
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 1204–1214
November 7–11, 2021. ©2021 Association for Computational Linguistics

1204

Past, Present, and Future: Conversational Emotion Recognition through
Structural Modeling of Psychological Knowledge

Jiangnan Li1,2, Zheng Lin1,2∗, Peng Fu1, Weiping Wang1

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

{lijiangnan,linzheng,fupeng,wangweiping}@iie.ac.cn

Abstract
Conversational Emotion Recognition (CER) is
a task to predict the emotion of an utterance in
the context of a conversation. Although model-
ing the conversational context and interactions
between speakers has been studied broadly, it
is important to consider the speaker’s psycho-
logical state, which controls the action and
intention of the speaker. The state-of-the-art
method introduces CommonSense Knowledge
(CSK) to model psychological states in a se-
quential way (forwards and backwards). How-
ever, it ignores the structural psychological
interactions between utterances. In this pa-
per, we propose a pSychological-Knowledge-
Aware Interaction Graph (SKAIG). In the lo-
cally connected graph, the targeted utterance
will be enhanced with the information of ac-
tion inferred from the past context and inten-
tion implied by the future context. The utter-
ance is self-connected to consider the present
effect from itself. Furthermore, we utilize
CSK to enrich edges with knowledge represen-
tations and process the SKAIG with a graph
transformer. Our method achieves state-of-the-
art and competitive performance on four popu-
lar CER datasets.

1 Introduction

As one of the most ubiquitous ways of communi-
cating, conversations contain rich information and
emotional expressions of the participants. With the
explosive growth of conversational data on the In-
ternet, it is of great importance to employ machines
to automatically identify the emotions expressed by
speakers in the conversation. Therefore, in recent
years, Conversational Emotion Recognition (CER)
receives increasing attention from the researchers
(Poria et al., 2017; Jiao et al., 2019; Shen et al.,
2021).

Unlike traditional emotion recognition, CER
needs to model not only the semantic informa-
tion of an utterance, but also the conversational
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Yes! I just found out today.  I just got the letter.

oh,I'm so glad.

I got it.  I got accepted to U.S.C..

Oh, for real?

Speaker A Speaker B

B’s action: due to #1, speaker B wants 

to congratulate A oWant

B’s intention: before #4, speaker B wanted 

to be nice/be happy xIntent

#1

#2

#3

#4

:Emotion: Excited

Conversation flow: #1→#2→#3→#4

Figure 1: A conversation clip between two speakers.
The utterance #1 provides the action of speaker B for
#2, and #4 provides the intention. Both give positive
and rational hints for #2 to predict the positive emotion
excited. The descriptions of action, intention are
generated by COMET (Bosselut et al., 2019).

contextual information between utterances (Jiao
et al., 2019, 2020; Shen et al., 2021). Addition-
ally, the speaker information attaching to the utter-
ance is thought to facilitate modeling the conversa-
tional context. Different speaker modeling schemes
and the corresponding solutions are proposed to
enhance the interactions between utterances (Ma-
jumder et al., 2019; Li et al., 2020b; Ghosal et al.,
2019; Li et al., 2020a).

Although these works yield significant perfor-
mance, the modeling of conversational context and
speakers does not consider psychological states of
speakers. The psychological state will control the
speaker’s action and intention along the conver-
sation, which can help predict the emotion more
reasonably. As the original conversation provides
no extra information about psychological states, to
guide a model to realize psychological states, Com-
monSense Knowledge (CSK) can be introduced.
From the perspective of CSK proposed by Sap et al.
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(2019), which is a kind of widely-used socialized
CSK (Hwang et al., 2021), action means what the
speaker wants to do in the next step, which can
be triggered by speaker him/herself or other speak-
ers. Intention means what the speaker wanted to
do before this step, which can only be inferred
by speaker him/herself. Therefore, for a targeted
utterance, the action can be inferred from its past
context, the intention from its future context. As
illustrated in Fig. 1, the targeted utterance #2
can be positively enhanced by the action inferred
from #1 of speaker A and the intention from #4.
COSMIC (Ghosal et al., 2020) introduces this kind
of CSK into CER to model the speaker’s psycho-
logical state, and then utilizes bidirectional GRUs
to model these states in every time step. However,
COSMIC ignores the structural psychological influ-
ences from contextual utterances to the targeted ut-
terance (i.e. an utterance can directly and explicitly
pass psychological messages to other utterances
over several time steps, which is more than just
sequential and implicit modeling of psychological
states over utterances). In addition, modeling all
psychological states both forwards and backwards
does not conform with the nature of the CSK (Sap
et al., 2019) mentioned above (e.g. intention cannot
be inferred forwards and should be only inferred
backwards as illustrated in Fig. 1).

To alleviate these issues, we propose a
pSychological-Knowledge-Aware Interaction
Graph (SKAIG). Utterances, which are locally
connected, act as the nodes in the graph. There
are four relations considered in SKAIG: xWant,
oWant, xIntent, xEffect. For a targeted
utterance, xWant, oWant model the action
indicated by utterances in the past context with
the same speaker (x) and other speakers (o)
respectively. Conversely, xIntent models the
intention inferred by utterances in the future
context. And xEffect is the self-connected
relation to model the influence from the present
utterance itself. By taking the three sources: past,
present, and future into consideration, we believe
the graph can more structurally and rationally
enhance context modeling. Furthermore, these
relations will be assigned to edges between
utterances accordingly. Therefore, edges take
the role to model the psychological interactions
between utterances. To realize this, we enrich
edges with their corresponding knowledge repre-
sentations. These representations are produced

by commonsense transformer COMET (Bosselut
et al., 2019) which takes utterances and relations
as inputs. As edges in SKAIG possess knowledge
representations that require to be considered, we
therefore utilize the graph transformer (Shi et al.,
2021) for message passing. We then use the final
outputs for classification.

To evaluate our method, we conduct experi-
ments on four datasets: IEMOCAP, DailyDialog,
EmoryNLP, and MELD. Our method achieves state-
of-the-art performance on the first three datasets,
and competitive performance on MELD. Further
experiments also demonstrate the efficacy of our
proposed method.

2 Methodology

In this section, we first formalize the CER task, and
then elaborate on our proposed model. The frame-
work of the model (illustrated in Fig. 2) consists of
three parts: Utterance-level Encoder, Conversation-
level Encoder, and Emotion Classifier.

2.1 Task Definition
For the subsequent context, a conversation con-
taining N textual utterances is denoted as
C = [u1, u2, ..., uN ]. In an utterance un =
[w1, w2, ..., wLn ], Ln words are contained. In addi-
tion, a conversation involves at least two speakers,
and each utterance within is expressed by its corre-
sponding speaker s ∈ (S1, S2, ..., SP ). Therefore,
CER task aims to classify all utterances in one
conversation to their correct emotion labels which
belong to the set (E0, E1, ..., EM ).

2.2 Utterance-level Encoder
For each utterance out of the conversational con-
text, it is important to extract the contextual infor-
mation among its words. We employ the widely-
used pretrained model RoBERTa (Liu et al., 2019)
to encode the utterance. An utterance un =
[w1, w2, ..., wLn ] is fed into RoBERTa, we obtain
the hidden states of the last layer:

W = RoBERTa(w1, w2, ..., wLn) (1)

where W ∈ RLn×dw and dw is the dimension of
hidden states of words. The goal of the utterance-
level encoder is to encode the representation for
each utterance. Therefore, we deploy a max-
pooling operation and a linear projection following
Ishiwatari et al. (2020), Li et al. (2020b):

cn = Linear(Maxpooling(W )) (2)
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Figure 2: The framework of our model. The utterances are encoded by the utterance-level encoder to produce
the utterance representations and the edge representations. The conversation-level encoder processes the SKAIG
whose window size is 1. Finally, the classifier predicts the emotion for every utterance. Especially, edges and their
representations with different relations are in different colors.

where cn ∈ Rdu is the representation of the utter-
ance un and du is the dimension of the representa-
tion. After all utterances encoded, we obtain the
representation of the conversation C ∈ RN×du .

2.3 Conversation-Level Encoder
Considering each utterance in its conversational
context, there is rich contextual information. For
an utterance, the action and intention of the
speaker and interactions with other utterances in
past, present, and future are crucial to model
the context more precisely. Therefore, we con-
struct a pSychological-Knowledge-Aware Interac-
tion Graph (SKAIG) of utterances in a conversa-
tion, and then utilize the Graph Transformer (Shi
et al., 2021) network to process SKAIG.

2.3.1 SKAIG Construction
We construct a directed graph modeling interac-
tions between utterances. We denote the graph
as G = (V, E ,R,A). Specifically, un ∈ V
is an utterance node, r ∈ R is an edge type,
ei,j = (ui, r, uj) ∈ E is the edge between utter-
ance i and j, and ai,j ∈ A is the edge attribute
(representation) of ei,j .

Vertices: For an utterance un acting as a node in
the graph, we use the representation cn ∈ Rdu en-
coded by the utterance-level encoder to initiate the
node feature h0n. The initial node feature contains
no conversational contextual information.

Relations: The interaction between utterances is
often indicated by the relations between the speak-
ers. In previous works(Ghosal et al., 2019; Ishi-
watari et al., 2020), there are two important speaker
relations r considered: self-dependency and inter-
speaker dependency. Based on this scheme, we
propose more refined types of relations so that the
speaker’s action and intention in the conversation
can be modeled. In our setting, the utterances in
the post context can guide the action of the current
utterance and those in the future context can pre-
dict the intention. Therefore, for two utterances ui,
uj where ui appears before uj , if they share the
same speaker, the relation ui → uj means that ui
passes the guidance of the speaker’s action to uj ,
and we denote this relation as xWant. The relation
ui ← uj represents that uj can predict the inten-
tion of the speaker as uj is in the future context for
ui, and we denote it as xIntent. Conversely, if
ui and uj do not share the speaker, ui → uj will
provide the influence of ui’s speaker on the action
of uj’s speaker, and we denote it as oWant. As
the intention only can be inferred by the speaker
him/herself (Sap et al., 2019), no "intent" relation
connects two utterances with different speakers.
Furthermore, an utterance can be self-connected
(ui → ui) and the self-effected relation is denoted
as xEffect. Therefore, we get four types of
edge relations R = (xEffect, xWant, oWant,
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xIntent).
Edges: An edge ei,j = (ui, r, uj) between two

utterances ui and uj models the interactions be-
tween these utterances. We think that the influence
of an utterance on contextual utterances can be lo-
cally effective, so we connect the targeted node
with the contextual nodes of every speaker in a win-
dow whose size is k. When k = 1, the targeted
utterance considers one utterance of every speaker
in the past and future context respectively, which
is exemplified in Fig. 2.

Edge Representations: Different from the pre-
vious works (Ghosal et al., 2019; Ishiwatari et al.,
2020) that only assign a weight to the edge, we in-
troduce the commonsense knowledge to enrich the
edges with different relations. Fortunately, com-
monsense transformer COMET (Bosselut et al.,
2019), which is a GPT (Radford et al., 2018) model,
can provide such features for all of our relations.
We utilize a COMET model trained on ATOMIC
(Sap et al., 2019) which is a knowledge base of
If-Then reasoning. There are nine relations in
ATOMIC, which cover all of the relations we re-
quire. Under such circumstances, COMET can
generate descriptions of "then" based on the input
and the selected relation. For example, if taking
un and the relation xWant as inputs, COMET will
generate a reasoning sequence following "If un,
then X wants to".

We concatenate un and a relation with mask
tokens (e.g. un [MASK] <xWant>) in the in-
putting format of COMET, and then COMET pro-
cesses the input. Following Ghosal et al. (2020),
we take the hidden state of the relation token
from the last layer of COMET transformer en-
coder as the relation’s representation. For an edge
ei,j = (ui,xWant, uj), the corresponding repre-
sentation is ai,j , whose dimension is mapped from
768 to du with a following linear unit.

2.3.2 Graph Transformer
We utilize an L-layer graph transformer to propa-
gate the interactive information through the SKAIG.
We update the node representation h(l)i ∈ Rdu of
each node ui ∈ V by:

h
(l+1)
i = (1− βi)

 ∑
j∈N (i)

αi,jmj

+ βiWsh
(l)
i

(3)
where N (i) is the set of source nodes connected
with the targeted node i, mj is the message passed

by these nodes, αi,j is the attention score, βi ∈ R1

is the gate for the residual connections, and Ws ∈
Rdu×du is a mapping weight.

The message passed by neighboring nodes con-
tains two parts of information: the contextual rel-
evance and the psychological information, so the
message is computed by:

mj = fv(h
(l)
j ) +Weaj,i (4)

where We ∈ Rdhead×du is a trainable weight and
fv(x) = Wvx + bvis a projection, both mapping
dimension from Rdu to the head dimension Rdhead .
Furthermore, the attention score that controls how
much information should be gathered from neigh-
bors can be computed by:

αi,j = softmax

(
fq(h

(l)
i )(fk(h

(l)
j ) +Weaj,i)√
dhead

)
(5)

where fq(x) = Wqx+bq; fk(x) = Wkx+ bk are
projections. Eq. (3) only considers one attention
head, while multiple heads are involved in prac-
tice. We concatenate outputs from all heads after
message aggregation and denote it as oi. As for the
gate, βi = sigmoid(wg

T [h
(l)
i ; oi;h

(l)
i −oi]), where

[] is the concatenating operation.
In addition, we replace the original operation

after the attention in Shi et al. (2021) to a point-
wise feed forward network proposed by Vaswani
et al. (2017). We denote the final output of the
conversation as HL ∈ RN×du .

2.4 Emotion Classifier

We utilize a linear unit as the classifier to predict
the emotion distributions:

Ŷ = softmax(HLWc + bc) (6)

where Wc ∈ Rdu×M , bc ∈ RM . The cross-entropy
loss utilized to train the model is calculated on a
conversation by:

L = − 1

N

N∑
i=1

M∑
e=1

yei log(Ŷ
e
i ) (7)

where yi is the one-hot vector denoting the emo-
tion of utterance i in the conversation, and e is the
dimension of each emotion.
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Dataset
Num. of dialogue Num. of utterance

train dev test train dev test
IEMOCAP 120 31 5810 1623
DailyDialog 11118 1000 1000 87170 8069 7740
EmoryNLP 659 89 79 7551 954 984
MELD 1039 114 280 9989 1109 2610

Avg. dialogue len. Avg. utterance len.
IEMOCAP 48 52 12 13
DialyDialog 8 8 8 12 11 12
EmoryNLP 12 11 13 8 7 8
MELD 10 10 9 8 8 8

Table 1: Statistics of IEMOCAP, DialyDialog, MELD,
EmoryNLP.

3 Experimental Setup

3.1 Dataset
We conduct experiments with our model on four
datasets: IEMOCAP (Busso et al., 2008), DailyDi-
alog (Li et al., 2017), EmoryNLP (Zahiri and Choi,
2018), and MELD (Poria et al., 2019). Statistics
about the datasets are showen in Tab. 1.

IEMOCAP IEMOCAP consists of dyadic
covesations between ten speakers. Six emotions are
considered in previous works: neutral, happy,
sad, angry, excited, frustrated. We
split training and validation set following Ghosal
et al. (2019).

DailyDialog DailyDialog is a dataset contain-
ing two-way dialogues about the daily life. Seven
emotions are included: neutral, happiness,
sadness, anger, surprise, disgust,
fear. In DailyDilaog, over 83% of the utterances
are labeled with neutral.

EmoryNLP EmoryNLP is collected from the
TV series Friends, which contains multi-speaker
conversations. Seven emotions are annotated:
neutral, mad, sad, scared, powerful,
peaceful, joyful.

MELD MELD is also collected from Friends.
Therefore, it is a dataset with multi-speaker con-
versations. The emotions are the same as those in
DailyDialog.

3.2 Baselines and Compared Methods
We compare our model with the following base-
lines and state-of-the-art models:

CNN (Kim, 2014) is the widely-used text convo-
lution network. DialogueRNN (Majumder et al.,
2019) employs GRUs to track speakers’ global and
emotional states. Ghosal et al. (2020) implement
both CNN and RoBERTa based DialogueRNN.
DialogueGCN (Ghosal et al., 2019) uses graph

convolutional networks to process the graph con-
structed from self-dependency and inter-speaker
dependency. KET (Zhong et al., 2019) is a hier-
archical transformer using their proposed graph
attention to extract information from knowledge
base. HiTrans (Li et al., 2020a) is a hierarchical
transformer based on BERT which is augmented
with a speaker relation prediction task. RGAT-
POS (Ishiwatari et al., 2020) is a relation-aware
graph attention network utilizing the proposed re-
lational position encoding. The speaker model-
ing of this model is based on DialogueGCN. Di-
alogXL (Shen et al., 2021) is an all-in-one XLNet
that processes the conversation in one step. Di-
alogXL also utilizes the speaker modeling of Di-
alogueGCN. COSMIC (Ghosal et al., 2020) is a
modified DialogueRNN based on RoBERTa-large.
COSMIC models more refined states of speakers
by utilizing bidirectional GRUs. COSMIC utilizes
commonsense knowledge COMET to initialize a
part of inputs of the speaker’s internal, external,
and intent GRUs. RoBERTa (Liu et al., 2019) is
the utterance-level encoder directly followed by
a classifier. RoBERTa-Transformer replaces the
graph transformer with a transformer, which can
be regarded as a locally and fully connected graph
without mental relation modeling. We implement
RoBERTa and RoBERTa-transformer in the setting
of our method. For other models, we refer the
performance from the corresponding papers.

3.3 Implementation
For IEMOCAP, we use RoBERTa-base 1 to initial-
ize the utterance-level encoder. For other datasets,
RoBERTa-large is selected, which is deployed
by HuggingFace transformers toolkit (Wolf et al.,
2019). RoBERTa is fine-tuned when training. The
batch size is set to 1 for IEMOCAP and 8 for other
datasets. For graph transformer, the dimension of
the utterance is set 200 for MELD and 300 for
other datasets; the dimension of the feed forward
network is set to 200 for MELD and 600 for other
datasets; the head dimension is set to 50 for all
datasets; the number of layers is searched from 1 to
6. We train the model with the AdamW optimizer
(Loshchilov and Hutter, 2019) whose learning rate
is set to 8e-6 for MELD and 1e-5 for other datasets.
The training step is set to 10000 with the first 1000
steps for warming up and other steps decaying the

1We find that the performance on IEMOCAP of RoBERTa-
base and RoBERTa-large is similar. To reduce the computa-
tion, we use RoBERTa-base.
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Methods
IEMOCAP DailyDialog EmoryNLP MELD

weighted-F1 micro-F1 macro-F1 weighted-F1 weighted-F1
CNN 52.04 50.32 36.87 32.59 55.02

DialogueRNN 62.57 55.95 41.8 31.7 57.03
DialogueGCN 64.18 - - - 58.1

KET 59.56 53.37 - 34.39 58.18
HiTrans 64.5 - - 36.75 61.94

RGAT-POS 65.22 54.31 - 34.42 60.91
DialogXL 65.94 54.93 - 34.73 62.41

RoBERTa DialogueRNN 64.76 57.32 49.65 37.44 63.61
COSMIC 65.28 58.48 51.05 38.11 65.21
RoBERTa 55.67 55.16 48.2 37.0 62.75

RoBERTa Transformer 63.78 58.28 47.0 37.5 64.59

Ours 66.96 59.75 51.95 38.88 65.18

Table 2: Results of our method and state-of-the-art baselines. The results of RoBERTa on DailyDialog are referred
from Ghosal et al. (2020).

learning rate. Early stopping is activated with 10
epochs. 2

For IEMOCAP, EmoryNLP, and MELD, the
weighted F1 score is selected as the evaluating met-
ric. For DailyDialog, following previous works,
we report the micro F1 score excluding those ut-
terances labeled with neutral and the macro F1
score. All of our results are averaged on 5 runs.

4 Results and Discussions

4.1 Overall Results
Illustrated in Tab. 2, our method achieves sta-
te-of-the-art results on IEMOCAP, DailyDialog,
EmoryNLP, and competitive results on MELD.

For IEMOCAP, RoBERTa performs poorly com-
paring to models with conversational context mod-
eling, which indicates IEMOCAP contains rich
information of conversational context. COSMIC
achieves limited improvement against RoBERTa-
DialogueRNN, while our method outperforms
RoBERTa-Transformer. We think the reason is that
our method can benefit from the structural mod-
eling of psychological knowledge in IEMOCAP.
Conversely, COSMIC only models psychological
states by updating step by step. However, the in-
teractions between utterances in several steps play
an important role in IEMOCAP, which can be elu-
cidated in Fig. 3. To this end, our method models
better conversational context and outperforms COS-
MIC by 1.68 weighted-F1. For models based on

2The code is available at https://github.com/
LeqsNaN/SKAIG-ERC.

pretrained models, the performance is similar. Our
method performing better indicates the importance
of CSK to enhance psychological states.

For DailyDialog, our method exceeds COSMIC
by 1.27 micro-F1 and RoBERTa-Transformer by
1.47 mirco-F1. In this case, RoBERTa-Transformer
is competitive in micro-F1 but the performance on
macro-F1 is poor. Conversely, our method achieves
the best macro-F1, which demonstrates the intro-
duction of SKAIG can partly defend the influence
of data imbalance on transformer.

For EmoryNLP, the contextual information pro-
vided by conversations is limited as RoBERTa
achieves similar performance as Transformer and
DialogueRNN. In such case, our method still ex-
ceed COSMIC by 0.77 weighted-F1. For MELD,
our method achieves competitive performance
against COSMIC . We think the reason maybe that
MELD contains short conversations but involves
multiple speakers, which leads to limited interac-
tive influence from psychological state. Therefore,
our method does not show advantages on MELD.
The error analysis on MELD is present in section
4.5.

4.2 Effect of Relations

We evaluate the effect of different relations to our
model. We take one relation off our proposed
SKAIG, where the edge will not be eliminated to
keep the modeling of conversational context. To
achieve this, we only remove the edge representa-
tions of the selected relation. In addition, we train

https://github.com/LeqsNaN/SKAIG-ERC
https://github.com/LeqsNaN/SKAIG-ERC
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IEMOCAP DailyDialog

Method Type weighted-F1 micro-F1

full model 66.96 59.75

-xWant 64.33 59.42
-oWant 65.03 59.09

-xIntent 64.7 59.46
-xEffect 65.29 58.95

trainable 64.28 58.86

Table 3: The weighted-F1 scores on IEMOCAP and
the micro-F1 scores on DailyDialog of our full model
taking off different relations and model variants. "-
relation" denotes taking off the edge representa-
tion of the "relation". "trainable" denotes replac-
ing edge representations with trainable relation embed-
dings.

a model with four trainable relation embeddings,
where the embeddings model the four relations in
SKAIG. This model variant does not introduce any
CSK. We conduct the experiments on IEMOCAP
and DailyDialog, and the results are illustrated in
Tab. 3.

Taking off different relations in SKAIG leads
to different degree of performance drop. By tak-
ing off the self-connected relation xEffect, the
performance drops. This observation indicates
the importance of modeling self-effect in the cur-
rent state. Furthermore, by taking off xWant or
oWant, where the two relations model the action
information provided by the past context from
different speakers, the performance drops. This
demonstrates that the information about action can
enhance interactions between utterances. On the
other hand, xIntent also affects the performance
of our model, which indicates the necessity of con-
sidering the intent information from the future con-
text. The trainable model variant performs poorly
as it achieves the lowest F1 scores. We deduce
the reason may be that no CSK is provided to in-
form what kind of the relation is modeled between
two utterances. This emphasizes the importance
of CSK to guide the model to learn more ratio-
nal information about the speaker’s psychological
states.

4.3 Effect of Window Size

In this section, we evaluate the effect of the win-
dow size to our method. The performance on the
validation set is illustrated in Fig. 3. Except IEMO-
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Figure 3: The effect of the window size to our model
on different datasets. X-axis denotes the window
size. Y-axis denotes the micro-F1 for DailyDialog and
weighted-F1 for other datasets on the validation set.
The dotted line denotes the trend line of second-order
polynomial.

CAP, the upper window size for others is 6 or 7,
because these datasets contain relatively short con-
versations as shown in Tab. 1. The increasing rate
of the number of edges in the graph becomes slow
when the window size exceeds 6 or 7.

From the illustration, only IEMOCAP shows sig-
nificant improvement with the window widening,
while other datasets show flat trends. The reason
maybe that IEMOCAP contains more contextual
information and obvious interactions of utterances
in the conversation (as elucidated in section 4.1).
Inferred from trend lines, whose changing ranges
are different in different datasets though, the per-
formance basically increases first and then drops
as the window becomes large except EmoryNLP.
This observation accords with our claim that the
psychological interactions between utterances are
locally effective. On the other hand, the reason
for our method not sensitive to the window size
on EmoryNLP may be that the contextual infor-
mation provided by conversations in this dataset is
limited. This can be inferred from the similar per-
formance of RoBERTa and RoBERTa-Transformer
(-DialogueRNN) in Tab. 2.
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frustrated
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sad

neutral

angry

excited

(a) (b) (c)

xEffect: A gets excited xIntent: A wanted It was good newsxIntent: A wanted to be in control

scientists have 

found a second 

solar system in 

the universe

it's just a system like 

ours with a star and a 

number of planets 

going around it

it's exciting news if we 

find a second solar 

system we might find a 

second earth

#1 #2 #3 #4 #5

0.296 0.302 0.401Attention score:

Prediction of #1: Joy(✔)

Speaker A

Speaker B

Utterance

Psychological state

45
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Figure 4: (a) A case of the targeted utterance #1 getting clues from #3 and #5 after 2 steps. (b) The confusion
matrix excluding the diagonal on IEMOCAP. (c) F1 scores of conversations with different number of speakers on
MELD achieved by our method and COSMIC. X-axis denotes F1 score; Y-axis denotes the number of speakers in
a conversation. The dotted line denotes the trend line of second-order polynomial.

#37: A vacation? A new carpet, a poodle?  A bag of ice cream, a suicide pack, what 
what Carla?  What the hell do you want?

#46(Targeted): Maybe if you are with somebody else too?
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#38: I want something to turn out the way it is supposed to turn out.

#41: This what?  What is this?  This isn't even anything.

xWant (#37→#46): M wants to clean up the mess. 

oWant (#38→#46): M wants to help F. 

oWant (#41 →#46): M wants to listen to F / to thank F. 

xEffect of #46: M is alone. 

xReact of #46: M feels happy. 

xIntent of #46: M wanted to be alone. 

Label of #46: 

Our prediction: Sad (√)

COSIMC’s prediction: Neutral (×)

Sad

0.055

0.0675

oReact passed by #45: M feels happy. 

oEffect passed by #45: M is grateful to F. 

Knowledge used by COSMIC at #46: 

U-ID Spk
Attention scores
of edges

Figure 5: A case that our method gives the correct pre-
diction while COSMIC fails. The attention map de-
picts the importance of all edges towards #46. For our
method, three edges with the highest attention scores
are illustrated. For COSMIC, the used knowledge is
illustrated.

4.4 Case Study

In Fig. 4 (a), we exemplify a simple case that a tar-
geted utterance gets messages of intent from future
utterances. Specifically, the attention scores are
averaged from the attention heads in the top layer
of graph transformer. For xEffect of #1, CSK
can provide a positive indication of the speaker’s
self-effect state, where #1 is likely to be predicted
as neutral by models without CSK. As for #5
that is two steps from #1, the xIntent provided
by it can positively enhance #1. In addition, the
attention score of the edge (5, xIntent, 1) is the
highest among all the in-degree edges of #1. This
coincides our claim that an utterance can directly
and explicitly pass psychological messages to other
utterances over several steps, and indicates the ne-
cessity of modeling structural interactions.

In Fig. 5, we illustrate a case that our method
gives the correct prediction while COSMIC fails.

In this case, messages of action from history ut-
terances contribute the most while the self-effect
(#46→ #46) and intent (#(> 46)→ #46) have
lower importance. xWant directly passed by #37
and oWant from #38 can provide positive guid-
ance to #46 and they are both several steps away,
which further demonstrates the importance of direct
structural psychological interactions. Conversely,
COSMIC considers intent, effect, reaction from
#46 itself and effect, reaction from neighboring
#45 due to the sequential modeling. Although the
knowledge can provide useful clues like "alone",
COSMIC fails to make the correct prediction. This
indicates that COSMIC is hindered by the implicit
and limited psychological interactions with contex-
tual utterances, even though contextual utterances
can provide more effective psychological informa-
tion.

4.5 Error Analysis
In Fig. 4 (b), we illustrate the confusion matrix of
predictions on IEMOCAP. To study the condition
that our model fails in, the diagonal in the con-
fusion matrix is eliminated to zero. The deeper
color denotes that more samples are misclassified.
From the heatmap, happy samples are likely pre-
dicted as excited, and other negative emotions
like sad are more confused with frustrated.
These observations indicate that the difficulty of
discriminating similar emotions in emotion recog-
nition still disturbs our method.

In Fig. 4 (c), we illustrate the effect of increasing
speakers in a conversation to our method and COS-
MIC on MELD. At first, the performance of ours
and COSMIC increases, which is different from
that of HiTrans (Li et al., 2020a) that constantly
decays. Compared with COSMIC, our method



1212

can achieve competitive performance. This appear-
ance demonstrates that our method can handle the
condition involving a small amount of speakers.
However, when the number keeps increasing, our
method show the same dropping trend of perfor-
mance as HiTrans and COSMIC do, but the trend
is sharper than that of COSMIC. This indicates
that it becomes hard for our method when a con-
versation involves a large scale of speakers. In the
future work, we will endeavor to explore more ef-
fective schemes of speaker modeling to deal with
the condition that involves multiple speakers.

5 Related Work

Conversational Emotion Recognition is a hot-spot
task in recent years. Unlike traditional Emotion
Recognition, CER involves conversational context.
Hazarika et al. (2018b,a); Jiao et al. (2020) utilize
memory network to model such context. To con-
sider the speaker and listener in the conversation,
Majumder et al. (2019) propose DialogueRNN,
which utilizes GRUs to update speakers’ states and
the global line of the conversation. DialogueGCN
(Ghosal et al., 2019) models two relations between
speakers: self and inter-speaker dependencies, and
utilizes graph networks(Schlichtkrull et al., 2018;
Kipf and Welling, 2017) to model the graph con-
structed by these relations. Zhong et al. (2019) pro-
pose a graph attention to extract information from
external knowledge base and utilize Transformer
(Vaswani et al., 2017) to model conversations.

Furthermore, with the spreading of pretrained
models, new works are based on these high-
performance and large-scale models. Ishiwatari
et al. (2020) propose a relation-aware position en-
coding based on DialogueGCN and utilize BERT
(Devlin et al., 2019) to encode utterances. Li et al.
(2020a) utilize BERT and propose a speaker rela-
tion prediction task to augment CER. Shen et al.
(2021) utilize XLNet (Yang et al., 2019) and model
the whole conversation in one step. By introduc-
ing commonsense knowledge to CER, Ghosal et al.
(2020) propose COMSIC which is based on Di-
alogueRNN equipped with RoBERTa (Liu et al.,
2019) to model the speakers’ internal, external, in-
tent states.

6 Conclusion

In this paper, we study conversational emotion
recognition. The SOTA method ignores the psy-
chological interactions between utterances over

several time steps and does not conform with the
nature of psychological states. We therefore pro-
pose a pSychological-Knowledge-Aware Interac-
tion Graph (SKAIG). The graph contains four re-
lations to model psychological states of speakers.
Enhanced by commonsense knowledge and the de-
ployment of the graph transformer, our method
yields SOTA or competitive performance on bench-
mark datasets.
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