
plicitly. Combining them into the dialogue
encoding and summary predicting procedure,
which is the first job to modeling the depen-
dencies between discourses and speakers.

4.3 Experiments Results

We evaluate FinDS on the SAMsum test set with
ROUGE metrics (Lin and Och, 2004; Lin, 2004).
As the Table 3 shows, Either PGN (See et al.,
2017) or Transformer (Vaswani et al., 2017) per-
forms disappointingly when facing dialogue sum-
marization. The PGN gets the highest scores
among those demonstrated traditional document
summarization models. When testing on the pre-
trained model BART-large, all scores improve av-
eragely 10 points than those document models that
prove the strong performance from pre-training.
Based on BART, Chen and Yang (2020) introduces
Multi-view BART that reached the previous SOTA
ROUGE scores on the SAMsum dataset.
Compared with previous baselines, FinDS
achieves new SOTA ROUGE results by 52.23
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Model ROUGE-1 ROUGE-2 ROUGE-L

F P R F P R F P R
Pointer Generator (See et al., 2017) 40.10 - - 15.28 - - 36.63 - -
Fast Abs RL (Chen and Bansal, 2018) 40.96 - - 17.18 - - 39.05 - -
Transformer (Vaswani et al., 2017) 37.27 - - 10.76 - - 32.73 - -
LightConv (Wu et al., 2019) 33.19 - - 11.14 - - 30.34 - -
DynamicConv (Wu et al., 2019) 33.79 - - 11.79 - - 30.41 - -
BART (Lewis et al., 2019) 4820 4930 54.00 | 2450 25.10 2640 | 46.60 47.50 49.50
Multi-view BART (Chen and Yang, 2020) | 49.30 51.10 52.20 | 25.60 26.50 27.40 | 47.70 4930 49.90
S-BART (Chen and Yang, 2021b) 46.07 51.13 4624 | 22.60 25.11 22.81 | 45.00 49.82 4447
FinDS 52.23* 54.74* 55.06* | 25.91* 27.39* 27.11 | 50.87* 52.66* 53.15*
FinDS w/o IUS 51.60 5392 5418 | 2497 2623 26.08 | 49.84 5296 51.89
FinDS w/o GTS 50.57 54.07 5254 | 2478 26.61 2570 | 49.04 51.63 50.61
FinDS w/o InSS 51.22  54.66 53.61 | 2509 2673 2597 | 49.78 5196 5147
FinDS w/o ItSS 51.62 5420 5447 | 2570 2694 27.00 | 50.12 5194 5233

Table 3: ROUGE-1, ROUGE-2, ROUGE-L scores that different models perform on SAMsum test set. The numbers
with * indicate the significant improvement over all baselines with p < 0.05 under t-test.

551 = PGN 60 4
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504
Ead g
g 2 40
[=} =}
& 404 o
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% BART
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Number of dialogue speakers

Figure 3: The changing ROUGE-1 F1 scores as speaker
numbers increasing.

for ROUGE-1-F score, 25.91 for ROUGE-2-F,
and 50.87 for ROUGE-L-F. Analyzing the results,
FinDS gets nearly 3 points higher than the pre-
vious SOTA at 49.30 for ROUGE-1-F and 47.70
for ROUGE-L-F. The ROUGE-2-F score gains 0.3
points higher than the previous SOTA ROUGE-2-F
result at 25.60. These results prove that our model
can effectively capture those keywords as 1-grams
that are distributed randomly in the dialogue, which
is contributed by the IUS and GTS for constructing
the local context dependencies inside the utterance
and the global topic dependencies throughout the
dialogue. And because the reference summaries
are written by language experts manually that have
high-level attractiveness. Therefore, it is difficult
for content compression and synonymous rewrit-
ing, and neither Multi-view BART nor FinDS can
achieve great improvement on the ROUGE-2-F
score which represents the ability of a model to
capture the core 2-grams in the dialogue for sum-
marization.

4.4 Ablation Experiment

We also conducted ablation experiments on FinDS.
In cases of removing any semantic structure, the
ROUGE scores of FinDS are reduced but they are
still higher than our baseline BART-large, as Ta-

Number of dialogue turns

Figure 4: The changing ROUGE-1 F1 scores as dia-
logue turns increasing.

ble 3 shows. This phenomenon shows that each
semantic structure contributes to the improvement
of FinDS.

According to the results, it is obvious that GTS
and InSS contribute more to the improvement of
the model effect, especially GTS. The ROUGE
scores of FinDS suffer the highest level reduction
while removing InSS structure or GTS structure.
And when IUS or ItSS is removed, FinDS suffers
less damage on the performance. There are two
intuitive explanations for this phenomenon. Firstly,
GTS enhances the model’s global understanding
of dependencies between topics and utterances by
introducing external knowledge. Then, by focus-
ing on the dialogue content of each speaker, InSS
allows the model to understand the characteristics
and core topic of each speaker’s discourses respec-
tively, which brings more valuable information for
dialogue summarization than capturing the infor-
mation exchanges between different speakers by
ItSS.

5 Analysis
5.1 Effect of Speaker Numbers

Figure 3 further shows the performance of FinDS
when facing increasing speaker numbers from 2
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Figure 5: The attention heatmap of BART when encod-
ing dialogue.

speakers to 5 speakers. We compare FinDS with
the PGN model and the BART-large model on the
ROUGE-1-F. With the increasing number of speak-
ers, the performance of all models first have an
upward trend and obtain a maximum score when
reaching 3 speakers, then they all show a down-
ward trend. The performance of the BART model
drops sharply as the number of speakers increasing.
When the speaker number reaches 5, the perfor-
mance of the BART model is even worse than that
of the PGN model, and FinDS outperforms others
stably with an averagely score higher than 45. And
the performance gap between FinDS and BART
is getting larger when speakers increasing, which
proves that FinDS still performs robustly and ef-
fectively when facing such a complex dialogue
scenario. And it also testifies the InSS and ItSS are
efficient for capture the information and modeling
the dependencies inside and across the speakers.

5.2 Effect of Dialogue Turns

Figure 4 shows the performance of FinDS when
facing increasing dialogue turns from 3 turns di-
alogue to 30 turns dialogue. Similar to Section
5.1, we compare FinDS with the PGN model and
the BART model on the ROUGE-1-F. The perfor-
mance of all models experiences an overall down-
ward trend. When dialogue has few turns, BART
and FinDS perform much better than PGN. As the
speaker number increases, the performance of the
PGN model and the BART model approach gradu-
ally and experience fluctuating downward. Though
FinDS receive some damage on performance as
well, it still outperforms enormously the other two
all the time, which also proves the robustness and
effectiveness of FinDS when facing a complex dia-

Figure 6: The attention heatmap of FinDS when encod-
ing dialogue.

logue scenario. Furthermore, these phenomenons
also evidence that IUS and GTS capture the strong
dependencies inside and across the utterances even
when dialogue has more than 20 turns.

5.3 Attention Heatmap Analysis

We randomly choose a dialogue sample and draw
the attention heat-map when encoding it. The origi-
nal BART-large pays more attention to the diagonal
region which means there is an insufficiency for
capturing the global information and remote se-
mantic dependencies when modeling the dialogue
as Figure 5 shows. This phenomenon directly ev-
idences the fact that traditional document encod-
ing approaches and the original self-attention are
limited and implicit when modeling dialogue. On
the contrary, FinDS incorporates four universal di-
alogue semantic structures to calibrate the direc-
tion of self-attention explicitly by capturing finer-
grain and remote semantic dependencies as Figure
6 shows. Essentially, the model is forced to attend
to the core contents purposefully and has more
chance to learn useful information and relation-
ships to help dialogue summarization.

5.4 Human Evaluation

To verify the improvement of FinDS beyond the
ROUGE scores, we randomly choose some pre-
dicted summaries to conduct the human evaluation
on 5 different model settings. We randomly invite
10 annotators to participate in the human evalu-
ation and sample 10% examples generated by 5
model settings respectively. Given a prediction by
FinDS with a specific model setting, a prediction
by BART-large, a PGN result, and a ground-truth
summary in each evaluation round, we provide all
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Model | origin(10%) | w/o IUS(10%) | w/o GTS(10%) | w/o InSS(10%) | w/o ItSS(10%)

FinDS +25% +22% +10% +17% +23%

BART 1.00 1.00 1.00 1.00 1.00
PGN -52% -55% -53% -50% -49%

Table 4: The human evaluation result of the ablation FinDS performances and Vanilla PGN compared to the BART.

annotators the following guidelines:

(1) You will not be able to know the given three
predictions are predicted by which models. They
are all shuffled.

(2) Firstly, you should score all the summaries
according to the completeness from O to 2. If a
summary is incomplete, you should give it a 0
score which means this summary is unreadable
and nonsensical.

(3) Secondly, you should score all the summaries
according to the informativeness from O to 2. If a
summary you score 0, it means the summary con-
tains irrelevant and unimportant messages from the
dialogue compared to the ground-truth summary.

(4) Thirdly, you should score all the summaries
according to the information correctness from 0 to
2. If a summary gets a 0 score, it means that the in-
formation in the summary does not conform to the
basic facts in the dialogue, though the information
might not be relevant and important compared to
the ground-truth summary.

With the pre-defined rules above, there are 3
scores range from O to 2 that a summary can get
with the consideration of completeness, informa-
tiveness, information correctness. And We cal-
culate the average score denotes the quality of
the summaries from the same model setting and
normalize them by the results of the BART-large
model. Therefore we use the scores of the BART-
large model as a baseline to evaluate the differ-
ences between it and other candidates as Table
4 shows. According to the results, we find that
our best model’s human-evaluating performance
is 25% higher than the baseline. When removing
any semantic graph, all scores reduce slightly, but
still higher than the baseline. This phenomenon
shows that all of our semantic graphs contribute.
The removal of GTS has the greatest impact on
FinDS which leads to a 15% human-evaluating
performance dropping, as it introduces the global
relationship of utterances into FinDS as external
knowledge. Removing InSS also causes a big blow
to the human-evaluating performance of the model
with 8% performance dropping. And the overall
human-evaluating performance of PGN is disas-
trously 50% lower than the BART-large. These

Example 1

Frank: Son, will you come home this weekend?

Son: not sure yet. Something happened?

Frank: Of course not . Your mother is miss you.

Son: I miss her too.

Frank: So will you com?

Son: I will try.

Frank: Good, I will tell your mother that you will come
Son: oh, dad.. ok I will come.

Ground Truth Son is coming to see his parents this weekend.

PGN Pred. Son will come to Frank’s mother’s home.

FinDS Pred. Son will try to

Example 2

Anne: You were right, he was lying to me :/.
Irene: Oh no, what happened?

Jane: Who? That Mark guy?

Anne: Yeah, he told me he’s 30,

today I saw his passport - he’s 40.

Irene: You sure it’s so important?

Anne: He lied to me Irene.

Ground Truth Mark lied to Anne about his age. Mark is 40.

PGN Pred. Anne was lying today. Anne saw her passport today.

FinDS Pred. lied to Anne about being 30 .Anne saw his passport today .

Table 5: Two cases to compare between the predictions
from FinDS, PGN, and the Ground Truth, red words
means wrong massages while means right con-
tent and blue parts highlight the core content.

phenomenons are conforming to the phenomenons
of ablation experiments that demonstrate different
extents our dialogue semantic structures contribute
to dialogue summarization.

5.5 Case Study

We also present a case study with two dialogue and
their relative summaries. Comparing to the tradi-
tional document summarization model, our FinDS
can achieve improvement beyond the ROUGE
scores, which also shows the predicted summaries
are more informative and more correct. FinDS can
capture all core contents in the dialogue and turn
them into the right message in the summaries while
the PGN is failed.

6 Conclusion

In this paper, we develop a novel end-to-end
Transformer-based model FinDS for abstractive
dialogue summarization that leverages finer-grain
universal dialogue semantic structures to model
dialogue and generates better summaries. Experi-
ments have shown FinDS achieves new SOTA re-
sults on the ROUGE metrics. More importantly,
FinDS proves its robustness and effectiveness for
every structure in the complex dialogue scenario.
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