
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1129–1144
August 1–6, 2021. ©2021 Association for Computational Linguistics

1129

Learning Algebraic Recombination for Compositional Generalization

Chenyao Liu1∗ Shengnan An2∗ Zeqi Lin3† Qian Liu4∗ Bei Chen3

Jian-Guang LOU3 Lijie Wen1† Nanning Zheng 2 Dongmei Zhang3

1 School of Software, Tsinghua University 2 Xi’an Jiaotong University
3 Microsoft Research Asia 4 Beihang University

{liucy19@mails, wenlj@}.tsinghua.edu.cn
{an1006634493@stu, nnzheng@mail}.xjtu.edu.cn

{Zeqi.Lin, beichen, jlou, dongmeiz}@microsoft.com
qian.liu@buaa.edu.cn

Abstract

Neural sequence models exhibit limited com-
positional generalization ability in semantic

parsing tasks. Compositional generalization

requires algebraic recombination, i.e., dynam-

ically recombining structured expressions in

a recursive manner. However, most previ-

ous studies mainly concentrate on recombin-

ing lexical units, which is an important but

not sufficient part of algebraic recombination.

In this paper, we propose LEAR, an end-to-

end neural model to learn algebraic recombi-

nation for compositional generalization. The

key insight is to model the semantic pars-

ing task as a homomorphism between a la-

tent syntactic algebra and a semantic alge-

bra, thus encouraging algebraic recombination.

Specifically, we learn two modules jointly: a

Composer for producing latent syntax, and an

Interpreter for assigning semantic operations.

Experiments on two realistic and compre-

hensive compositional generalization bench-

marks demonstrate the effectiveness of our

model. The source code is publicly available

at https://github.com/microsoft/ContextualSP.

1 Introduction

The principle of compositionality is an essential

property of language: the meaning of a complex

expression is fully determined by its structure and

the meanings of its constituents (Pelletier, 2003;

Szabó, 2004). Based on this principle, human in-

telligence exhibits compositional generalization
— the algebraic capability to understand and pro-

duce a potentially infinite number of novel expres-

sions by dynamically recombining known compo-

nents (Chomsky, 1957; Fodor and Pylyshyn, 1988;

Fodor and Lepore, 2002). For example, people who

know the meaning of “John teaches the girl” and

∗ Work done during an internship at Microsoft Research.
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† Corresponding author.

Tom teaches John’s daughter’s daughter.

John teaches the girl.

Tom’s daughter.

(a) Compositional generalization requires al-
gebraic recombination, i.e., dynamically re-
combining structured expressions in a recursive
manner.

John teaches the girl. The girl teaches John.

(b) Most previous studies mainly concentrate on recombin-
ing lexical units, which is an important but not sufficient
part of algebraic recombination.

Figure 1: Compositional generalization.

“Tom’s daughter” must know the meaning of “Tom
teaches John’s daughter’s daughter” (Figure 1a),

even though they have never seen such complex

sentences before.

In recent years, there has been accumulating

evidence that end-to-end deep learning models

lack such ability in semantic parsing (i.e., trans-

lating natural language expressions to machine in-

terpretable semantic meanings) tasks (Lake and Ba-

roni, 2018; Keysers et al., 2019; Kim and Linzen,

2020; Tsarkov et al., 2020).

Compositional generalization requires algebraic
recombination, i.e., dynamically recombining

structured expressions in a recursive manner. In

the example in Figure 1a, understanding “John’s
daughter’s daughter” is a prerequisite for under-

standing “Tom teaches John’s daughter’s daugh-
ter”, while “John’s daughter’s daughter” is also a

novel compound expression, which requires recom-
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bining “John” and “Tom’s daughter” recursively.

Most previous studies on compositional general-

ization mainly concentrate on recombining lexical

units (e.g., words and phrases) (Lake, 2019; Li

et al., 2019; Andreas, 2019; Gordon et al., 2020;

Akyürek et al., 2020; Guo et al., 2020a; Russin

et al., 2019), of which an example is shown in Fig-

ure 1b. This is a necessary part of algebraic recom-

bination, but it is not sufficient for compositional

generalization. There have been some studies on

algebraic recombination (Liu et al., 2020; Chen

et al., 2020). However, they are highly specific to

a relative simple domain SCAN (Lake and Baroni,

2018) and can hardly generalize to more complex

domains.

In this paper, our main point to achieve algebraic

recombination is to model semantic parsing as
a homomorphism between a latent syntactic al-
gebra and a semantic algebra (Montague, 1970;

Marcus, 2019). Based on this formalism, we fo-

cus on learning the high-level mapping between

latent syntactic operations and semantic operations,

rather than the direct mapping between expression

instances and semantic meanings.

Motivated by this idea, we propose LEAR

(Learning Algebraic Recombination), an end-to-

end neural architecture for compositional general-

ization. LEAR consists of two modules: a Com-
poser and an Interpreter. Composer learns to

model the latent syntactic algebra, thus it can pro-

duce the latent syntactic structure of each expres-

sion in a bottom-up manner; Interpreter learns to

assign semantic operations to syntactic operations,

thus we can transform a syntactic tree to the final

composed semantic meaning.

Experiments on two realistic and comprehensive

compositional generalization benchmarks (CFQ
(Keysers et al., 2019) and COGS (Kim and Linzen,

2020)) demonstrate the effectiveness of our model:

CFQ 67.3% → 90.9%, COGS 35.0% → 97.7%.

2 Compositionality: An Algebraic View

A semantic parsing task aims to learn a meaning-

assignment function m : L → M , where L is

the set of (simple and complex) expressions in the

language, and M is the set of available semantic

meanings for the expressions in L. Many end-to-

end deep learning models are built upon this simple

and direct formalism, in which the principle of

compositionality is not leveraged, thus exhibiting

limited compositional generalization.

To address this problem, in this section we put

forward the formal statement that “compositional-
ity requires the existence of a homomorphism be-
tween the expressions of a language and the mean-
ings of those expressions” (Montague, 1970).

Let us consider a language as a partial alge-

bra L = 〈L, (fγ)γ∈Γ〉, where Γ is the set of un-

derlying syntactic (grammar) rules, and we use

fγ : Lk → L to denote the syntactic operation

with a fixed arity k for each γ ∈ Γ. Note that fγ is

a partial function, which means that we allow fγ be

undefined for certain expressions. Therefore, L is a

partial algebra, and we call it a syntactic algebra.

In a semantic parsing task, L is latent, and we need

to model it by learning from data.

Consider now M = 〈M,G〉, where G are se-

mantic operations upon M . M is also a partial alge-

bra, and we call it a semantic algebra. In a seman-

tic parsing task, we can easily define this algebra

(by enumerating all available semantic primitives

and semantic operations), since M is a machine-

interpretable formal system.

The key to compositionality is that the meaning-

assignment function m should be a homomorphism

from L to M. That is, for each k-ary syntactic

operation fγ in L, there exists a k-ary semantic

operation gγ ∈ G such that whenever fγ(e1, ..., ek)
is defined,

m(fγ(e1, ..., ek)) = gγ(m(e1), ...,m(ek)). (1)

Based on this formal statement, the task of learn-

ing the meaning-assignment function m can be

transformed as two sub-tasks: (1) learning latent

syntax of expressions (i.e., modeling the syntactic

algebra L); (2) learning the operation assignment

function (fγ)γ∈Γ → G.

Learning latent syntax. We need to learn a syn-

tactic parser that can produce the syntactic struc-

ture of each given expression. To ensure composi-

tional generalization, there must be an underlying

grammar (i.e., Γ), and we hypothesize that Γ is a

context-free grammar.

Learning operation assignment. In the syntax

tree, for each nonterminal node with k nonterminal

children, we assign a k-ary semantic operation to

it. This operation assignment entirely depends on

the underlying syntactic operation γ of this node.

In semantic parsing tasks, we do not have respec-

tive supervision for these two sub-tasks. Therefore,

we need to jointly learning these two sub-tasks only

from the end-to-end supervision D ⊂ L×M .
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Who     executive   produced     M0:

JOIN

Entity:M0

Predicate: 
EXEC_PROD

Composer Interpreter| | ,

SELECT DISTINCT x0
WHERE { x0 EXEC_PROD M0 }

: ,
( )

Figure 2: An overview of LEAR: (1) Composer

Cθ(z|x) is a neural network based on latent Tree-

LSTM, which produces the latent syntax tree z of in-

put expression x; (2) Interpreter Iφ(g|x, z) is a neural

network that assigns a semantic operation for each non-

terminal node in z.

3 Model

We propose a novel end-to-end neural model

LEAR (Learning Algebraic Recombination) for

compositional generalization in semantic pars-

ing tasks. Figure 2 shows its overall architec-

ture. LEAR consists of two parts: (1) Composer
Cθ(z|x), which produces the latent syntax tree z
of input expression x; (2) Interpreter Iφ(g|x, z),
which assigns a semantic operation for each non-

terminal node in z. θ and φ refers to learnable

parameters in them respectively. We generate a se-

mantic meaning m(x) according to the predicted z
and g in a symbolic manner, then check whether it

is semantic equivalent to the ground truth semantic

meaning y to produce rewards for optimizing θ and

φ.

3.1 Composer

We use x = [x1, ..., xT ] to denote an input expres-

sion of length T . Composer Cθ(z|x) will produce

a latent binary tree z given x.

3.1.1 Latent Tree-LSTM

We build up the latent binary tree z in a bottom-up

manner based on Tree-LSTM encoder, called la-

tent Tree-LSTM (Choi et al., 2018; Havrylov et al.,

2019).

Given the input sequence x of length T , latent

Tree-LSTM merges two nodes into one parent node

at each merge step, constructing a binary tree after

T − 1 merge steps. The merge process is imple-

mented by selecting the adjacent node pair which

has the highest merging score.

At the t-th (1 ≤ t < T ) merge step, we have:

ît = argmax
1≤i≤T−t

Linear(Tree-LSTM(rti, r
t
i+1)) (2)

Here “Tree-LSTM” is the standard child-sum

tree-structured LSTM encoder (Tai et al., 2015).

We use vti to denote the i-th cell at layer t (the t-th
merge step is determined by the t-th layer), and use

rti to denote the representation of vti :

r1i = Linear(Emb(xi)) (3)

rti
t>1

=

⎧⎪⎨
⎪⎩
rt−1
i i < ît−1

Tree-LSTM(rt−1
i , rt−1

i+1) i = ît−1

rt−1
i+1 i > ît−1

(4)

Then we can obtain a unlabeled binary tree,

in which {v11, v12, ..., v1T } are leaf nodes, and

{v2
î1
, v3

î2
..., vT

îT−1
} are non-leaf nodes.

3.1.2 Abstraction by Nonterminal Symbols
As discussed in Section 2, our hypothesis is that the

underlying grammar Γ is context-free. Therefore,

each syntactic rule γ ∈ Γ can be expressed in the

form of:

A → B, A ∈ N , B ∈ (N ∪ Σ)+

where N is a finite set of nonterminals, and Σ is a

finite set of terminal symbols.

Abstraction is an essential property of context-

free grammar: each compound expression e will be

abstracted as a simple nonterminal symbol N (e),
then it can be combined with other expressions to

produce more complex expressions, no matter what

details e originally has. This setup may benefit the

generalizability, thus we want to incorporate it as

an inductive bias into our model.

Concretely, we assume that there are at most

N latent nonterminals in language L (i.e., N =
{N1, ...,NN}, where N is a hyper-parameter). For

each node vti in tree z, we perform a (N +1)-class

classification:

ĉvti = argmax
0≤c≤N

Linear(rti) (5)

We assign the nonterminal Nĉ
vt
i

to vti when

ĉvti > 0. The collection of such nonterminal nodes
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are denoted as V ′
z . Then we modify Equation 4:

rti
t>1

=

⎧⎪⎨
⎪⎩
rt−1
i i < ît−1

Tree-LSTM(rt−1
i , rt−1

i+1) i = ît−1

rt−1
i+1 i > ît−1

rti =

{
Linear(Emb(N (vti))) vti ∈ V ′

z

rti vti 	∈ V ′
z

(6)

Equation 6 means that: in nonterminal nodes, the

bottom-up message passing will be reduced from

rti to a nonterminal symbol N (vti), thus mimicking

the abstraction setup in context-free grammar.

3.2 Interpreter

For each nonterminal node v ∈ V ′
z , Interpreter

Iφ(g|x, z) assigns a semantic operation gv to it.

We divide nonterminal nodes into two categories:

(1) lexical nodes, which refer to those containing

no any other nonterminal node in the corresponding

sub-trees; (2) algebraic nodes, which refer to the

rest of nonterminal nodes.

Interpreting Lexical Nodes For each lexical

node v, Interpreter assigns a semantic primitive

(i.e., 0-ary semantic operation) to it. Take the CFQ

benchmark as an example: it uses SPARQL queries

to annotate semantic meanings, thus semantic prim-

itives in CFQ are entities (e.g., m.0gwm wy), predi-

cates (e.g., ns:film.director.film) and attributes (e.g.,

ns:people.person.gender m 05zppz).

We use a classifier to predict the semantic primi-

tive:

gv = argmax
g∈Glex

Linear(hv,x) (7)

where Glex is the collection of semantic primitives

in the domain, and hv,x is the contextual represen-

tation of the span corresponding to v (implemented

using Bi-LSTM). Contextually conditioned varia-
tion is an important phenomenon in language: the

meaning of lexical units varies according to the con-

texts in which they appear (Allwood, 2003). For ex-

ample, “editor” means a predicate “film.editor.film”

in expression “Is M0 an editor of M1?”, while it

means an attribute “film.editor” in expression “Is
M0 an Italian editor?”. This is the reason why we

use contextual representation in Equation 7.

Interpreting Algebraic Nodes For each alge-

braic node v, Interpreter assigns a semantic op-

eration to it. The collection of all possible semantic

operations Gopr also depends on the domain. Take

Operation
Args[t1, t2]→
Result Type

Example

∧(t1, t2)

[P, P]→P Who [direct and act] M0?

[E, E]→E Who direct [M0 and M1]?

[A, A]→A Is M0 an [Italian female]?

[A, E]→E
Is [M0 an Italian female]?

[E, A]→E

[A, P]→P
Is M0 M3’s [Italian editor]?

[P, A]→P

JOIN(t1, t2)

[E, P]→E
Is M0 an [editor of M1]?

[P, E]→E

[A, P]→E
Who [marries an Italian]?

[P, A]→E

Table 1: Semantic operations in CFQ. A/P/E represents

Attribute/Predicate/Entity.

the CFQ benchmark as an example1, this domain

has two operations (detailed in Table 1): ∧ (con-

junction) and JOIN.

We also use a classifier to predict the semantic

operation of v:

gv = argmax
g∈Gopr

Linear(rv) (8)

where rv is the latent Tree-LSTM representation of

node v (see Equation 6).

In Equation 8, we do not use any contextual in-

formation from outside v. This setup is based on

the assumption of semantic locality: each com-

pound expression should mean the same thing in

different contexts.

4 Training

Denote τ = {z, g} as the trajectory produced by

our model where z and g are actions produced from

Composer and Interpreter, respectively, and R(τ)
as the reward of trajectory τ (elaborated in Sec. 4.1).

Using policy gradient (Sutton et al., 2000) with the

likelihood ratio trick, our model can be optimized

by ascending the following gradient:

∇J (θ, φ) = Eτ∼πθ,φ
R(τ)∇ log πθ,φ (τ) , (9)

where θ and φ are learnable parameters in Com-

poser and Interpreter respectively and ∇ is the ab-

breviation of ∇θ,φ. Furthermore, the REINFORCE

algorithm (Williams, 1992) is leveraged to approxi-

mate Eq. 9 and the mean-reward baseline (Weaver

and Tao, 2001) is employed to reduce variance.

1It is not difficult to define Glex and Gopr for each domain,
as semantic meanings are always machine-interpretable. The
semantic operations of another compositional generalization
benchmark, COGS, are listed in the Appendix.
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4.1 Reward Design

The reward R (τ) combines two parts as:

R (τ) = α ·R1 (τ) + (1− α) ·R2 (τ) , (10)

Logic-based Reward R1(τ). We use m(x) and y
to denote the predicted semantic meaning and the

ground truth semantic meaning respectively. Each

semantic meaning can be converted to a conjunc-

tive normal form2. We use Sm(x) and Sy to denote

conjunctive components in m(x) and y, then define

R1(τ) based on Jaccard similarity (i.e., intersection

over union):

R1 (τ) = Jaccard-Sim(Sm(x), Sy) (11)

Primitive-Based Reward R2(τ). We use S′
m(x)

and S′
y to denote semantic primitives ocurred in

m(x) and y. Then we define R2(τ) as:

R2 (τ) = Jaccard-Sim(S′
m(x), S

′
y) (12)

4.2 Reducing Search Space

To reduce the huge search space of τ , we make two

constraints as follows.

Parameter Constraint. Consider v, a tree node

with n(n > 0) nonterminal children. Composer

will never make v a nonterminal node, if no seman-

tic operation has n parameters.

Phrase Table Constraint. Following the strategy

proposed in Guo et al. (2020b), we build a “phrase

table” consisting of lexical units (i.e., words and

phrases) paired with semantic primitives that fre-

quently co-occur with them3. Composer will never

produce a lexical node outside of this table, and

Interpreter will use this table to restrict candidates

in Equation 7.

4.3 Curriculum Learning

To help the model converge better, we use a simple

curriculum learning (Bengio et al., 2009) strategy

to train the model. Specifically, we first train the

model on samples of input length less than a cut-off

NCL, then further train it on the full train set.

2For example, the semantic meaning of “Who directed and
edited M0 ’s prequel and M1?” can be converted to a con-
junctive normal form with four components: “x0 · DIRECT ·
x1 · PREQUEL · M0”, “x0 · EDIT · x1 · PREQUEL · M0”,
“x0 · DIRECT ·M1”, and “x0 · EDIT ·M1”.

3Mainly based on statistical word alignment technique in
machine translation, detailed in the Appendix.

y
SELECT count ( * ) WHERE {

?x0 ns:film.director.film M0 .
?x0 ns:film.editor.film M0 .
?x0 ns:people.person.gender m_05zppz }

Did a male film director edit and direct M0?x
CFQ

cake(x_4) ; give.recipient (x_2, Charlotte)
AND give.theme(x_2,x_4)
AND cake.nmod.on(x_4, x_7)
AND table(x_7)

y

Charlotte was given the cake on a table.x

COGS

y

Figure 3: Examples of CFQ and COGS.

Statistics CFQ COGS
Train Size 95,743 24,155

Dev Size 11,968 3,000

Test Size 11,968 21,000

Vocab Size 96 740

Avg Input Len (Train/Test) 13.5/15.1 7.5/9.8

Avg Output Len (Train/Test) 27.7/34.0 43.6/67.6

Input Pattern Coveragea 0.022 0.783

Output Pattern Coverage 0.045 0.782

Table 2: Dataset statistics.

aInput/output pattern coverage is the percentage of test x/y
whose patterns occur in the train data. Output patterns are
determined by anonymizing semantic primitives, and input
patterns are determined by anonymizing their lexical units.

5 Experimental Setup

Benchmarks. We mainly evaluate LEAR on CFQ
(Keysers et al., 2019) and COGS (Kim and Linzen,

2020), two comprehensive and realistic bench-

marks for measuring compositional generalization.

They use different semantic formulations: CFQ

uses SPARQL queries, and COGS uses logical

queries (Figure 3 shows examples of them). We list

dataset statistics in Table 2. The input/output pat-

tern coverage indicates that: CFQ mainly measures

the algebraic recombination ability, while COGS

measures both lexical recombination (∼ 78%) and

algebraic recombination (∼ 22%).

In addition to these two compositional general-

ization benchmarks in which utterances are synthe-

sized by formal grammars, we also evaluate LEAR

on GEO (Zelle and Mooney, 1996), a widely used

semantic parsing benchmark, to see whether LEAR

can generalize to utterances written by real users.

We use the variable-free FunQL (Kate et al., 2005)

as the semantic formalism, and we follow the com-

positional train/test split (Finegan-Dollak et al.,

2018) to evaluate compositional generalization.

Baselines. For CFQ, we consider 3 groups of mod-

els as our baselines: (1) sequence-to-sequence mod-
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Models MCD-MEAN MCD1 MCD2 MCD3
LSTM+Attention (Keysers et al., 2019) 14.9±1.1 28.9±1.8 5.0±0.8 10.8±0.6

Transformer (Keysers et al., 2019) 17.9±0.9 34.9±1.1 8.2±0.3 10.6±1.1

Universal Transformer (Keysers et al., 2019) 18.9±1.4 37.4±2.2 8.1±1.6 11.3±0.3

Evolved Transformer (Furrer et al., 2020) 20.8±0.7 42.4±1.0 9.3±0.8 10.8±0.2

T5-11B (Furrer et al., 2020) 40.9±4.3 61.4±4.8 30.1±2.2 31.2±5.7

T5-11B-mod (Furrer et al., 2020) 42.1±9.1 61.6±12.4 31.3±12.8 33.3±2.3

Neural Shuffle Exchange (Furrer et al., 2020) 2.8±0.3 5.1±0.4 0.9±0.1 2.3±0.3

CGPS (Furrer et al., 2020; Li et al., 2019) 7.1±1.8 13.2±3.9 1.6±0.8 6.6±0.6

HPD (Guo et al., 2020b) 67.3±4.1 72.0±7.5 66.1±6.4 63.9±5.7

LEAR 90.9±1.2 91.7±1.0 89.2±1.9 91.7±0.6
w/o Abstraction 85.4±4.5 88.4±1.6 80.0±11 87.9±0.8

w/o Semantic locality 87.9±2.7 89.8±1.7 87.3±1.8 86.5±4.6

w/o Primitive-based reward 85.3±7.8 77.0±19 89.2±2.2 89.7±2.1

w/o Curriculum learning 71.9±15.4 59.7±23 77.2±13.5 78.8±9.6

w/o Tree-LSTM 30.4±3.2 40.1±1.9 25.6±6.1 25.4±1.8

Table 3: Accuracy on three splits (MCD1/MCD2/MCD3) of CFQ benchmark.

els based on deep encoder-decoder architecture, in-

cluding LSTM+Attention (Hochreiter and Schmid-

huber, 1997; Bahdanau et al., 2014), Transformer

(Vaswani et al., 2017), Universal Transformer (De-

hghani et al., 2018) and Evolved Transformer (So

et al., 2019); (2) deep models with large pretrained

encoder, such as T5 (Raffel et al., 2019); (3) Mod-

els that are specially designed for compositional

generalization, which include Neural Shuffle Ex-

change Network (Freivalds et al., 2019), CGPS (Li

et al., 2019), and state-of-the-art model HPD (Guo

et al., 2020b). For COGS, we quote the baseline re-

sults in the original paper (Kim and Linzen, 2020).

For GEO, we take the baseline results reported by

Herzig and Berant (2020), and also compare with

two specially designed methods: SpanBasedSP

(Herzig and Berant, 2020) and PDE (Guo et al.,

2020c).

Evaluation Metric. We use accuracy as the eval-

uation metric, i.e., the percentage test samples of

which the predicted semantic meaning m(x) is se-

mantically equivalent to the ground truth y.

Hyper-Parameters. We set N = 3/2/3 (the num-

ber of nonterminal symbols), and α = 0.5/1.0/0.9
for CFQ/COGS/GEO respectively. In CFQ, the

curriculum cut-off NCL is set to 11, as we statisti-

cally find that this is the smallest curriculum that

contains the complete vocabulary. We do not apply

curriculum learning strategy to COGS and GEO,

as LEAR can work well without curriculum learn-

ing in both benchmarks. Learnable parameters (θ
and φ) are optimized with AdaDelta (Zeiler, 2012),

and the setting of learning rate is discussed in Sec-

tion 6.1. We take the model that performs best

Model Acc
Transformer (Kim and Linzen, 2020) 35 ± 6

LSTM (Bi) (Kim and Linzen, 2020) 16 ± 8

LSTM (Uni) (Kim and Linzen, 2020) 32 ± 6

LEAR 97.7 ± 0.7
w/o Abstraction 94.5 ± 2.8

w/o Semantic locality 94.0 ± 3.6

w/o Tree-LSTM 80.7 ± 4.3

Table 4: Accuracy on COGS benchmark.

Model Acc
Seq2Seq (Herzig and Berant, 2020) 46.0

BERT2Seq (Herzig and Berant, 2020) 49.6

GRAMMAR (Herzig and Berant, 2020) 54.0

PDE (Guo et al., 2020c) 81.2

SpanBasedSP (Herzig and Berant, 2020) 82.2

LEAR 84.1

Table 5: Accuracy on GEO benchmark.

on the validation set for testing, and all results are

obtained by averaging over 5 runs with different

random seeds. See Appendix for more implemen-

tation details.

6 Results and Discussion

Table 3 shows average accuracy and 95% con-

fidence intervals on three splits of CFQ. LEAR

achieves an average accuracy of 90.9% on these

three splits, outperforming all baselines by a large

margin. We list some observations as follows.

Methods for lexical recombination cannot gen-
eralize to algebraic recombination. Many meth-

ods for compositional generalization have been
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proved effective for lexical recombination. Neural

Shuffle Exchange and CGPS are two representa-

tives of them. However, experimental results show

that they cannot generalize to CFQ, which focus

on algebraic recombination.

Knowledge of semantics is important for com-
positional generalization. Seq2seq models show

poor compositional generalization ability (∼ 20%).

Pre-training helps a lot (∼ 20% →∼ 40%), but

still not satisfying. HPD and LEAR incorporate

knowledge of semantics (i.e., semantic operations)

into the models, rather than simply model semantic

meanings as sequences. This brings large profit.

Exploring latent compositional structure in a
bottom-up manner is key to compositional gen-
eralization. HPD uses LSTM to encode the in-

put expressions, while LEAR uses latent Tree-

LSTM, which explicitly explores latent composi-

tional structure of expressions. This is the key to

the large accuracy profit (67.3% → 90.9%).

Table 4 shows the results on COGS benchmark.

It proves that LEAR can well generalize to domains

which use different semantic formalisms, by spec-

ifying domain-specific Glex (semantic primitives)

and Gopr (semantic operations). Table 5 shows the

results on GEO benchmark. It proves that LEAR

can well generalize to utterances written by real

users (i.e., non-synthetic utterances).

6.1 Ablation Study

Table 3 and 4 also report results of some ablation

models. Our observations are as follows.

Abstraction by nonterminal symbols brings
profit. We use “w/o abstraction” to denote the

ablation model in which Equation 6 is disabled.

This ablation leads to 5.5%/3.2% accuracy drop

on CFQ/COGS.

Incorporating semantic locality into the model
brings profit. We use “w/o semantic locality” to

denote the ablation model in which a Bi-LSTM

layer is added before the latent Tree-LSTM. This

ablation leads to 3.0%/3.7% accuracy drop on

CFQ/COGS.

Tree-LSTM contributes significantly to compo-
sitional generalization. In the ablation “w/o Tree-
LSTM”, we replace the Tree-LSTM encoder with

a span-based encoder, in which each span is repre-

sented by concatenating its start and end LSTM rep-

resentations (similar to Herzig and Berant (2020)).

In Table 3 and 4, we can see that span-based en-

coder severely affects the performance and even

Ratio MCD-MEAN MCD1 MCD2 MCD3
1:1:1 87.4±7.1 91.5±2.1 89.4±2.3 81.2±17

1:0.5:0.1 90.9±1.2 91.7±1.0 89.2±1.9 91.7±0.6
1:0.1:0.1 86.7±3.9 89.4±1.6 85.8±2.7 84.9±7.5

Table 6: Results of different learning rate ratios of lex-

ical Interpreter, Composer, and algebraic Interpreter.

Figure 4: Performance by input length.

much worse than the results of “w/o abstraction”

and “w/o semantic locality”. This ablation hints

that Tree-LSTM is the main inductive bias of com-

positionality in our model.

Primitive-based reward helps the model con-
verge better. The ablation “w/o primitive-based
reward” leads to 5.6% accuracy drop on CFQ, and

the model variance has become much larger. The

key insight is: primitive-based reward guides the

model to interpret polysemous lexical units more

effectively, thus helping the model converge better.

Curriculum learning helps the model converge
better. The ablation “w/o curriculum learning”

leads to 19% accuracy drop on CFQ, and the model

variance has become much larger. This indicates

the importance of curriculum learning. On COGS,

LEAR performs well without curriculum learning.

We speculate that there are two main reasons: (1)

expressions of COGS is much shorter than CFQ;

(2) the input/output pattern coverage of COGS is

much higher than CFQ.

Higher component with smaller learning rate.

Inspired by the differential update strategy used

in Liu et al. (2020)(i.e., the higher level the com-

ponent is positioned in the model, the slower the

parameters in it should be updated), we set three

different learning rates to three different compo-

nents in LEAR (in bottom-up order): lexical In-

terpreter, Composer, and algebraic Interpreter. We

fix the learning rate of lexical Interpreter to 1, and

adjust the ratio of the learning rates of Composer

and algebraic Interpreter to lexical Interpreter. Ta-

ble 6 shows the results on CFQ. The hierarchical

learning rate setup (1 : 0.5 : 0.1) achieves the best

performance.
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(a) Composer error. A correct syntax tree should compose
“parent of a cinematographer” as a constituent, while the pre-
dicted syntax tree incorrectly composes “a cinematographer
played M0”.

(b) Interpreter error. In this expression, the first “influ-
enced” should be assigned a semantic primitive “influ-
ence.influence node.influenced”, while Interpreter incorrectly
assigns “influence.influence node.influenced by” (abbreviated
as “INFLU BY” in this figure) to it.

Figure 5: Two error cases. We use solid nodes to de-

note predicted nonterminal nodes. Incorrect parts are

colored red.

6.2 Closer Analysis

We also conduct closer analysis to the results of

LEAR as follows.

6.2.1 Performance by Input Length
Intuitively, understanding longer expressions re-

quires stronger algebraic recombination ability than

shorter examples. Therefore, we expect that our

model should keep a good and stable performance

with the increasing of input length.

Figure 4 shows the performance of LEAR

and HPD (the state-of-the-art model on CFQ)

under different input lengths. Specifically, test

instances are divided into 6 groups by length:

[1, 5], [6, 10], ..., [26, 30]), and we report accuracy

on each group separately. The results indicate

that LEAR has stable high performance for dif-
ferent input lengths, with only a slow decline

as length increases. Even on the group with the

longest input length, LEAR can maintain an aver-

age 86.3% accuracy across three MCD-splits.

6.2.2 Error Analysis
To understand the source of errors, we take a closer

look at the failed test instances of LEAR on CFQ.

These failed test instances account for 9.1% of the

test dataset. We category them into two error types:

Error Type MCD1 MCD2 MCD3
CE 45.70% 32.05% 39.83%

IE 54.30% 67.95% 60.17%

Table 7: Distribution of CE (Composer Error) and IE

(Interpreter Error).

Composer error (CE), i.e., test cases where Com-

poser produces incorrect syntactic structures (only

considering nonterminal nodes). Figure 5a shows

an example. As we do not have ground-truth syn-

tactic structures, we determine whether a failed test

instance belongs to this category based on hand-

craft syntactic templates.

Interpreter error (IE), i.e., test cases where Com-

poser produces correct syntactic structures but In-

terpreter assigns one or more incorrect semantic

primitives or operations. Figure 5b shows an exam-

ple, which contains an incorrect semantic primitive

assignment.

Table 7 shows the distribution of these two error

types. On average, 39.19% of failed instances are

composer errors, and the remaining 60.81% are

interpreter errors.

6.3 Limitations

Our approach is implicitly build upon the assump-

tion of primitive alignment, that is, each primitive

in the meaning representation can align to at least

one span in the utterance. This assumption holds

in most cases of various semantic parsing tasks,

including CFQ, COGS, and GEO. However, for ro-

bustness and generalizability, we also need to con-

sider cases that do not meet this assumption. For ex-

ample, consider this utterance “Obama’s brother”,

of which the corresponding meaning representation

is “Slibing(People[Obama]) ∧Gender[Male]”.

Neither “Slibing” nor “Gender[Male]” can align

to a span in the utterance, as the composed meaning

of them is expressed by a single word (“brother”).

Therefore, LEAR is more suitable for formalisms

where primitives can better align to natural lan-

guage.

In addition, while our approach is general for

various semantic parsing tasks, the collection of se-

mantic operations needs to be redesigned for each

task. We need to ensure that these semantic opera-

tions are k-ary projections (as described in Section

2), and all the meaning representations are covered

by the operations collection. This is tractable, but

still requires some efforts from domain experts.
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7 Related Work

7.1 Compositional Generalization

Recently, exploring compositional generalization

(CG) on neural networks has attracted large atten-

tion in NLP community. For SCAN (Lake and

Baroni, 2018), the first benchmark to test CG on

seq2seq models, many solutions have been pro-

posed, which can be classified into two tracks:

data augmentation (Andreas, 2019; Akyürek et al.,

2020; Guo et al., 2020a) and specialized architec-

ture (Lake, 2019; Li et al., 2019; Gordon et al.,

2020). However, most of these works only focus

on lexical recombination. Some works on SCAN

have stepped towards algebraic recombination (Liu

et al., 2020; Chen et al., 2020), but they do not gen-

eralize well to other tasks such as CFQ (Keysers

et al., 2019) and COGS (Kim and Linzen, 2020).

Before our work, there is no satisfactory solu-

tion on CFQ and COGS. Previous works on CFQ

demonstrated that MLM pre-training (Furrer et al.,

2020) and iterative back-translation (Guo et al.,

2020d) can improve traditional seq2seq models.

HPD (Guo et al., 2020b), the state-of-the-art solu-

tion before ours, was shown to be effective on CFQ,

but still far from satisfactory. As for COGS, there

is no solution to it to the best of our knowledge.

7.2 Compositional Semantic Parsing

In contrast to neural semantic parsing models

which are mostly constructed under a fully seq2seq

paradigm, compositional semantic parsing models

predict partial meaning representations and com-

pose them to produce a full meaning representation

in a bottom-up manner (Zelle and Mooney, 1996;

Zettlemoyer and Collins, 2012; Liang et al., 2013;

Berant et al., 2013; Berant and Liang, 2015; Pa-

supat and Liang, 2015; Herzig and Berant, 2020).

Our model takes the advantage of compositional

semantic parsing, without requiring any handcraft

lexicon or syntactic rule.

7.3 Unsupervised Parsing

Unsupervised parsing (or grammar induction)

trains syntax-dependent models to produce syn-

tactic trees of natural language expressions without

direct syntactic annotation (Klein and Manning,

2002; Bod, 2006; Ponvert et al., 2011; Pate and

Johnson, 2016; Shen et al., 2018; Kim et al., 2019;

Drozdov et al., 2020). Comparing to them, our

model learns both syntax and semantics jointly.

8 Conclusion

In this paper, we introduce LEAR, a novel end-to-

end neural model for compositional generalization

in semantic parsing tasks. Our contribution is 4-

fold: (1) LEAR focuses on algebraic recombina-

tion, thus it exhibits stronger compositional gener-

alization ability than previous methods that focus

on simpler lexical recombination. (2) We model the

semantic parsing task as a homomorphism between

two partial algebras, thus encouraging algebraic

recombination. (3) We propose the model archi-

tecture of LEAR, which consists of a Composer

(to learn latent syntax) and an Interpreter (to learn

operation assignments). (4) Experiments on two

realistic and comprehensive compositional general-

ization benchmarks demonstrate the effectiveness

of our model.
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This is the Appendix for the paper: “Learning

Algebraic Recombination for Compositional Gen-

eralization”.

A Semantic Operations in COGS

The semantic primitives used in COGS benchmark

are entities (e.g., Emma and cat(x 1)), predicates

(e.g., eat) and propositions (e.g., eat.agent(x 1,
Emma)). The semantic operations in COGS are

listed in Table 8.

The operations with “−1” (e.g., ON−1)

are right-to-left operations (e.g., ON−1(cake,

table)→table.ON.cake) while the operations with-

out “-1” represent the left-to-right operations (e.g.,

ON(cake, table)→cake.ON.table). For operation

FillFrame, the entity in its arguments will be filled

into predicate/proposition as an AGENT, THEME

or RECIPIENT, which is decided by model.

B Semantic Operations in GEO and
Post-process

The semantic primitives used in GEO benchmark

are entities (e.g., var0), predicates (e.g., state())
and propositions (e.g., state(var0)). The semantic

operations in GEO are listed in Table 9.

To fit the FunQL formalism, we design two post-

processing rules for the final semantics generated

by the model. First, if the final semantic is a predi-

cate (not a proposition), it will be converted in to

a proposition by filling the entity all. Second, the

predicate most will be shifted forward two posi-

tions in the final semantics.

C Policy Gradient and Differential
Update

In this section, we will show more details about

the formulation of our RL training based on policy

gradient and how to use differential update strategy

on it.

Denoting τ = {z, g} as the trajectory of our

model where z and g are actions (or called results)

produced from Composer and Interpreter, respec-

tively, and R(τ) as the reward of a trajectory τ
(elaborated in Sec. 4.1), the training objective of

our model is to maximize the expectation of re-

wards as:

max
θ,φ

J (θ, φ) = max
θ,φ

Eτ∼πθ,φ
R(τ), (13)

where πθ,φ is the policy of the whole model θ and

φ are the parameters in Composer and Interpreter,

respectively. Applying the likelihood ratio trick, θ
and φ can be optimized by ascending the following

gradient:

∇J (θ, φ) = Eτ∼πθ,φ
R(τ)∇ log πθ,φ (τ) ,

which is same with Eq. 9.

As described in Sec. 3 that the interpreting pro-

cess can be divided into two stages: interpreting

lexical nodes and interpreting algebraic nodes, the

action g can also be split as the semantic primitives

of lexical nodes gl and the semantic operations

of algebraic nodes ga. In our implement, we uti-

lize two independent neural modules for interpret-

ing lexical nodes and interpreting algebraic nodes,

with parameters φl and φa respectively. Therefore,

∇ log πθ,φ (τ) in Eq. 9 can be expanded via the

chain rule as:

∇ log πθ,φ (τ) =∇ log πθ (z|x)+
∇ log πφl

(gl|x, z)+
∇ log πφa (ga|x, z, gl) .

(14)

With Eq. 14, we can set different learning rates:

θ ← θ + α ·E R(τ)∇ log πθ (z|x),
φl ← φl + β ·E R(τ)∇ log πφl

(gl|x, z),
φa ← φa + γ ·E R(τ)∇ log πφa (ga|x, z, gl).

(15)

Furthermore, in our experiments, the AdaDelta op-

timizer (Zeiler, 2012) is employed to optimize our

model.

D Phrase Table

The phrase table consists of lexical units (i.e.,

words and phrases) paired with semantic primi-

tives that frequently co-occur with them. It can be

obtained with statistical methods.

For CFQ, we leverage GIZA++4 (Och and Ney,

2003) toolkit to extract alignment pairs from train-

ing examples. We obtain 109 lexical units, each of

which is paired with 1.7 candidate semantic prim-

itives on average. Some examples in phrase table

are shown in Table 10

As to COGS, for each possible lexical unit, we

first filter out the semantic primitives that exactly

co-occur with it, and delete lexical units with no

semantic primitive. Among the remaining lexical

units, for those only contain one semantic primitive,

we record their co-occurring semantic primitives

4https://github.com/moses-smt/giza-pp.git
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Operation Arguments Result Type Example
ON(t1, t2)

[t1: Entity, t2: Entity] Entity

Emma ate [the cake on a table] .

IN(t1, t2) A girl was awarded [a cake in a soup] .

BESIDE(t1, t2) Amelia dusted [the girl beside a stage] .

ON−1, IN−1, BESIDE−1 NONE

REC-THE(t1, t2)

[t1: Entity, t2: Entity] Entity

Lily gave [Emma a strawberry] .

THE-REC(t1, t2) A girl offered [a rose to Isabella] .

AGE-THE, THE-AGE,

REC-AGE, AGE-REC
-

FillFrame(t1, t2)
[t1: Entity, t2: Pred/Prop]

[t1: Pred/Prop, t2: Entity]
Proposition A cat [disintegrated a girl] .

CCOMP(t1, t2)

[t1: Pred/Prop, t2: Pred/Prop] Proposition

[Emma liked that a girl saw] .

XCOMP(t1, t2) David [expected to cook] .

CCOMP−1, XCOMP−1 NONE

Table 8: Semantic operations in COGS. “Pred” and “Prop” are abbreviations of “Predicate” and “Proposition”,

respectively. “AGE”, “THE” and “REC” are abbreviations of “AGENT”, “THEME” and “RECIPIENT”, respec-

tively. “-” omits similar examples. Some operations contain “NONE” example, indicating that no example utilize

these operations in dataset.

Operation Arguments Result Type Example
UNION(t1, t2)

[t1: Entity/Prop,

t2: Entity/Prop]
Proposition

what is the population of [var0 var1]

INTER(t1, t2) how many [cities named var0 in the usa]

EXC(t1, t2)

EXC−1(t1, t2)
which [capitals are not major cities]

CONCAT(t1, t2)

CONCAT−1(t1, t2)
[t1: Pred, t2: Pred] Pred what is the [capital of var0]

FillIn(t1, t2)
[t1: Entity/Prop, t2: Pred]

[t1: Pred, t2: Entity/Prop]
Proposition how many [citizens in var0]

Table 9: Semantic operations in GEO. “Pred” and “Prop” are abbreviations of “Predicate” and “Proposition”, re-

spectively. “INTER”, “EXC” and “CONCAT” are abbreviations of “INTERSECTION”, “EXCLUDE” and “CON-

CATENATION”, respectively.

as ready semantic primitives. For lexical units with

more than one semantic primitives, we delete the

ready semantic primitives from their co-occurring

semantic primitives. Finally, we obtain 731 lexical

units and each lexical unit is paired with just one

semantic primitive.

As GEO is quite small, we obtain its phrase table

by handcraft.

E More Examples

We show more examples of generated tree-

structures and semantics in Figure 6.
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(a) An example of generated results in CFQ benchmark with the input “Did M6‘ s star, costume designer, and director influence
M0, M1, M2, and M3 and influence M4 and M5 ”.

(b) An example of generated results in COGS benchmark with the input “Joshua liked that Mason hoped that Amelia awarded
the hedgehog beside the stage in the tent to a cat”.

Figure 6: Examples of generated tree-structures and semantics in CFQ and COGS benchmarks.
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Lexical Unit Semantic Primitive(s) Type
M0 M0 Entity

executive producer
film.film.executive produced by Predicate

film.producer.films executive produced Predicate

editor

a film.editor Attribute

film.editor.film Predicate

film.film.edited by Predicate

Italian people.person.nationality m 03rjj Attribute

Table 10: Some examples in CFQ phrase table.


