
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 1343–1353
November 7–11, 2021. ©2021 Association for Computational Linguistics

1343

Generalization in Text-based Games via
Hierarchical Reinforcement Learning

Yunqiu Xu1, Meng Fang2, Ling Chen1, Yali Du3, Chengqi Zhang1

1Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, Australia
Yunqiu.Xu@student.uts.edu.au, {Ling.Chen,Chengqi.Zhang}@uts.edu.au

2Eindhoven University of Technology, Eindhoven, the Netherlands
m.fang@tue.nl

3King’s College London, London, United Kingdom
yali.du@kcl.ac.uk

Abstract
Deep reinforcement learning provides a
promising approach for text-based games in
studying natural language communication
between humans and artificial agents. How-
ever, the generalization still remains a big
challenge as the agents depend critically on
the complexity and variety of training tasks.
In this paper, we address this problem by
introducing a hierarchical framework built
upon the knowledge graph-based RL agent.
In the high level, a meta-policy is executed
to decompose the whole game into a set of
subtasks specified by textual goals, and select
one of them based on the KG. Then a sub-
policy in the low level is executed to conduct
goal-conditioned reinforcement learning. We
carry out experiments on games with various
difficulty levels and show that the proposed
method enjoys favorable generalizability.

1 Introduction

Text-based games are simulated systems where
the agent takes textual observations as the input,
and interacts with the environment via text com-
mands (Hausknecht et al., 2020). They are suitable
test-beds to study natural language understanding,
commonsense reasoning and language-informed
decision making (Luketina et al., 2019). Reinforce-
ment Learning (RL) based agents (Narasimhan
et al., 2015; Zahavy et al., 2018) have been de-
veloped to handle challenges such as language-
based representation learning and combinatorial
action space. Among them, KG-based agents (Am-
manabrolu and Hausknecht, 2020) yield promis-
ing performance with the aid of Knowledge Graph
(KG), which serves as a belief state to provide struc-
tural information.

To design intelligent RL-based agents for text-
based games, it is necessary to build agents that
automatically learn to solve different games. How-
ever, generalization remains as one of the key chal-
lenges of RL − the agent tends to overfit the train-

ing environment and fails to generalize to new en-
vironments (Cobbe et al., 2019). In the domain
of text-based games, the TextWorld (Côté et al.,
2018) makes it feasible to study generalizability by
creating non-overlapping game sets with customiz-
able domain gaps (e.g., themes, vocabulary sets,
difficulty levels and layouts). Most previous works
study generalizability either upon games with the
same difficulty level but different layouts (Am-
manabrolu and Riedl, 2019a), or upon games with
a set of multiple levels that have been observed
during training (Adolphs and Hofmann, 2020). Al-
though these agents perform well on relatively sim-
ple games, they can hardly achieve satisfactory
performance on difficult games (Adhikari et al.,
2020). In this work, we aim to develop agents that
can be generalized to not only games from the same
difficulty level while having unseen different lay-
outs, but also games from unseen difficulty levels
where both layouts and complexities are different.

While solving a whole game might be difficult
due to long-term temporal dependencies, and the
learnt strategy might be difficult to be transferred
to other games due to large domain gaps, it would
be more flexible to treat the game as a sketch of
subtasks (Andreas et al., 2017; Oh et al., 2017).
This brings two branches of benefits. First, the sub-
tasks would be easier to solve as they have short-
term temporal dependencies. Second, the strategies
learnt for solving subtasks may be recomposed to
solve an unseen game. Motivated by these insights,
we aim to solve a game by decomposing it into sub-
tasks characterized by textual goals, then making
decisions conditioned on them. Instead of hand-
crafting the task sketches, we leverage the hierar-
chical reinforcement learning (HRL) framework
for adaptive goal selection, and exploit the compo-
sitional nature of language (Jiang et al., 2019) to
improve generalizability.

We develop a two-level framework, Hierarchical

1344

Knowledge Graph-based Agent (H-KGA)1, to
learn a hierarchy of policies with the aid of KG.
In the high level, we use a meta-policy to obtain
a set of available goals characterized by texts, and
select one of them according to the current KG-
based observation. Then, we use a sub-policy for
goal-conditioned reinforcement learning. Besides,
we design a scheduled training strategy to facili-
tate learning across multiple levels. We conduct
experiments on a series of cooking games across
8 levels, while only 4 levels are available during
training. The experimental results show that our
method improves generalizability in both seen and
unseen levels.

Our contributions are summarised as follows:
Firstly, we are the first to study generalizability
in text-based games from the aspect of hierarchi-
cal reinforcement learning. Secondly, we develop
a two-level HRL framework leveraging the KG-
based observation for adaptive goal selection and
goal-conditioned decision making. Thirdly, we em-
pirically validate the effectiveness of our method in
games with both seen and unseen difficulty levels,
which show favorable generalizability.

2 Related work

2.1 RL agent for text-based games
Motivated by the prosperity of deep reinforcement
learning techniques in playing games (Silver et al.,
2016), robotics (Schulman et al., 2017; Fang et al.,
2019a,b) and NLP (Fang et al., 2017), several RL-
based game agents have been developed for text-
based games (He et al., 2016; Yuan et al., 2018;
Jain et al., 2020; Yin and May, 2019; Guo et al.,
2020; Xu et al., 2020a). Compared with the non-
learning-based agents (Hausknecht et al., 2019;
Atkinson et al., 2019), the RL-based agents are
more favorable as there is no need to handcraft
game playing strategies with huge amounts of ex-
pert knowledge. The KG-based agents (Murugesan
et al., 2020; Xu et al., 2020b) extend RL-based
agents with the knowledge graph, which can be
constructed from the raw textual observation via
simple rules (Ammanabrolu and Riedl, 2019a), lan-
guage models (Ammanabrolu et al., 2020) or pre-
training tasks (Adhikari et al., 2020). The major
benefit of KG is that it serves as a belief state to
provide structural and historical information to han-
dle partial observability. While these works focus

1Code is available at: https://github.com/
YunqiuXu/H-KGA

on constructing KG from the textual observation,
we aim at improving generalizability by fully ex-
ploiting the KG to design a goal-conditioned HRL.
Our work thus complements KG-based agents.

2.2 Generalization in text-based games
It may be difficult to study generalization in games
initially designed for human players (Hausknecht
et al., 2020), as they are so challenging that ex-
isting RL agents are still far from being able to
solve a large proportion of them even under the sin-
gle game setting (Yao et al., 2020). Furthermore,
these games usually have different themes, vocab-
ularies and logics, making it hard to determine
the domain gap (Ammanabrolu and Riedl, 2019b).
Compared with these man-made games, the syn-
thetic games (Côté et al., 2018; Urbanek et al.,
2019) provide a more natural way to study general-
ization by generating multiple similar games with
customizable domain gaps (e.g., by varying game
layouts). Generally, the training and testing game
sets in previous works have either the same diffi-
culty level (Ammanabrolu and Riedl, 2019a; Mu-
rugesan et al., 2021), or a mixture of multiple lev-
els (Adolphs and Hofmann, 2020; Yin et al., 2020),
or both (Adhikari et al., 2020). In this work, we
extend the setting of multiple levels to unseen lev-
els. We not only study generalization in games that
have the same difficulty level but various layouts,
but also consider games where both the layouts
and levels are different from those of the training
games. In addition, we emphasize on improving
the performance on hard levels.

2.3 Hierarchical reinforcement learning
The HRL framework (Dayan and Hinton, 1992) has
been studied in video games (Kulkarni et al., 2016;
Vezhnevets et al., 2017; Shu et al., 2018), robotic
control tasks (Nachum et al., 2018),and NLP tasks
such as the dialogue system (Peng et al., 2017;
Saleh et al., 2020). However, as far as we know,
we are the first to introduce the insight into text-
based games with KG-based observation. Previous
works also considered identifying a task by textual
goal specifications (Bahdanau et al., 2019; Fu et al.,
2019). In the domain of text-based games, such
goal-conditioned RL setting has been studied with
the quest generation tasks (Ammanabrolu et al.,
2019, 2021). In our work, we specify a subtask
by its goal. Different from these works, where a
single goal is pre-specified or directly generated
from the observation, we introduce a hierarchy by

https://github.com/YunqiuXu/H-KGA
https://github.com/YunqiuXu/H-KGA

1345

Figure 1: The overview of H-KGA. In the high level (red), the meta-policy πmeta first obtains the set of goals of
available subtasks Gt from oKG

t , then selects a goal gt for the sub-policy πsub. In the low level (blue), πsub selects
the action at from the admissible action set At conditioned on oKG

t and g.

disentangling the process of goal set generation and
goal selection. By accommodating flexible goal set
generation (e.g., by pre-trained language models
or human experts), we focus on designing a meta-
policy to select the goal in an adaptive manner. By
adopting HRL to select a textual-based goal for the
sub-policy, our work is similar to HIN (Jiang et al.,
2019) which, however, focuses on visual scenar-
ios and separately trains the meta-policy and the
sub-policy, leaving joint training as future work. In-
stead, we consider the domain of text-based games,
and develop a framework to enable joint training
of meta-policy and sub-policy. We further compare
joint and individual training in Sec. 6.

3 Background

3.1 KG-based observation

Following previous works (Hausknecht et al.,
2020), we formulate the text-based games as
Partially Observable Markov Decision Processes
(POMDPs), where the details is in Appendix A.
We discard the raw textual observation and con-
sider only the KG-based observation oKG

t as the
observational input at timestep t. Fig. 1 shows
an example of oKG

t . The KG is defined as G =
(V,E), where V and E are the node set and the
edge set, respectively. oKG

t consists of a set of

triplets, where a triplet is formulated as 〈Subject ,
Relation , Object〉, denoting that the Subject ∈ V
has Relation ∈ E with the Object ∈ V .

3.2 Problem setting

We aim to design an RL-based agent that is able
to address the generalization in solving text-based
games. To reduce the requirement for external
knowledge, we consider games sharing similar
themes and vocabularies, but varying in their lay-
outs and / or difficulty levels. For example, games
of the cooking theme (Côté et al., 2018) share the
same overall objective: prepare the meal. To ac-
complish it, the player has to collect ingredients
and prepare them in correct ways. The layout of
a game contains the room connectivity and the
preparing steps (e.g., the type / location of ingredi-
ents). The difficulty of a game depends on the com-
plexity of the map (e.g., the number of rooms) and
the recipe (e.g., the number of ingredients), such
that two games with different levels are naturally
different in their layouts. We follow the multi-task
learning setting to consider that the training set
and the testing set consist of multiple games from
multiple levels. We consider two scenarios of gen-
eralization: 1) seen levels, where the training and
testing games have the same levels, but different
layouts. 2) unseen levels, where the training and

1346

testing games are different in levels and layouts.
More examples are provided in Appendix. D.

4 Methodology

4.1 Overview

Fig. 1 shows the overview of H-KGA, which con-
sists of a hierarchy of two levels of policies. In the
high level, a meta-policy πmeta first obtains the set
of goals of available subtasks Gt from oKG

t , then
selects a goal gt for the sub-policy πsub. In the low
level, πsub selects the action at from the admissi-
ble action set At conditioned on oKG

t and g. We
omit the subscript “t” for g because this goal may
be selected in the past rather than the current time
step. For example, as shown in Fig. 1, once the
gt is selected by πmeta, it will remain unchanged
for N time steps until being completed (e.g., ac-
complished or failed). At each time step from t to
t+N , πsub considers the same goal gt.

In the following, we illustrate how to design
πmeta to obtain the available goal set Gt and conduct
goal selection to obtain gt ∈ Gt in Sec. 4.2; how
to design πsub to select an action at ∈ At in Sec.
4.3; and how to train H-KGA with a scheduled
curriculum for multi-task learning in Sec. 4.4.

4.2 Meta-policy for goal selection

As discussed before, while a whole game may be
difficult to accomplish due to long-term temporal
dependency, decomposing it into a sketch of sub-
tasks will make the game easier to be solved (Sohn
et al., 2018; Shiarlis et al., 2018). If we consider
the solving strategy for a subtask as a skill, the
generalizability for an unseen game will also be
improved by recomposing the learnt skills. There-
fore, inspired by the HRL framework (Sutton et al.,
1999), we design a meta-policy πmeta to first obtain
a set of subtasks, then select one subtask from them.
We characterize a subtask by its goal to transform
subtask selection into goal selection. We make
the goal to be instruction-like textual descriptions
(e.g., “find purple potato”), yielding better flexi-
bility and interpretability than using a state as the
goal (Andrychowicz et al., 2017). Fig. 1 shows
the overview of πmeta (in red), which consists of a
goal set generator, a graph encoder, a text encoder
and a goal scorer. We denote the set containing
all required goals for solving a game as G. Then
we define a goal as “available” at a time step if
no other goals should be accomplished before it.
For example, “cook red potato” is not available in

Fig. 1, as another goal “find red potato” should be
accomplished first. The goal set generator has two
purposes: 1) obtain the set of currently available
goals Gt ⊆ G, and 2) check whether a goal has
been accomplished. Inspired by (Jiang et al., 2019),
the goal set generator can be implemented by dif-
ferent approaches, including supervised language
models and non-learning-based methods such as
human supervisors and functional programs. In
our work, we use a non-learning-based method to
obtain Gt and the details are discussed in Sec 5.3
and Appendix B.

After obtaining Gt, πmeta will be used to select
a goal gt ∈ Gt. We use a graph encoder to encode
oKG
t as state representation smeta

t , and a text encoder
to encode Gt as a stack of goal representations.
Arbitrary graph encoders and text encoders can
be used. We implement the graph encoder based
on the Relational Graph Convolutional Networks
(R-GCNs) (Schlichtkrull et al., 2018) to take both
nodes and edges into consideration. For the text en-
coder, a simple single-block transformer (Vaswani
et al., 2017) is sufficient as the goal candidates are
short texts. In the goal scorer, we adopt a goal
scoring process similar to (He et al., 2016), where
smeta
t will be paired with each goal representation,

then processed by linear layers to obtain the goal
scores. The scores can be treated as either sampling
probabilities or Q values, where the goal candidate
with the highest Q value will be selected.

Following the Semi-Markov Decision Process
(SMDPs) (Sutton et al., 1999), πmeta will be re-
executed once a goal is accomplished / failed. πmeta

receives rewards renv
t from the environment. In a

transition for πmeta, the reward is set as the sum of
environment rewards:

rmeta =

T∑
i=1

renv
t+i (1)

where T denotes time steps for accomplishing gt.

4.3 Sub-policy for action selection
The sub-policy πsub follows the goal-conditioned
RL setting (Kaelbling, 1993) where at is selected
by considering both oKG

t and g. Fig. 1 shows the
architecture of πsub (in blue), which is similar to
πmeta except that the state ssub

t is constructed based
on both oKG

t and g. The graph encoder and text
encoder in πmeta can be re-used in πsub, or be re-
initialized with new weights. As this work does
not aim at handling the combinatorial action space,

1347

we consider the admissible action set At ⊆ A for
each time step. We denote an action as “admissible”
if it does not lead to meaningless feedback (e.g.,
“Nothing happens”). Similar to the goal scorer in
πmeta, the action scorer will pair ssub

t with each
candidate ai ∈ At, followed by linear layers to
compute the action scores.

Depending on goal accomplishment, πsub re-
ceives binary intrinsic reward rgoal

t ∈ {rmin, rmax},
which in this work can be determined by reusing
the goal set generator upon oKG

t+1. Take Fig. 1 as
an example. If the goal before observing oKG

t is
“find knife”, the agent will receive rgoal

t = rmax,
as this goal is accomplished at time step t. Al-
though the KG can serve as a “map” to provide
guidance, such binary reward is insufficient for the
agent to accomplish a goal in complex games (e.g.,
the agent has to go through multiple rooms to find
an ingredient). To further improve the performance
of πsub, we reshape the sub-reward with the count-
based intrinsic reward (Bellemare et al., 2016) to
encourage exploration. Specifically, we apply the
BeBold method (Zhang et al., 2020) to the text-
based games domain. During training, we count
the visitation of observations within an episode,
and the accumulated visitation throughout the train-
ing process. The count-based reward rcount

t is then
defined as the regulated difference of inverse cu-
mulative visitation counts with episodic restriction:

rcount
t+1 = max(

1

Nacc(o
KG
t)
− 1

Nacc(o
KG
t+1)

,

0) · I{Nepi(o
KG
t+1) = 1}

(2)

where Nacc and Nepi denote the accumulated and
episodic visitation count, respectively. The I opera-
tion returns 1 if oKG

t+1 is visited for the first time in
the current episode, otherwise 0. The reward for
πsub can then be obtained by combining rgoal

t+1 and
rcount
t+1 :

rsub
t+1 = r

goal
t+1 + λ · rcount

t+1 (3)

where λ is a constant coefficient.

4.4 Training H-KGA for multi-task learning
We train H-KGA via Double DQN (Hasselt et al.,
2016) with prioritized experience replay (Schaul
et al., 2015). Algo. 1 shows the training strategy.
We consider a training set Dtrain with L levels of
games. For each episode, we sample a game x
from Dtrain to interact with (lines 2-22). A goal g
will be terminated if it is accomplished/ failed, or

Algorithm 1 Training Strategy for H-KGA
Input: game sets {Dtrain,Dval}, replay buffers {Bmeta, Bsub},
update frequencies {Fmeta

up , F sub
up }, validation frequency Fval,

tolerance τ , coefficients β, λ, patience P
Initialize: counters k ← 1, p← 0,Nacc ← ∅,Nepi ← ∅, best
validation score Vval ← 0, rmeta ← 0, caches {Cmeta, Csub},
policies {πmeta, πsub}, {Πmeta,Πsub}
1: for e← 1 to NUM_EPISODES do
2: l← SampleLevel(L, pl)
3: x← SampleGame(Dtrain, l)
4: oKG

0 ← reset x
5: Cmeta ← ∅, Csub ← ∅, Nepi ← ∅,
6: Update Nacc, Nepi with oKG

0

7: for t← 0 to NUM_STEPS do
8: g ← πmeta(g|oKG

t)
9: rmeta ← 0

10: while g is not terminated do
11: at ← πsub(a|oKG

t , g)

12: Execute at, receive oKG
t+1, renv

t+1, obtain rgoal
t+1

13: Update Nacc, Nepi with oKG
t+1

14: Compute rsub
t+1 using Eq. (2) and Eq. (3)

15: Store the sub transition into Csub

16: rmeta ← rmeta + renv
t+1

17: t← t+ 1
18: k ← k + 1
19: if k%Fmeta

up = 0 then
20: Update(πmeta, Bmeta)

21: if k%F sub
up = 0 then

22: Update(πsub, Bsub)

23: Store the meta transition into Cmeta

24: Update pl using Eq. (4)
25: if Avg(rmeta|Cmeta, l) > τ · Avg(rmeta|Bmeta, l) then
26: Store all transitions in Cmeta into Bmeta

27: if Avg(rgoal|Csub, l) > τ · Avg(rgoal|Bsub, l) then
28: Store all transitions in Csub into Bsub

29: if e%Fval = 0 then
30: vval ← Validate(πmeta, πsub,Dval)
31: if vval ≥ Vval then
32: Vval ← vval, Πmeta ← πmeta, Πsub ← πsub

33: p← 0, continue
34: if p > P then
35: πmeta ← Πmeta, πsub ← Πsub, p← 0
36: else
37: p← p+ 1

t exceeds NUM_STEPS. We formulate the meta
transition as 〈oKG

t , g, rmeta, oKG
t+T , l〉, and the sub

transition as 〈(oKG
t , g), at, r

sub
t+1, r

goal
t+1, (o

KG
t+1, g), l〉,

where l ∈ L denotes the level of a game. We
update πmeta (πsub) per Fmeta

up (F sub
up) interaction

steps, by sampling a batch of transitions from the
replay buffer Bmeta (Bsub). In addition, we lever-
age two strategies empirically effective for previous
agents (Adhikari et al., 2020). First, we collect the
episodic transitions within a cache, and only push
them into the replay buffer when its average re-
ward is greater than τ times the average reward of
the buffer (lines 23-26). Second, we validate the
model on a validation setDval per Fval episodes and
keep track of the best score V and the correspond-

1348

ing policies {Πmeta,Πsub}. We load the training
policies {πmeta, πsub} back to {Πmeta,Πsub}, if the
validation performance vval keeps being worse than
V for over P times (lines 27-35).

The training process can be formulated as multi-
task learning if we treat learning on games from the
same level as a task. While the knowledge can be
shared across levels, different levels may have dif-
ferent scales of training time and performance. For
example, those from hard levels generally require
more time to learn and tend to have lower normal-
ized performance. To facilitate such multi-task
learning setting, we further propose two strategies
to improve Algorithm 1: 1) scheduled task sam-
pling and 2) level-aware replay buffer. The sched-
uled task sampling is inspired by the curriculum
learning (Bengio et al., 2009), where we schedule
the tasks based on their difficulties. We track the
training performance vl on a level l, and compute
the sampling probability as:

pl =
exp(β − vl)∑

li∈L exp(β − vli)
(4)

where β is a constant coefficient. For each episode,
we first sample a level based on the probabilities,
and then sample a training game from this level
uniformly (lines 2-3). Compared to level-invariant
sampling, this strategy encourages the agent to fo-
cus more on hard levels with training going on.
Another strategy, level-aware replay buffer, is con-
ducted when moving transitions from cache to the
replay buffer (lines 23-26). As the transitions col-
lected from hard games tend to have lower reward,
they are not likely to be added to the replay buffer.
To alleviate this problem, we make the level as
an additional component of transition and record
the average reward of each level. Then we com-
pare those belonging to the same level to determine
whether to add new transitions.

5 Experiments

5.1 Experiment setting

We conduct experiments on multiple levels of cook-
ing games (Côté et al., 2018). While previous
work (Adhikari et al., 2020) considered either a
single level, or a mixture of 4 levels, we extend
their setting to 8 levels. Based on the rl.0.1 game
set2, we build a training game set Dtrain with 4 lev-
els, including 100 games per level. We build a

2https://aka.ms/twkg/rl.0.1.zip

Table 1: Game statistics. “#Ings” denotes the number
of ingredients, “#Reqs” denotes the requirements, and
“#Acts” denotes the admissible actions per time step.

Level #Triplets #Rooms #Objs #Ings #Reqs #Acts MaxScore
S1 21.44 1 17.09 1 1 11.54 4
S2 21.50 1 17.49 1 2 11.81 5
S3 46.09 9 34.15 1 0 7.25 3
S4 54.54 6 33.41 3 2 28.38 11

US1 19.85 1 16.01 1 0 7.98 3
US2 20.74 1 16.69 1 1 8.87 4
US3 33.04 6 24.81 1 0 7.61 3
US4 47.31 6 31.09 3 0 13.90 5

validating game set Dval with the same 4 levels of
Dtrain, where each level contains 20 games. We
build two testing game sets: Dseen

test , and Dunseen
test ,

both of which contain 4 levels and 20 games per
level. The levels within Dseen

test have been seen in
Dtrain and Dval, while there is no overlapping game.
The levels within Dunseen

test are unseen during train-
ing. Table 1 shows the game statistics averaged
over each level, where “S#” denotes a seen level
and “US#” denotes an unseen level.

5.2 Baselines
We consider the following five models, and com-
pare with more variants in ablation studies:

• GATA (Adhikari et al., 2020): a powerful KG-
based agent and the state-of-the-art on the
rl.0.1 game set. However, it does not have
hierarchical architecture, and the action selec-
tion policy is not goal-conditioned.

• GC-GATA: GATA equipped with a goal set
generator, a goal-conditioned action selection
(sub-)policy, and a non-learnable meta-policy
for random goal selection.

• H-KGA: the proposed model with both meta-
policy and sub-policy.

• H-KGA HalfJoint: an H-KGA variant, where
during the first half of training process only
the sub-policy is trained, then the two policies
are jointly trained.

• H-KGA Ind: an H-KGA variant, where the
two policies are individually trained (the sub-
policy for the first half, then the meta-policy).

5.3 Implementation details
We implement the models based on GATA’s re-
leased code3. In particular, we adopt the version

3https://github.com/xingdi-eric-yuan/
GATA-public

https://aka.ms/twkg/rl.0.1.zip
https://github.com/xingdi-eric-yuan/GATA-public
https://github.com/xingdi-eric-yuan/GATA-public

1349

Table 2: The testing performance at the end of training.

Model Avg Seen Avg Unseen Avg All
GATA 0.47±0.04 0.62±0.07 0.55±0.06
GC-GATA 0.54±0.13 0.61±0.12 0.58±0.12
H-KGA (ours) 0.72±0.04 0.79±0.04 0.76±0.03
H-KGA HalfJoint 0.56±0.11 0.57±0.07 0.57±0.09
H-KGA Ind 0.70±0.02 0.68±0.01 0.69±0.02
GATA w/o BeBold 0.54±0.06 0.68±0.02 0.61±0.03
H-KGA w/o BeBold 0.57±0.07 0.65±0.09 0.61±0.07
H-KGA w/o Sch 0.52±0.07 0.63±0.07 0.57±0.05
H-KGA w/o Sch w/o LR 0.63±0.14 0.63±0.16 0.63±0.15

GATA-GTF and denote it as GATA for simplicity.
GATA-GTF discards textual observations and uses
the ground truth full KG as observation, so that
there is no information extraction error incurred
during KG construction. We design a simple non-
learning-based goal set generator to obtain avail-
able goals (leaving pre-training-based generators
as future work). Please refer to Appendix B for
details. All models follow the same architecture
of graph encoder (i.e., R-GCNs), text encoder (i.e.,
single transformer block with single head) and scor-
ers (i.e., linear layers). The encoders in πmeta and
πsub are initialized separately.

We set the step limit of an episode as 50 for train-
ing and 100 for validation / testing. We train the
models for 100,000 episodes. All models apply the
BeBold reward bonus with λ = 0.1, and the sched-
uled sampling method with β = 1.0. We set Bmeta

with size 50,000 and Bsub with size 500,000. We
set Fmeta

up and F sub
up as 50 time steps, and the updat-

ing starts after 100 episodes with batch size 64. The
GC-GATA pre-trained for 50,000 episodes is used
for initializing H-KGA HalfJoint and H-KGA Ind.
For every 1,000 episodes, we validate the model on
Dval, and report the testing performance on Dseen

test
and Dunseen

test . The experiments are conducted on a
Quadro RTX 6000 GPU. Each experiment is run
with 3 random seeds, and each run takes 2-3 days
to finish.

5.4 Evaluation metrics

We denote a game’s score as the episodic sum of
rewards without discount. We use the normalized
score, which is defined as the collected score nor-
malized by the maximum available score for this
game, to measure the performance. For each test-
ing game set, we report the performance on each
level and the performance averaged over levels.

Figure 2: The models’ performance on Dseen
test (“S4”,

“Avg Seen”) and Dunseen
test (“US4”, “Avg Unseen”).

6 Results and discussions

6.1 Main results

Table 2 shows the testing performance at the end of
training, and Fig. 2 shows the models’ testing per-
formance with respect to the training episodes. Due
to space constraint, we present only results on the
two most difficult levels, “S4” and “US4”, as well
as the average performance on Dseen

test and Dunseen
test .

Please refer to Appendix C for the full results. Our
H-KGA outperforms baselines in both seen and
unseen levels. Its advantage becomes most signif-
icant in the most complex level, “S4”, which is
with the most number of rooms, ingredients and re-
quired preparation steps as shown in Table 1. The
performance improvement of our model can be
attributed to two aspects: the goal-conditioned sub-
policy and the meta-policy for adaptive goal selec-
tion. GC-GATA, which can be regarded as H-KGA
without the meta-policy, also achieves improve-
ment over GATA, demonstrating the effectiveness
of goal-conditioned decision making. Compared to
GC-GATA, the use of a learned meta-policy helps
to further improve H-KGA.

However, we observe that joint training after pre-
training the sub-policy leads to performance drop
(H-KGA HalfJoint), which could be attributed to
the forgetting problem in RL (Vinyals et al., 2019).
Another variant, H-KGA Ind, where the pre-trained
sub-policy is frozen during training the meta-policy,

1350

Figure 3: The models’ performance with / without the
BeBold reward bonus.

performs better and exceeds GC-GATA, but still
worse than our H-KGA. While H-KGA Ind might
still have space for performance improvement, it re-
quires more training episodes (i.e., collecting more
interaction samples), leading to low sample effi-
ciency. Instead, our H-KGA utilizes the training
data more efficiently and achieves comparable per-
formance with fewer episodes, making it more fa-
vorable for practical applications.

We also observe that learning a good meta-policy
helps in solving games from unseen levels. In
“US4”, where the agent has to navigate through mul-
tiple rooms to collect three ingredients, it is more
important to learn a strategy to determine the col-
lecting order. In these games, our H-KGA performs
better than those without a meta-policy (GATA,
GC-GATA), and those with a "not-so-good" meta-
policy (H-KGA HalfJoint, H-KGA Ind).

6.2 The influence of exploration

In Sec. 4.3, we enhance the sub-policy with the Be-
Bold reward to encourage exploration. We investi-
gate its contribution by comparing models without
such rewards. Fig. 3 shows the results. In terms
of the average performance, our H-KGA is already
better than GATA even without the BeBold reward
(“H-KGA w/o BeBold” v.s., “GATA w/o BeBold”).
However, the results on “S4” and “US4” show that
sufficient exploration is essential for these diffi-
cult games, where it’s hard for H-KGA without

Figure 4: The models’ performance with / without the
multi-task learning strategies.

BeBold to collect over 50% (40%) of the scores
in “S4” (“US4”). We also find that encouraging
exploration only is not sufficient, as there is no
obvious improvement for GATA, or even worse
performance according to Table 2.

6.3 The influence of MTL strategies

In Sec. 4.4, we introduce two strategies to facilitate
training H-KGA in the setting of multi-task learn-
ing. We then conduct ablation studies to investigate
their contributions. Fig. 4 shows the results, where
“Sch” denotes the scheduled task sampling and
“LR” denotes level-aware replay buffer. Although
H-KGA can still achieve comparable average per-
formance in both seen and unseen levels, without
scheduled task sampling its performance on diffi-
cult levels, which require more training steps to
collect more training samples, is limited. Similarly,
training without “LR” prevents transitions of dif-
ficult levels from being added to the replay buffer,
leading to low sample efficiency.

7 Conclusion

In this paper, we investigated generalization for
reinforcement learning in text-based games. We
introduced a two-level hierarchical framework, H-
KGA, to address this problem. In the high level, a
meta-policy is executed to decompose the whole
game as subtasks characterized by textual goals,

1351

and select a goal based on the knowledge graph-
based observation. In the low level, a sub-policy is
executed to select action conditioned on the goal.
Experimental results showed that H-KGA achieved
favorable performance on games with various dif-
ficulty levels. As an ongoing work, we would like
to study automatic goal generation methods. We
are also interested in extending our work to more
complex scenarios .

Acknowledgement

This work was supported in part by ARC
DP180100966. We thank Xingdi Yuan and Marc-
Alexandre Côté from Microsoft Research, and
anonymous reviewers for suggestions.

References
Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre

Côté, Mikuláš Zelinka, Marc-Antoine Rondeau, Ro-
main Laroche, Pascal Poupart, Jian Tang, Adam
Trischler, and Will Hamilton. 2020. Learning dy-
namic belief graphs to generalize on text-based
games. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 33, pages 3045–
3057.

Leonard Adolphs and Thomas Hofmann. 2020.
Ledeepchef: Deep reinforcement learning agent for
families of text-based games. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI),
volume 34, pages 7342–7349.

Prithviraj Ammanabrolu, William Broniec, Alex
Mueller, Jeremy Paul, and Mark O Riedl. 2019. To-
ward automated quest generation in text-adventure
games. In Proceedings of the 4th Workshop on
Computational Creativity in Language Generation,
pages 1–12.

Prithviraj Ammanabrolu and Matthew Hausknecht.
2020. Graph constrained reinforcement learning for
natural language action spaces. In International
Conference on Learning Representations (ICLR).

Prithviraj Ammanabrolu and Mark Riedl. 2019a. Play-
ing text-adventure games with graph-based deep re-
inforcement learning. In Proceedings of the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT), volume 1, pages
3557–3565.

Prithviraj Ammanabrolu and Mark Riedl. 2019b.
Transfer in deep reinforcement learning using
knowledge graphs. In Proceedings of the Thir-
teenth Workshop on Graph-Based Methods for Natu-
ral Language Processing (TextGraphs-13), pages 1–
10.

Prithviraj Ammanabrolu, Ethan Tien, Zhaochen Luo,
and Mark O Riedl. 2020. How to avoid being eaten
by a grue: Exploration strategies for text-adventure
agents. arXiv preprint arXiv:2002.08795.

Prithviraj Ammanabrolu, Jack Urbanek, Margaret Li,
Arthur Szlam, Tim Rocktäschel, and Jason Weston.
2021. How to motivate your dragon: Teaching goal-
driven agents to speak and act in fantasy worlds. In
Proceedings of Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), pages 807–833.

Jacob Andreas, Dan Klein, and Sergey Levine. 2017.
Modular multitask reinforcement learning with pol-
icy sketches. In International Conference on Ma-
chine Learning (ICML), volume 70, pages 166–175.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas
Schneider, Rachel Fong, Peter Welinder, Bob Mc-
Grew, Josh Tobin, Pieter Abbeel, and Wojciech
Zaremba. 2017. Hindsight experience replay. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 30, pages 5048–5058.

Timothy Atkinson, Hendrik Baier, Tara Copplestone,
Sam Devlin, and Jerry Swan. 2019. The text-based
adventure ai competition. IEEE Transactions on
Games, 11(3):260–266.

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward
Hughes, Pushmeet Kohli, and Edward Grefenstette.
2019. Learning to understand goal specifications by
modelling reward. In International Conference on
Learning Representations (ICLR).

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski,
Tom Schaul, David Saxton, and Remi Munos. 2016.
Unifying count-based exploration and intrinsic mo-
tivation. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 29, pages 1471–
1479.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning.
In International Conference on Machine Learning
(ICML), pages 41–48.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim,
and John Schulman. 2019. Quantifying generaliza-
tion in reinforcement learning. In International Con-
ference on Machine Learning (ICML), volume 97,
pages 1282–1289.

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Ruo Yu Tao, Matthew Hausknecht, Layla El Asri,
Mahmoud Adada, Wendy Tay, and Adam Trischler.
2018. Textworld: A learning environment for text-
based games. arXiv preprint arXiv:1806.11532.

Peter Dayan and Geoffrey E Hinton. 1992. Feudal re-
inforcement learning. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 5.

https://www.aclweb.org/anthology/2019.ccnlg-1.1
https://www.aclweb.org/anthology/2019.ccnlg-1.1
https://www.aclweb.org/anthology/2019.ccnlg-1.1
https://openreview.net/forum?id=B1x6w0EtwH
https://openreview.net/forum?id=B1x6w0EtwH
https://doi.org/10.18653/v1/N19-1358
https://doi.org/10.18653/v1/N19-1358
https://doi.org/10.18653/v1/N19-1358
https://doi.org/10.18653/v1/D19-5301
https://doi.org/10.18653/v1/D19-5301
https://doi.org/10.18653/v1/2021.naacl-main.64
https://doi.org/10.18653/v1/2021.naacl-main.64
https://proceedings.mlr.press/v70/andreas17a.html
https://proceedings.mlr.press/v70/andreas17a.html
https://doi.org/10.1109/TG.2019.2896017
https://doi.org/10.1109/TG.2019.2896017
https://openreview.net/forum?id=H1xsSjC9Ym
https://openreview.net/forum?id=H1xsSjC9Ym

1352

Meng Fang, Yuan Li, and Trevor Cohn. 2017. Learn-
ing how to active learn: A deep reinforcement learn-
ing approach. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 595–605.

Meng Fang, Cheng Zhou, Bei Shi, Boqing Gong, Jia
Xu, and Tong Zhang. 2019a. DHER: Hindsight ex-
perience replay for dynamic goals. In International
Conference on Learning Representations (ICLR).

Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and
Zhengyou Zhang. 2019b. Curriculum-guided hind-
sight experience replay. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 32,
pages 12602–12613.

Justin Fu, Anoop Korattikara, Sergey Levine, and Ser-
gio Guadarrama. 2019. From language to goals:
Inverse reinforcement learning for vision-based in-
struction following. In International Conference on
Learning Representations (ICLR).

Xiaoxiao Guo, Mo Yu, Yupeng Gao, Chuang Gan, Mur-
ray Campbell, and Shiyu Chang. 2020. Interac-
tive fiction game playing as multi-paragraph reading
comprehension with reinforcement learning. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7755–7765.

Hado van Hasselt, Arthur Guez, and David Silver. 2016.
Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), volume 30, pages 2094–2100.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre Côté, and Xingdi Yuan. 2020. Interac-
tive fiction games: A colossal adventure. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI), volume 34, pages 7903–7910.

Matthew Hausknecht, Ricky Loynd, Greg Yang, Adith
Swaminathan, and Jason D Williams. 2019. Nail:
A general interactive fiction agent. arXiv preprint
arXiv:1902.04259.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Li-
hong Li, Li Deng, and Mari Ostendorf. 2016. Deep
reinforcement learning with a natural language ac-
tion space. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 1621–1630.

Vishal Jain, William Fedus, Hugo Larochelle, Doina
Precup, and Marc G Bellemare. 2020. Algorithmic
improvements for deep reinforcement learning ap-
plied to interactive fiction. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI),
volume 34, pages 4328–4336.

Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy,
and Chelsea Finn. 2019. Language as an abstrac-
tion for hierarchical deep reinforcement learning. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 32, pages 9419–9431.

Leslie Pack Kaelbling. 1993. Learning to achieve
goals. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages
1094–1098.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan
Saeedi, and Josh Tenenbaum. 2016. Hierarchical
deep reinforcement learning: Integrating temporal
abstraction and intrinsic motivation. Advances in
Neural Information Processing Systems (NeurIPS),
29:3675–3683.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar,
Jakob Foerster, Jacob Andreas, Edward Grefenstette,
Shimon Whiteson, and Tim Rocktäschel. 2019. A
survey of reinforcement learning informed by natu-
ral language. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI),
pages 6309–6317.

Keerthiram Murugesan, Mattia Atzeni, Pavan Kapani-
pathi, Pushkar Shukla, Sadhana Kumaravel, Gerald
Tesauro, Kartik Talamadupula, Mrinmaya Sachan,
and Murray Campbell. 2021. Text-based rl agents
with commonsense knowledge: New challenges, en-
vironments and baselines. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI),
volume 35, pages 9018–9027.

Keerthiram Murugesan, Mattia Atzeni, Pushkar Shukla,
Mrinmaya Sachan, Pavan Kapanipathi, and Kar-
tik Talamadupula. 2020. Enhancing text-based
reinforcement learning agents with commonsense
knowledge. arXiv preprint arXiv:2005.00811.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and
Sergey Levine. 2018. Data-efficient hierarchical re-
inforcement learning. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 31,
pages 3303–3313.

Karthik Narasimhan, Tejas D Kulkarni, and Regina
Barzilay. 2015. Language understanding for text-
based games using deep reinforcement learning. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 1–11.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Push-
meet Kohli. 2017. Zero-shot task generaliza-
tion with multi-task deep reinforcement learning.
In International Conference on Machine Learning
(ICML), volume 70, pages 2661–2670.

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao,
Asli Celikyilmaz, Sungjin Lee, and Kam-Fai Wong.
2017. Composite task-completion dialogue policy
learning via hierarchical deep reinforcement learn-
ing. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2231–2240.

Abdelrhman Saleh, Natasha Jaques, Asma Ghandehar-
ioun, Judy Shen, and Rosalind Picard. 2020. Hier-
archical reinforcement learning for open-domain di-

https://doi.org/10.18653/v1/D17-1063
https://doi.org/10.18653/v1/D17-1063
https://doi.org/10.18653/v1/D17-1063
https://openreview.net/forum?id=Byf5-30qFX
https://openreview.net/forum?id=Byf5-30qFX
https://openreview.net/forum?id=r1lq1hRqYQ
https://openreview.net/forum?id=r1lq1hRqYQ
https://openreview.net/forum?id=r1lq1hRqYQ
https://doi.org/10.18653/v1/2020.emnlp-main.624
https://doi.org/10.18653/v1/2020.emnlp-main.624
https://doi.org/10.18653/v1/2020.emnlp-main.624
https://doi.org/10.18653/v1/P16-1153
https://doi.org/10.18653/v1/P16-1153
https://doi.org/10.18653/v1/P16-1153
https://doi.org/10.24963/ijcai.2019/880
https://doi.org/10.24963/ijcai.2019/880
https://doi.org/10.24963/ijcai.2019/880
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D17-1237
https://doi.org/10.18653/v1/D17-1237
https://doi.org/10.18653/v1/D17-1237

1353

alog. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence (AAAI), volume 34, pages 8741–
8748.

Tom Schaul, John Quan, Ioannis Antonoglou, and
David Silver. 2015. Prioritized experience replay.
arXiv preprint arXiv:1511.05952.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European Semantic Web Confer-
ence (ESWC), pages 593–607.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal
policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter,
Shimon Whiteson, and Ingmar Posner. 2018. Taco:
Learning task decomposition via temporal align-
ment for control. In International Conference on
Machine Learning (ICML), volume 80, pages 4654–
4663.

Tianmin Shu, Caiming Xiong, and Richard Socher.
2018. Hierarchical and interpretable skill acquisi-
tion in multi-task reinforcement learning. In Inter-
national Conference on Learning Representations
(ICLR).

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484–489.

Sungryull Sohn, Junhyuk Oh, and Honglak Lee. 2018.
Hierarchical reinforcement learning for zero-shot
generalization with subtask dependencies. In Ad-
vances in Neural Information Processing Systems
(NeurIPS), volume 31, pages 7156–7166.

Richard S Sutton, Doina Precup, and Satinder Singh.
1999. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning.
Artificial intelligence, 112(1-2):181–211.

Jack Urbanek, Angela Fan, Siddharth Karamcheti,
Saachi Jain, Samuel Humeau, Emily Dinan, Tim
Rocktäschel, Douwe Kiela, Arthur Szlam, and Ja-
son Weston. 2019. Learning to speak and act in a
fantasy text adventure game. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 673–683.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 30, pages 5998–
6008.

Alexander Sasha Vezhnevets, Simon Osindero, Tom
Schaul, Nicolas Heess, Max Jaderberg, David Silver,
and Koray Kavukcuoglu. 2017. FeUdal networks
for hierarchical reinforcement learning. In Inter-
national Conference on Machine Learning (ICML),
volume 70, pages 3540–3549.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czar-
necki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo
Ewalds, Petko Georgiev, et al. 2019. Grandmaster
level in starcraft ii using multi-agent reinforcement
learning. Nature, 575(7782):350–354.

Yunqiu Xu, Ling Chen, Meng Fang, Yang Wang, and
Chengqi Zhang. 2020a. Deep reinforcement learn-
ing with transformers for text adventure games. In
IEEE Conference on Games (CoG), pages 65–72.

Yunqiu Xu, Meng Fang, Ling Chen, Yali Du,
Joey Tianyi Zhou, and Chengqi Zhang. 2020b. Deep
reinforcement learning with stacked hierarchical at-
tention for text-based games. In Advances in Neu-
ral Information Processing Systems (NeurIPS), vol-
ume 33, pages 16495–16507.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and
Karthik Narasimhan. 2020. Keep CALM and ex-
plore: Language models for action generation in
text-based games. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 8736–8754.

Xusen Yin and Jonathan May. 2019. Comprehensible
context-driven text game playing. IEEE Conference
on Games (CoG), pages 1–8.

Xusen Yin, Ralph Weischedel, and Jonathan May.
2020. Learning to generalize for sequential decision
making. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing: Find-
ings (EMNLP-Findings), pages 3046–3063.

Xingdi (Eric) Yuan, Marc-Alexandre Côté, Alessan-
dro Sordoni, Romain Laroche, Remi Tachet des
Combes, Matthew Hausknecht, and Adam Trischler.
2018. Counting to explore and generalize in text-
based games. In European Workshop on Reinforce-
ment Learning (EWRL).

Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J
Mankowitz, and Shie Mannor. 2018. Learn what
not to learn: Action elimination with deep reinforce-
ment learning. In Advances in Neural Information
Processing Systems (NeurIPS), volume 31, pages
3562–3573.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu,
Kurt Keutzer, Joseph E Gonzalez, and Yuandong
Tian. 2020. Bebold: Exploration beyond the
boundary of explored regions. arXiv preprint
arXiv:2012.08621.

https://openreview.net/forum?id=SJJQVZW0b
https://openreview.net/forum?id=SJJQVZW0b
https://doi.org/10.18653/v1/D19-1062
https://doi.org/10.18653/v1/D19-1062
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.emnlp-main.704
https://doi.org/10.18653/v1/2020.findings-emnlp.273
https://doi.org/10.18653/v1/2020.findings-emnlp.273

