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Abstract
Deep reinforcement learning provides a
promising approach for text-based games in
studying natural language communication
between humans and artificial agents. How-
ever, the generalization still remains a big
challenge as the agents depend critically on
the complexity and variety of training tasks.
In this paper, we address this problem by
introducing a hierarchical framework built
upon the knowledge graph-based RL agent.
In the high level, a meta-policy is executed
to decompose the whole game into a set of
subtasks specified by textual goals, and select
one of them based on the KG. Then a sub-
policy in the low level is executed to conduct
goal-conditioned reinforcement learning. We
carry out experiments on games with various
difficulty levels and show that the proposed
method enjoys favorable generalizability.

1 Introduction

Text-based games are simulated systems where
the agent takes textual observations as the input,
and interacts with the environment via text com-
mands (Hausknecht et al., 2020). They are suitable
test-beds to study natural language understanding,
commonsense reasoning and language-informed
decision making (Luketina et al., 2019). Reinforce-
ment Learning (RL) based agents (Narasimhan
et al., 2015; Zahavy et al., 2018) have been de-
veloped to handle challenges such as language-
based representation learning and combinatorial
action space. Among them, KG-based agents (Am-
manabrolu and Hausknecht, 2020) yield promis-
ing performance with the aid of Knowledge Graph
(KG), which serves as a belief state to provide struc-
tural information.

To design intelligent RL-based agents for text-
based games, it is necessary to build agents that
automatically learn to solve different games. How-
ever, generalization remains as one of the key chal-
lenges of RL − the agent tends to overfit the train-

ing environment and fails to generalize to new en-
vironments (Cobbe et al., 2019). In the domain
of text-based games, the TextWorld (Côté et al.,
2018) makes it feasible to study generalizability by
creating non-overlapping game sets with customiz-
able domain gaps (e.g., themes, vocabulary sets,
difficulty levels and layouts). Most previous works
study generalizability either upon games with the
same difficulty level but different layouts (Am-
manabrolu and Riedl, 2019a), or upon games with
a set of multiple levels that have been observed
during training (Adolphs and Hofmann, 2020). Al-
though these agents perform well on relatively sim-
ple games, they can hardly achieve satisfactory
performance on difficult games (Adhikari et al.,
2020). In this work, we aim to develop agents that
can be generalized to not only games from the same
difficulty level while having unseen different lay-
outs, but also games from unseen difficulty levels
where both layouts and complexities are different.

While solving a whole game might be difficult
due to long-term temporal dependencies, and the
learnt strategy might be difficult to be transferred
to other games due to large domain gaps, it would
be more flexible to treat the game as a sketch of
subtasks (Andreas et al., 2017; Oh et al., 2017).
This brings two branches of benefits. First, the sub-
tasks would be easier to solve as they have short-
term temporal dependencies. Second, the strategies
learnt for solving subtasks may be recomposed to
solve an unseen game. Motivated by these insights,
we aim to solve a game by decomposing it into sub-
tasks characterized by textual goals, then making
decisions conditioned on them. Instead of hand-
crafting the task sketches, we leverage the hierar-
chical reinforcement learning (HRL) framework
for adaptive goal selection, and exploit the compo-
sitional nature of language (Jiang et al., 2019) to
improve generalizability.

We develop a two-level framework, Hierarchical
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Knowledge Graph-based Agent (H-KGA)1, to
learn a hierarchy of policies with the aid of KG.
In the high level, we use a meta-policy to obtain
a set of available goals characterized by texts, and
select one of them according to the current KG-
based observation. Then, we use a sub-policy for
goal-conditioned reinforcement learning. Besides,
we design a scheduled training strategy to facili-
tate learning across multiple levels. We conduct
experiments on a series of cooking games across
8 levels, while only 4 levels are available during
training. The experimental results show that our
method improves generalizability in both seen and
unseen levels.

Our contributions are summarised as follows:
Firstly, we are the first to study generalizability
in text-based games from the aspect of hierarchi-
cal reinforcement learning. Secondly, we develop
a two-level HRL framework leveraging the KG-
based observation for adaptive goal selection and
goal-conditioned decision making. Thirdly, we em-
pirically validate the effectiveness of our method in
games with both seen and unseen difficulty levels,
which show favorable generalizability.

2 Related work

2.1 RL agent for text-based games
Motivated by the prosperity of deep reinforcement
learning techniques in playing games (Silver et al.,
2016), robotics (Schulman et al., 2017; Fang et al.,
2019a,b) and NLP (Fang et al., 2017), several RL-
based game agents have been developed for text-
based games (He et al., 2016; Yuan et al., 2018;
Jain et al., 2020; Yin and May, 2019; Guo et al.,
2020; Xu et al., 2020a). Compared with the non-
learning-based agents (Hausknecht et al., 2019;
Atkinson et al., 2019), the RL-based agents are
more favorable as there is no need to handcraft
game playing strategies with huge amounts of ex-
pert knowledge. The KG-based agents (Murugesan
et al., 2020; Xu et al., 2020b) extend RL-based
agents with the knowledge graph, which can be
constructed from the raw textual observation via
simple rules (Ammanabrolu and Riedl, 2019a), lan-
guage models (Ammanabrolu et al., 2020) or pre-
training tasks (Adhikari et al., 2020). The major
benefit of KG is that it serves as a belief state to
provide structural and historical information to han-
dle partial observability. While these works focus

1Code is available at: https://github.com/
YunqiuXu/H-KGA

on constructing KG from the textual observation,
we aim at improving generalizability by fully ex-
ploiting the KG to design a goal-conditioned HRL.
Our work thus complements KG-based agents.

2.2 Generalization in text-based games
It may be difficult to study generalization in games
initially designed for human players (Hausknecht
et al., 2020), as they are so challenging that ex-
isting RL agents are still far from being able to
solve a large proportion of them even under the sin-
gle game setting (Yao et al., 2020). Furthermore,
these games usually have different themes, vocab-
ularies and logics, making it hard to determine
the domain gap (Ammanabrolu and Riedl, 2019b).
Compared with these man-made games, the syn-
thetic games (Côté et al., 2018; Urbanek et al.,
2019) provide a more natural way to study general-
ization by generating multiple similar games with
customizable domain gaps (e.g., by varying game
layouts). Generally, the training and testing game
sets in previous works have either the same diffi-
culty level (Ammanabrolu and Riedl, 2019a; Mu-
rugesan et al., 2021), or a mixture of multiple lev-
els (Adolphs and Hofmann, 2020; Yin et al., 2020),
or both (Adhikari et al., 2020). In this work, we
extend the setting of multiple levels to unseen lev-
els. We not only study generalization in games that
have the same difficulty level but various layouts,
but also consider games where both the layouts
and levels are different from those of the training
games. In addition, we emphasize on improving
the performance on hard levels.

2.3 Hierarchical reinforcement learning
The HRL framework (Dayan and Hinton, 1992) has
been studied in video games (Kulkarni et al., 2016;
Vezhnevets et al., 2017; Shu et al., 2018), robotic
control tasks (Nachum et al., 2018),and NLP tasks
such as the dialogue system (Peng et al., 2017;
Saleh et al., 2020). However, as far as we know,
we are the first to introduce the insight into text-
based games with KG-based observation. Previous
works also considered identifying a task by textual
goal specifications (Bahdanau et al., 2019; Fu et al.,
2019). In the domain of text-based games, such
goal-conditioned RL setting has been studied with
the quest generation tasks (Ammanabrolu et al.,
2019, 2021). In our work, we specify a subtask
by its goal. Different from these works, where a
single goal is pre-specified or directly generated
from the observation, we introduce a hierarchy by

https://github.com/YunqiuXu/H-KGA
https://github.com/YunqiuXu/H-KGA
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Figure 1: The overview of H-KGA. In the high level (red), the meta-policy πmeta first obtains the set of goals of
available subtasks Gt from oKG

t , then selects a goal gt for the sub-policy πsub. In the low level (blue), πsub selects
the action at from the admissible action set At conditioned on oKG

t and g.

disentangling the process of goal set generation and
goal selection. By accommodating flexible goal set
generation (e.g., by pre-trained language models
or human experts), we focus on designing a meta-
policy to select the goal in an adaptive manner. By
adopting HRL to select a textual-based goal for the
sub-policy, our work is similar to HIN (Jiang et al.,
2019) which, however, focuses on visual scenar-
ios and separately trains the meta-policy and the
sub-policy, leaving joint training as future work. In-
stead, we consider the domain of text-based games,
and develop a framework to enable joint training
of meta-policy and sub-policy. We further compare
joint and individual training in Sec. 6.

3 Background

3.1 KG-based observation

Following previous works (Hausknecht et al.,
2020), we formulate the text-based games as
Partially Observable Markov Decision Processes
(POMDPs), where the details is in Appendix A.
We discard the raw textual observation and con-
sider only the KG-based observation oKG

t as the
observational input at timestep t. Fig. 1 shows
an example of oKG

t . The KG is defined as G =
(V,E), where V and E are the node set and the
edge set, respectively. oKG

t consists of a set of

triplets, where a triplet is formulated as 〈Subject ,
Relation , Object〉, denoting that the Subject ∈ V
has Relation ∈ E with the Object ∈ V .

3.2 Problem setting

We aim to design an RL-based agent that is able
to address the generalization in solving text-based
games. To reduce the requirement for external
knowledge, we consider games sharing similar
themes and vocabularies, but varying in their lay-
outs and / or difficulty levels. For example, games
of the cooking theme (Côté et al., 2018) share the
same overall objective: prepare the meal. To ac-
complish it, the player has to collect ingredients
and prepare them in correct ways. The layout of
a game contains the room connectivity and the
preparing steps (e.g., the type / location of ingredi-
ents). The difficulty of a game depends on the com-
plexity of the map (e.g., the number of rooms) and
the recipe (e.g., the number of ingredients), such
that two games with different levels are naturally
different in their layouts. We follow the multi-task
learning setting to consider that the training set
and the testing set consist of multiple games from
multiple levels. We consider two scenarios of gen-
eralization: 1) seen levels, where the training and
testing games have the same levels, but different
layouts. 2) unseen levels, where the training and
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testing games are different in levels and layouts.
More examples are provided in Appendix. D.

4 Methodology

4.1 Overview

Fig. 1 shows the overview of H-KGA, which con-
sists of a hierarchy of two levels of policies. In the
high level, a meta-policy πmeta first obtains the set
of goals of available subtasks Gt from oKG

t , then
selects a goal gt for the sub-policy πsub. In the low
level, πsub selects the action at from the admissi-
ble action set At conditioned on oKG

t and g. We
omit the subscript “t” for g because this goal may
be selected in the past rather than the current time
step. For example, as shown in Fig. 1, once the
gt is selected by πmeta, it will remain unchanged
for N time steps until being completed (e.g., ac-
complished or failed). At each time step from t to
t+N , πsub considers the same goal gt.

In the following, we illustrate how to design
πmeta to obtain the available goal set Gt and conduct
goal selection to obtain gt ∈ Gt in Sec. 4.2; how
to design πsub to select an action at ∈ At in Sec.
4.3; and how to train H-KGA with a scheduled
curriculum for multi-task learning in Sec. 4.4.

4.2 Meta-policy for goal selection

As discussed before, while a whole game may be
difficult to accomplish due to long-term temporal
dependency, decomposing it into a sketch of sub-
tasks will make the game easier to be solved (Sohn
et al., 2018; Shiarlis et al., 2018). If we consider
the solving strategy for a subtask as a skill, the
generalizability for an unseen game will also be
improved by recomposing the learnt skills. There-
fore, inspired by the HRL framework (Sutton et al.,
1999), we design a meta-policy πmeta to first obtain
a set of subtasks, then select one subtask from them.
We characterize a subtask by its goal to transform
subtask selection into goal selection. We make
the goal to be instruction-like textual descriptions
(e.g., “find purple potato”), yielding better flexi-
bility and interpretability than using a state as the
goal (Andrychowicz et al., 2017). Fig. 1 shows
the overview of πmeta (in red), which consists of a
goal set generator, a graph encoder, a text encoder
and a goal scorer. We denote the set containing
all required goals for solving a game as G. Then
we define a goal as “available” at a time step if
no other goals should be accomplished before it.
For example, “cook red potato” is not available in

Fig. 1, as another goal “find red potato” should be
accomplished first. The goal set generator has two
purposes: 1) obtain the set of currently available
goals Gt ⊆ G, and 2) check whether a goal has
been accomplished. Inspired by (Jiang et al., 2019),
the goal set generator can be implemented by dif-
ferent approaches, including supervised language
models and non-learning-based methods such as
human supervisors and functional programs. In
our work, we use a non-learning-based method to
obtain Gt and the details are discussed in Sec 5.3
and Appendix B.

After obtaining Gt, πmeta will be used to select
a goal gt ∈ Gt. We use a graph encoder to encode
oKG
t as state representation smeta

t , and a text encoder
to encode Gt as a stack of goal representations.
Arbitrary graph encoders and text encoders can
be used. We implement the graph encoder based
on the Relational Graph Convolutional Networks
(R-GCNs) (Schlichtkrull et al., 2018) to take both
nodes and edges into consideration. For the text en-
coder, a simple single-block transformer (Vaswani
et al., 2017) is sufficient as the goal candidates are
short texts. In the goal scorer, we adopt a goal
scoring process similar to (He et al., 2016), where
smeta
t will be paired with each goal representation,

then processed by linear layers to obtain the goal
scores. The scores can be treated as either sampling
probabilities or Q values, where the goal candidate
with the highest Q value will be selected.

Following the Semi-Markov Decision Process
(SMDPs) (Sutton et al., 1999), πmeta will be re-
executed once a goal is accomplished / failed. πmeta

receives rewards renv
t from the environment. In a

transition for πmeta, the reward is set as the sum of
environment rewards:

rmeta =

T∑
i=1

renv
t+i (1)

where T denotes time steps for accomplishing gt.

4.3 Sub-policy for action selection
The sub-policy πsub follows the goal-conditioned
RL setting (Kaelbling, 1993) where at is selected
by considering both oKG

t and g. Fig. 1 shows the
architecture of πsub (in blue), which is similar to
πmeta except that the state ssub

t is constructed based
on both oKG

t and g. The graph encoder and text
encoder in πmeta can be re-used in πsub, or be re-
initialized with new weights. As this work does
not aim at handling the combinatorial action space,
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we consider the admissible action set At ⊆ A for
each time step. We denote an action as “admissible”
if it does not lead to meaningless feedback (e.g.,
“Nothing happens”). Similar to the goal scorer in
πmeta, the action scorer will pair ssub

t with each
candidate ai ∈ At, followed by linear layers to
compute the action scores.

Depending on goal accomplishment, πsub re-
ceives binary intrinsic reward rgoal

t ∈ {rmin, rmax},
which in this work can be determined by reusing
the goal set generator upon oKG

t+1. Take Fig. 1 as
an example. If the goal before observing oKG

t is
“find knife”, the agent will receive rgoal

t = rmax,
as this goal is accomplished at time step t. Al-
though the KG can serve as a “map” to provide
guidance, such binary reward is insufficient for the
agent to accomplish a goal in complex games (e.g.,
the agent has to go through multiple rooms to find
an ingredient). To further improve the performance
of πsub, we reshape the sub-reward with the count-
based intrinsic reward (Bellemare et al., 2016) to
encourage exploration. Specifically, we apply the
BeBold method (Zhang et al., 2020) to the text-
based games domain. During training, we count
the visitation of observations within an episode,
and the accumulated visitation throughout the train-
ing process. The count-based reward rcount

t is then
defined as the regulated difference of inverse cu-
mulative visitation counts with episodic restriction:

rcount
t+1 = max(

1

Nacc(o
KG
t )
− 1

Nacc(o
KG
t+1)

,

0) · I{Nepi(o
KG
t+1) = 1}

(2)

where Nacc and Nepi denote the accumulated and
episodic visitation count, respectively. The I opera-
tion returns 1 if oKG

t+1 is visited for the first time in
the current episode, otherwise 0. The reward for
πsub can then be obtained by combining rgoal

t+1 and
rcount
t+1 :

rsub
t+1 = r

goal
t+1 + λ · rcount

t+1 (3)

where λ is a constant coefficient.

4.4 Training H-KGA for multi-task learning
We train H-KGA via Double DQN (Hasselt et al.,
2016) with prioritized experience replay (Schaul
et al., 2015). Algo. 1 shows the training strategy.
We consider a training set Dtrain with L levels of
games. For each episode, we sample a game x
from Dtrain to interact with (lines 2-22). A goal g
will be terminated if it is accomplished/ failed, or

Algorithm 1 Training Strategy for H-KGA
Input: game sets {Dtrain,Dval}, replay buffers {Bmeta, Bsub},
update frequencies {Fmeta

up , F sub
up }, validation frequency Fval,

tolerance τ , coefficients β, λ, patience P
Initialize: counters k ← 1, p← 0,Nacc ← ∅,Nepi ← ∅, best
validation score Vval ← 0, rmeta ← 0, caches {Cmeta, Csub},
policies {πmeta, πsub}, {Πmeta,Πsub}
1: for e← 1 to NUM_EPISODES do
2: l← SampleLevel(L, pl)
3: x← SampleGame(Dtrain, l)
4: oKG

0 ← reset x
5: Cmeta ← ∅, Csub ← ∅, Nepi ← ∅,
6: Update Nacc, Nepi with oKG

0

7: for t← 0 to NUM_STEPS do
8: g ← πmeta(g|oKG

t )
9: rmeta ← 0

10: while g is not terminated do
11: at ← πsub(a|oKG

t , g)

12: Execute at, receive oKG
t+1, renv

t+1, obtain rgoal
t+1

13: Update Nacc, Nepi with oKG
t+1

14: Compute rsub
t+1 using Eq. (2) and Eq. (3)

15: Store the sub transition into Csub

16: rmeta ← rmeta + renv
t+1

17: t← t+ 1
18: k ← k + 1
19: if k%Fmeta

up = 0 then
20: Update(πmeta, Bmeta)

21: if k%F sub
up = 0 then

22: Update(πsub, Bsub)

23: Store the meta transition into Cmeta

24: Update pl using Eq. (4)
25: if Avg(rmeta|Cmeta, l) > τ · Avg(rmeta|Bmeta, l) then
26: Store all transitions in Cmeta into Bmeta

27: if Avg(rgoal|Csub, l) > τ · Avg(rgoal|Bsub, l) then
28: Store all transitions in Csub into Bsub

29: if e%Fval = 0 then
30: vval ← Validate(πmeta, πsub,Dval)
31: if vval ≥ Vval then
32: Vval ← vval, Πmeta ← πmeta, Πsub ← πsub

33: p← 0, continue
34: if p > P then
35: πmeta ← Πmeta, πsub ← Πsub, p← 0
36: else
37: p← p+ 1

t exceeds NUM_STEPS. We formulate the meta
transition as 〈oKG

t , g, rmeta, oKG
t+T , l〉, and the sub

transition as 〈(oKG
t , g), at, r

sub
t+1, r

goal
t+1, (o

KG
t+1, g), l〉,

where l ∈ L denotes the level of a game. We
update πmeta (πsub) per Fmeta

up (F sub
up ) interaction

steps, by sampling a batch of transitions from the
replay buffer Bmeta (Bsub). In addition, we lever-
age two strategies empirically effective for previous
agents (Adhikari et al., 2020). First, we collect the
episodic transitions within a cache, and only push
them into the replay buffer when its average re-
ward is greater than τ times the average reward of
the buffer (lines 23-26). Second, we validate the
model on a validation setDval per Fval episodes and
keep track of the best score V and the correspond-
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ing policies {Πmeta,Πsub}. We load the training
policies {πmeta, πsub} back to {Πmeta,Πsub}, if the
validation performance vval keeps being worse than
V for over P times (lines 27-35).

The training process can be formulated as multi-
task learning if we treat learning on games from the
same level as a task. While the knowledge can be
shared across levels, different levels may have dif-
ferent scales of training time and performance. For
example, those from hard levels generally require
more time to learn and tend to have lower normal-
ized performance. To facilitate such multi-task
learning setting, we further propose two strategies
to improve Algorithm 1: 1) scheduled task sam-
pling and 2) level-aware replay buffer. The sched-
uled task sampling is inspired by the curriculum
learning (Bengio et al., 2009), where we schedule
the tasks based on their difficulties. We track the
training performance vl on a level l, and compute
the sampling probability as:

pl =
exp(β − vl)∑

li∈L exp(β − vli)
(4)

where β is a constant coefficient. For each episode,
we first sample a level based on the probabilities,
and then sample a training game from this level
uniformly (lines 2-3). Compared to level-invariant
sampling, this strategy encourages the agent to fo-
cus more on hard levels with training going on.
Another strategy, level-aware replay buffer, is con-
ducted when moving transitions from cache to the
replay buffer (lines 23-26). As the transitions col-
lected from hard games tend to have lower reward,
they are not likely to be added to the replay buffer.
To alleviate this problem, we make the level as
an additional component of transition and record
the average reward of each level. Then we com-
pare those belonging to the same level to determine
whether to add new transitions.

5 Experiments

5.1 Experiment setting

We conduct experiments on multiple levels of cook-
ing games (Côté et al., 2018). While previous
work (Adhikari et al., 2020) considered either a
single level, or a mixture of 4 levels, we extend
their setting to 8 levels. Based on the rl.0.1 game
set2, we build a training game set Dtrain with 4 lev-
els, including 100 games per level. We build a

2https://aka.ms/twkg/rl.0.1.zip

Table 1: Game statistics. “#Ings” denotes the number
of ingredients, “#Reqs” denotes the requirements, and
“#Acts” denotes the admissible actions per time step.

Level #Triplets #Rooms #Objs #Ings #Reqs #Acts MaxScore
S1 21.44 1 17.09 1 1 11.54 4
S2 21.50 1 17.49 1 2 11.81 5
S3 46.09 9 34.15 1 0 7.25 3
S4 54.54 6 33.41 3 2 28.38 11

US1 19.85 1 16.01 1 0 7.98 3
US2 20.74 1 16.69 1 1 8.87 4
US3 33.04 6 24.81 1 0 7.61 3
US4 47.31 6 31.09 3 0 13.90 5

validating game set Dval with the same 4 levels of
Dtrain, where each level contains 20 games. We
build two testing game sets: Dseen

test , and Dunseen
test ,

both of which contain 4 levels and 20 games per
level. The levels within Dseen

test have been seen in
Dtrain and Dval, while there is no overlapping game.
The levels within Dunseen

test are unseen during train-
ing. Table 1 shows the game statistics averaged
over each level, where “S#” denotes a seen level
and “US#” denotes an unseen level.

5.2 Baselines
We consider the following five models, and com-
pare with more variants in ablation studies:

• GATA (Adhikari et al., 2020): a powerful KG-
based agent and the state-of-the-art on the
rl.0.1 game set. However, it does not have
hierarchical architecture, and the action selec-
tion policy is not goal-conditioned.

• GC-GATA: GATA equipped with a goal set
generator, a goal-conditioned action selection
(sub-)policy, and a non-learnable meta-policy
for random goal selection.

• H-KGA: the proposed model with both meta-
policy and sub-policy.

• H-KGA HalfJoint: an H-KGA variant, where
during the first half of training process only
the sub-policy is trained, then the two policies
are jointly trained.

• H-KGA Ind: an H-KGA variant, where the
two policies are individually trained (the sub-
policy for the first half, then the meta-policy).

5.3 Implementation details
We implement the models based on GATA’s re-
leased code3. In particular, we adopt the version

3https://github.com/xingdi-eric-yuan/
GATA-public

https://aka.ms/twkg/rl.0.1.zip
https://github.com/xingdi-eric-yuan/GATA-public
https://github.com/xingdi-eric-yuan/GATA-public
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Table 2: The testing performance at the end of training.

Model Avg Seen Avg Unseen Avg All
GATA 0.47±0.04 0.62±0.07 0.55±0.06
GC-GATA 0.54±0.13 0.61±0.12 0.58±0.12
H-KGA (ours) 0.72±0.04 0.79±0.04 0.76±0.03
H-KGA HalfJoint 0.56±0.11 0.57±0.07 0.57±0.09
H-KGA Ind 0.70±0.02 0.68±0.01 0.69±0.02
GATA w/o BeBold 0.54±0.06 0.68±0.02 0.61±0.03
H-KGA w/o BeBold 0.57±0.07 0.65±0.09 0.61±0.07
H-KGA w/o Sch 0.52±0.07 0.63±0.07 0.57±0.05
H-KGA w/o Sch w/o LR 0.63±0.14 0.63±0.16 0.63±0.15

GATA-GTF and denote it as GATA for simplicity.
GATA-GTF discards textual observations and uses
the ground truth full KG as observation, so that
there is no information extraction error incurred
during KG construction. We design a simple non-
learning-based goal set generator to obtain avail-
able goals (leaving pre-training-based generators
as future work). Please refer to Appendix B for
details. All models follow the same architecture
of graph encoder (i.e., R-GCNs), text encoder (i.e.,
single transformer block with single head) and scor-
ers (i.e., linear layers). The encoders in πmeta and
πsub are initialized separately.

We set the step limit of an episode as 50 for train-
ing and 100 for validation / testing. We train the
models for 100,000 episodes. All models apply the
BeBold reward bonus with λ = 0.1, and the sched-
uled sampling method with β = 1.0. We set Bmeta

with size 50,000 and Bsub with size 500,000. We
set Fmeta

up and F sub
up as 50 time steps, and the updat-

ing starts after 100 episodes with batch size 64. The
GC-GATA pre-trained for 50,000 episodes is used
for initializing H-KGA HalfJoint and H-KGA Ind.
For every 1,000 episodes, we validate the model on
Dval, and report the testing performance on Dseen

test
and Dunseen

test . The experiments are conducted on a
Quadro RTX 6000 GPU. Each experiment is run
with 3 random seeds, and each run takes 2-3 days
to finish.

5.4 Evaluation metrics

We denote a game’s score as the episodic sum of
rewards without discount. We use the normalized
score, which is defined as the collected score nor-
malized by the maximum available score for this
game, to measure the performance. For each test-
ing game set, we report the performance on each
level and the performance averaged over levels.

Figure 2: The models’ performance on Dseen
test (“S4”,

“Avg Seen”) and Dunseen
test (“US4”, “Avg Unseen”).

6 Results and discussions

6.1 Main results

Table 2 shows the testing performance at the end of
training, and Fig. 2 shows the models’ testing per-
formance with respect to the training episodes. Due
to space constraint, we present only results on the
two most difficult levels, “S4” and “US4”, as well
as the average performance on Dseen

test and Dunseen
test .

Please refer to Appendix C for the full results. Our
H-KGA outperforms baselines in both seen and
unseen levels. Its advantage becomes most signif-
icant in the most complex level, “S4”, which is
with the most number of rooms, ingredients and re-
quired preparation steps as shown in Table 1. The
performance improvement of our model can be
attributed to two aspects: the goal-conditioned sub-
policy and the meta-policy for adaptive goal selec-
tion. GC-GATA, which can be regarded as H-KGA
without the meta-policy, also achieves improve-
ment over GATA, demonstrating the effectiveness
of goal-conditioned decision making. Compared to
GC-GATA, the use of a learned meta-policy helps
to further improve H-KGA.

However, we observe that joint training after pre-
training the sub-policy leads to performance drop
(H-KGA HalfJoint), which could be attributed to
the forgetting problem in RL (Vinyals et al., 2019).
Another variant, H-KGA Ind, where the pre-trained
sub-policy is frozen during training the meta-policy,
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Figure 3: The models’ performance with / without the
BeBold reward bonus.

performs better and exceeds GC-GATA, but still
worse than our H-KGA. While H-KGA Ind might
still have space for performance improvement, it re-
quires more training episodes (i.e., collecting more
interaction samples), leading to low sample effi-
ciency. Instead, our H-KGA utilizes the training
data more efficiently and achieves comparable per-
formance with fewer episodes, making it more fa-
vorable for practical applications.

We also observe that learning a good meta-policy
helps in solving games from unseen levels. In
“US4”, where the agent has to navigate through mul-
tiple rooms to collect three ingredients, it is more
important to learn a strategy to determine the col-
lecting order. In these games, our H-KGA performs
better than those without a meta-policy (GATA,
GC-GATA), and those with a "not-so-good" meta-
policy (H-KGA HalfJoint, H-KGA Ind).

6.2 The influence of exploration

In Sec. 4.3, we enhance the sub-policy with the Be-
Bold reward to encourage exploration. We investi-
gate its contribution by comparing models without
such rewards. Fig. 3 shows the results. In terms
of the average performance, our H-KGA is already
better than GATA even without the BeBold reward
(“H-KGA w/o BeBold” v.s., “GATA w/o BeBold”).
However, the results on “S4” and “US4” show that
sufficient exploration is essential for these diffi-
cult games, where it’s hard for H-KGA without

Figure 4: The models’ performance with / without the
multi-task learning strategies.

BeBold to collect over 50% (40%) of the scores
in “S4” (“US4”). We also find that encouraging
exploration only is not sufficient, as there is no
obvious improvement for GATA, or even worse
performance according to Table 2.

6.3 The influence of MTL strategies

In Sec. 4.4, we introduce two strategies to facilitate
training H-KGA in the setting of multi-task learn-
ing. We then conduct ablation studies to investigate
their contributions. Fig. 4 shows the results, where
“Sch” denotes the scheduled task sampling and
“LR” denotes level-aware replay buffer. Although
H-KGA can still achieve comparable average per-
formance in both seen and unseen levels, without
scheduled task sampling its performance on diffi-
cult levels, which require more training steps to
collect more training samples, is limited. Similarly,
training without “LR” prevents transitions of dif-
ficult levels from being added to the replay buffer,
leading to low sample efficiency.

7 Conclusion

In this paper, we investigated generalization for
reinforcement learning in text-based games. We
introduced a two-level hierarchical framework, H-
KGA, to address this problem. In the high level, a
meta-policy is executed to decompose the whole
game as subtasks characterized by textual goals,
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and select a goal based on the knowledge graph-
based observation. In the low level, a sub-policy is
executed to select action conditioned on the goal.
Experimental results showed that H-KGA achieved
favorable performance on games with various dif-
ficulty levels. As an ongoing work, we would like
to study automatic goal generation methods. We
are also interested in extending our work to more
complex scenarios .
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