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Abstract 

The paradigm of leveraging large pre-

trained language models has made 

significant progress on benchmarks on 

task-oriented dialogue (TOD) systems. In 

this paper, we combine this paradigm with 

multi-task learning framework for end-to-

end TOD modeling by adopting span 

prediction as an auxiliary task. In end-to-

end setting, our model achieves new state-

of-the-art results with combined scores of 

108.3 and 107.5 on MultiWOZ 2.0 and 

MultiWOZ 2.1, respectively. Furthermore, 

we demonstrate that multi-task learning 

improves not only the performance of 

model but its generalization capability 

through domain adaptation experiments in 

the few-shot setting. The code is available 

at github.com/bepoetree/MTTOD. 

1 Introduction 

Traditional task-oriented dialogue (TOD) systems 

are built on a modular pipeline architecture and 

their workflow is as follows: the natural language 

understanding (NLU) module identifies user 

intents and extracts task-specific slot values, and 

the dialogue state tracking (DST) module tracks 

the belief state (i.e., user goal) with considering 

dialogue history. By using the belief state as a 

database (DB) query, the system can obtain DB 

state, such as the number of matching entities and 

whether the booking is available. Based on the 

information, the dialogue policy (POL) module 

determines the next system action and then the 

natural language generation (NLG) module 

generates an appropriate natural language 

response according to the system action. 

With the advances in neural approach, recent 

works on TOD system handle individual modules 

in a unified way. In particular, the approach to 

leveraging the large pre-trained language models 

for end-to-end dialogue modeling has shown very 

promising results (Ham et al., 2020; Lin et al., 

2020; Lee et al., 2020; Yang et al., 2021). Such 

models are typically developed by fine-tuning the 

large pre-trained model, which learned task-

agnostic language representations, with only the 

end-to-end dialogue modeling objective. Another 

approach to leveraging knowledge transfer is 

multi-task learning, which aims to learn universal 

representations (knowledge) between related tasks 

(Ruder, 2017). It has been shown that multi-task 

learning not only improves the performance of 

model, but also mitigates overfitting problem (Liu 

et al., 2015). Furthermore, Liu et al., (2019) 

demonstrate that the both approaches are 

complementary and combing them improves the 

performance of NLU. 

In this sense, we introduce multi-task learning 

into fine-tuning an end-to-end TOD model, 

initialized with pre-trained language model. We 

use T5 (Raffel et al., 2020) as a backbone and 

adopt span prediction as an auxiliary task to boost 

the performance of NLU. Our model achieves 

new state-of-the-art results on both MultiWOZ 2.0 

and MultiWOZ 2.1 in end-to-end setting. We also 

investigate the advantages of multi-task learning 

in end-to-end TOD modeling by conducting 

domain adaptation experiments with the few-shot 

setting. 

2 Method  

2.1 Task-Oriented Dialogue Model 

The proposed model is built on a sequence-to-

sequence architecture as illustrated in Figure 1. At 

each dialogue turn 𝑡, the encoder takes the user 

utterance 𝑈𝑡 and dialogue history 𝐻𝑡. Based on 

the encoded dialogue, the belief decoder generates 

a belief state 𝐵𝑡, which consists of (domain, slot, 
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value) triples. The generated belief state is used to 

query a domain-specific database and the DB state 

𝐷𝐵𝑡 is determined by the number of matching 

entities. Finally, conditioned on the encoded 

dialogue and the DB state, the response decoder 

first  generates system action 𝐴𝑡, which consists 

of (domain, action-type, slot) triples, and natural 

language response 𝑅𝑡 . Note that the natural 

language responses are also conditioned on the 

generated system action because the decoder 

generates tokens in an auto-regressive manner. 

Inspired by the state-of-the-art work (Yang et al., 

2021), we treat the overall workflow of TOD as 

dialogue history. In other words, the current 

workflow sequence (𝑈𝑡; 𝐵𝑡; 𝐷𝐵𝑡; 𝐴𝑡; 𝑅𝑡)  is 

appended to the next dialogue history 𝐻𝑡+1. This 

procedure is repeated until the dialogue ends. The 

loss functions are defined as, 

           ℒ𝑏𝑒𝑙𝑖𝑒𝑓 = −log 𝑝(𝐵𝑡|𝐻𝑡 , 𝑈𝑡),        (1) 

        ℒ𝑟𝑒𝑠𝑝 = −log 𝑝(𝐴𝑡 , 𝑅𝑡|𝐻𝑡 , 𝑈𝑡 , 𝐷𝐵𝑡),    (2) 

for the belief and system action/response 

generation, respectively. 

2.2 Auxiliary Task 

Some recent approaches to DST use span-based 

method to address the out-of-vocabulary problem 

(Gao et al., 2020; Zhang et al., 2020; Heck et al., 

2020). For each (domain, slot) pair, span-based 

DST extracts its value through span matching with 

start and end positions in utterances.  

We adopt span prediction as an auxiliary task 

on the grounds of that the labels can be easily 

obtained by matching the ontology with dialogue 

context, and the task can improve the performance 

of NLU (Joshi et al., 2020). Different from the 

positional span-based DST works, we formulate 

span prediction as the slot tagging task, as shown 

in the purple box in Figure 1. Note that the 

domain information is excluded here because the 

meaning of slots is shared across all domains. The 

probability distribution over all possible slots for 

𝑖𝑡ℎ  input token is computed as, 

            𝑝𝑖 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 ∙ 𝑠𝑖 + 𝑏),      (3) 

where 𝑠𝑖 is the 𝑖𝑡ℎ encoder hidden state, and 𝑊 

and 𝑏 are trainable weights and bias, respectively. 

We consider only the extractive informable slots1 

defined in Gao et al., (2020) that categorize slots 

based on exact match rate of slot values in 

conversation. We use the cross-entropy loss 

function for the auxiliary task, ℒ𝑎𝑢𝑥. Our model 

is trained to jointly minimize the weighted sum of 

the loss functions, 

         ℒ = ℒ𝑏𝑒𝑙𝑖𝑒𝑓 + 𝛼ℒ𝑟𝑒𝑠𝑝 + 𝛽ℒ𝑎𝑢𝑥 .      (4) 

In experiments, we set 𝛼 and 𝛽 to 1.0 and 0.5, 

respectively. 

                                                           
1 name, leave, arrive, destination, departure, food, and type. 

 

Figure 1: The overview of our end-to-end task-oriented dialogue model. The highlighted texts describe input and 

output example of each component. All sequences are surrounded by special tokens, such as <sos_*> and 

<eos_*> to indicate the sequence boundaries. 
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3 Experiments 

3.1 MultiWOZ Dataset 

Dataset. MultiWOZ (Budzianowski et al., 2018) 

is a large-scale TOD dataset collected via Wizard-

of-Oz setup. The statistics of the dataset are 

presented in Appendix A.  We evaluate our 

proposed model on both MultiWOZ2.0 and 

MultiWOZ 2.1 (Eric et al., 2020) which is cleaned 

version of MultiWOZ 2.0.  

Pre-processing. The system response includes 

slot values that depend on the particular 

conversation, such as address. To reduce diversity 

of the surface form, the specific slot values are 

replaced with placeholders (Zhang et al., 2020). 

For example, the addresses are expressed by 

<value_address> in system response. 

Evaluation Metrics. We follow the automatic 

evaluation metrics of Budzianowski et al., (2018): 

Inform measures whether an entity provided by 

system is correct, Success measures whether 

information has been provided for all user 

requests, and BLEU (Papineni et al., 2002)  

measures the fluency of the responses. We also 

report the combined score, which is computed as 

Combined =  (Inform +  Success) ×  0.5 + 

BLEU (Mehri et al., 2019). To evaluate the DST, 

we use the joint goal accuracy measuring whether 

predicted belief state exactly matches ground-truth 

belief state. 

3.2 Experimental Results 

We developed our model using T5-base (220M) 

that consists of 12 layers of transformer blocks for 

the encoder and decoder, implemented in 

huggingface Transformers (Wolf et al., 2019). To 

generate the belief state and system response, we 

use the simple greedy decoding algorithm. The 

training details are described in Appendix B. 

End-to-End Modeling. Table 1 compares our 

model (MTTOD) to the state-of-the art models 

leveraging large pre-trained language models in 

end-to-end setting. For end-to-end TOD modeling, 

SimpleTOD (Hosseini-Asl et al., 2020), 

SOLOIST (Peng et al., 2020), and UBAR (Yang 

et al., 2021) use GPT2 (Radford et al., 2018) and 

MinTL-BART (Lin et al., 2020) uses BART 

(Lewis et al., 2020). Our model achieves the best 

combined score with significantly outperforming 

other models in terms of Success and BLEU on 

both MultiWOZ 2.0 and MultiWOZ 2.1. For an 

ablation study, we also report the performance of 

the model trained without multi-task learning. 

MTTOD shows better performance on all the 

metrics, which indicates the usefulness of our 

auxiliary task and multi-task learning. 

Dialogue State Tacking. Table 2 compares the 

model trained with and without multi-task 

learning in DST. The results with slight gains have 

consistency with end-to-end evaluation results, 

where the Success gains are greater than Inform.  

Few-shot Domain Adaptation. In practice, it is 

hard to collect the massive dialogue data for each 

domain. Therefore, a dialogue system is required 

that have domain scalability with a few training 

examples. Following setup in Yang et al., (2021), 

we conduct domain adaptation experiments in the 

few-shot learning setting to test whether the multi-

task learning improves the generalization 

capability of the model. We exclude attraction 

domain that only has 12 test dialogue sessions 

resulting the large variation of results in this setup. 

Table 2: Dialog state tracking evaluation on 

MultiWOZ 2.0 and MultiWOZ 2.1. 

 

Model 
MultiWOZ Joint Acc. 

2.0 2.1 

MTTOD 53.56 53.44 

MTTOD w/o MTL 53.17 53.25 

 

Model 
MultiWOZ 2.0 MultiWOZ 2.1 

Inform Success BLEU Combined Inform Success BLEU Combined 

SimpleTOD 84.4 70.1 15.0 92.3 - - - - 

SOLOIST 85.5 72.9 16.5 95.7 - - - - 

MinTL-BART 84.9 74.9 17.9 97.8 - - - - 

UBAR 95.4 80.7 17.0 105.1 95.7 81.8 16.5 105.7 

MTTOD (ours) 91.0 82.6 21.6 108.3 91.0 82.1 21.0 107.5 

−MTL (ablation) 90.4 81.9 21.3 107.4 89.1 80.7 20.9 105.8 

 Table 1: End-to-end evaluation on MultiWOZ 2.0 and MultiWOZ 2.1. In this evaluation, the generated belief 

state and system action are used. The additional results in different settings where the ground-truth belief state 

and system action are used are reported in Appendix C. 
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After the model is trained on 3 domains excluding 

a target domain, the trained model is fine-tuned 

with 100 dialogue examples which are randomly 

sampled from the target domain. 

As shown in Table 3, the model trained with the 

multi-task learning achieves better performance 

on all target domains. This indicates that multi-

task learning has major positive effects on the 

knowledge transfer in the low resource 

environment. It is also worth noting that the 

models have the different gaps of performance 

degradation between train/taxi and 

restaurant/hotel domains. The model trained with 

multi-task learning has smaller performance 

degradation in restaurant/hotel domains. The train 

and taxi domains share the same informable slots 

and many slot values such as arrival time and 

departure time. On the other hand, the restaurant 

and hotel domains have domain-specific slots 

such as food and stars. This property makes more 

difficult to transfer knowledge between domains 

and causes the catastrophic forgetting problem. 

Our empirical results show that the multi-task 

learning is helpful to alleviate this problem and 

improves the generalization capability of the 

model. 

4 Related Work 

Lei et al., (2018) first propose a sequence-to-

sequence architecture for end-to-end TOD 

modeling with a belief sequence, named belief 

spans. Then, Zhang et al., (2020) extend the model 

in multi-domain scenarios with considering 

appropriate multiple responses. Recent approach 

employs transfer learning framework based on the 

large pre-trained language models such as GPT-2 

(Radford et al., 2018), and T5 (Raffel et al., 2020) 

to generate the belief spans and responses. This 

approach has made significant progress on 

benchmarks for TOD system (Ham et al., 2020; 

Hosseini-Asl et al., 2020; Peng et al., 2020; Lin et 

al., 2020; Yang et al., 2021). Another approach to 

leveraging knowledge transfer is the multi-task 

learning. It has been shown that combining multi-

task learning and transfer learning from pre-

trained language model improves NLU tasks (Liu 

et al., 2019). In TOD systems, multi-task learning 

has been leveraged for DST (Rastogi et al., 2018; 

Quan and Xiong, 2020). Similar to our work, they 

adopt the language understanding as auxiliary task, 

but there is large difference in that we design the 

auxiliary task for end-to-end dialogue modeling in 

multi-domain scenarios. 

5 Conclusion 

In this work, we explored the approach to fine-

tuning pre-trained model with multi-task learning 

for end-to-end TOD modeling. Our model 

establishes new state-of-the-art results on both 

MultiWOZ 2.0 and MultiWOZ 2.1 in end-to-end 

setting. We also demonstrate the effectiveness of 

multi-task learning in domain adaptation 

experiments with a few training examples. In 

future works, we plan to investigate various 

auxiliary tasks to enhance end-to-end TOD 

modeling. 
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Model Belief State System Action Inform Success BLEU Combined 

HDSA oracle oracle 87.9 78.0 30.4 113.4 

UBAR oracle oracle 96.9 92.2 28.6 123.2 

MTTOD (ours) oracle oracle 93.6 89.9 32.7 124.5 

−MTL (ablation) oracle oracle 93.3 89.6 32.6 124.0 

HDSA  oracle generated 82.9 68.9 23.6 99.5 

HDNO  oracle generated 96.4 84.7 18.9 109.4 

UBAR  oracle generated 94.0 83.6 17.2 106.0 

MTTOD (ours) oracle generated 90.6 82.4 21.7 108.2 

−MTL (ablation) oracle generated 91.6 82.6 21.4 108.5 

MinTL-BART generated generated 84.9 74.9 17.9 97.8 

UBAR generated generated 95.4 80.7 17.0 105.1 

MTTOD (ours) generated generated 91.0 82.6 21.6 108.3 

−MTL (ablation) generated generated 90.4 81.9 21.3 107.4 

 

A Data Statistics 

B Training Details 

We train our model for 10 epochs (it takes about 

10 hours on a single NVIDIA Quadro RTX 8000). 

The initial learning rates for end-to-end modeling 

and dialogue state tracking are 5e-4 and 1e-4, 

respectively. For all experiments, the batch size is 

set to 8 and the proportion of warmup steps is set 

to 0.1. We adopt an optimizer as AdamW 

(Loshchilov and hutter, 2019) with the linear 

learning rate decaying scheme. After the training 

is done, we select best checkpoint model based on 

performance on the development set. 

 

 

 

C Additional Results 

Table 5 compares our model (MTTOD) to 

action/response generation models including 

HDSA (Chen et al., 2019), and HDNO (Wang et 

al., 2021) as well as end-to-end models including 

MinTL (Lin et al., 2020), and UBAR (Yang et al., 

2021) on MultiWOZ 2.0. Table 6 compares our 

model to UBAR on MultiWOZ 2.1. We also 

report the performance of the model trained 

without multi-task learning for ablation study. 

 

 

Table 5: Results of response generation on MultiWOZ 2.0 

Domain 
# of dialogues 

Train Dev Test 

Police 245 0 0 

Hospital 287 0 0 

Attraction 127 11 12 

Taxi 326 57 52 

Train 282 30 33 

Hotel 513 56 67 

Restaurant 1,199 50 62 

Train + Attraction 883 148 163 

Hotel + Attraction 437 55 50 

Restaurant + Attraction 396 78 70 

Restaurant + Train 875 157 155 

Restaurant + Hotel 462 59 49 

Hotel + Train 1,077 149 144 

Restaurant + Hotel + Taxi 454 41 42 

Restaurant + Attraction + Taxi 431 53 59 

Hotel +Attraction + Taxi 444 56 42 

Total 8,438 1,000 1,000 

 
Table 4: Statistics of train/dev/testset in MultiWOZ. 
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Model Belief State System Action Inform Success BLEU Combined 

UBAR oracle oracle 95.4 91.4 28.8 122.2 

MTTOD (ours) oracle oracle 93.8 90.0 32.3 124.1 

−MTL (ablation) oracle oracle 93.9 90.3 32.1 124.2 

UBAR  oracle generated 92.7 81.0 16.7 103.6 

MTTOD (ours) oracle generated 91.4 82.7 21.2 108.2 

−MTL (ablation) oracle generated 91.1 82.5 21.0 107.8 

UBAR generated generated 95.7 81.8 16.5 105.7 

MTTOD (ours) generated generated 91.0 82.1 21.0 107.5 

−MTL (ablation) generated generated 89.1 80.7 20.9 105.8 

 

 
Table 6: Results of response generation on MultiWOZ 2.1. 


