
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 1003–1016
August 1–6, 2021. ©2021 Association for Computational Linguistics

1003

Handling Cross- and Out-of-Domain Samples in Thai Word Segmentation
Peerat Limkonchotiwat

School of Information Science and
Technology, VISTEC, Thailand

Peerat.l s19@vistec.ac.th

Wannaphong Phatthiyaphaibun
Faculty of Interdisciplinary Studies,

Khon Kaen University, Thailand
wannaphong@kkumail.com

Raheem Sarwar
RGCL, University of Wolverhampton,

United Kingdom
R.Sarwar4@wlv.ac.uk

Ekapol Chuangsuwanich
Department of Computer Engineering,

Chulalongkorn University, Thailand
ekapolc@cp.eng.chula.ac.th

Sarana Nutanong
School of Information Science and

Technology, VISTEC, Thailand
snutanon@vistec.ac.th

Abstract

While word segmentation is a solved prob-
lem in many languages, it is still a chal-
lenge in continuous-script or low-resource lan-
guages. Like other NLP tasks, word segmen-
tation is domain-dependent, which can be a
challenge in low-resource languages like Thai
and Urdu since there can be domains with in-
sufficient data. This investigation proposes
a new solution to adapt an existing domain-
generic model to a target domain, as well as
a data augmentation technique to combat the
low-resource problems. In addition to domain
adaptation, we also propose a framework to
handle out-of-domain inputs using an ensem-
ble of domain-specific models called Multi-
Domain Ensemble (MDE). To assess the ef-
fectiveness of the proposed solutions, we con-
ducted extensive experiments on domain adap-
tation and out-of-domain scenarios. More-
over, we also proposed a multiple task dataset
for Thai text processing, including word seg-
mentation. For domain adaptation, we com-
pared our solution to the state-of-the-art Thai
word segmentation (TWS) method and ob-
tained improvements from 93.47% to 98.48%
at the character level and 84.03% to 96.75% at
the word level. For out-of-domain scenarios,
our MDE method significantly outperformed
the state-of-the-art TWS and multi-criteria
methods. Furthermore, to demonstrate our
method’s generalizability, we also applied our
MDE framework to other languages, namely
Chinese, Japanese, and Urdu, and obtained im-
provements similar to Thai’s.

1 Introduction

Word segmentation (WS) is a crucial upstream pro-
cess for most natural language processing (NLP)

tasks such as named entity recognition (NER), ma-
chine translation (MT), and part-of-speech tagging
(POS). Nguyen et al. (2017) showed POS perfor-
mance increased from 87% to 93% when the WS
was improved. WS can also enhance the perfor-
mance of MT, such as the work done by Chang
et al. (2008) for Chinese-English MT.

While word segmentation is considered a solved
problem in many languages, the task is still a chal-
lenge in continuous-script languages. A great num-
ber of writing systems have no word boundary,
e.g., Thai, Chinese, and Japanese. Deep learning
has been effective in performing WS in these lan-
guages. However, it requires a large amount of
training data to construct a reliable model, which
can be a limitation for low-resource languages like
Thai and Urdu. Furthermore, like other NLP tasks,
word segmentation is domain-dependent (Fu et al.,
2020). To handle a variety of data domains, there
should be a substantial amount of data for each of
them, exacerbating the low-resource problem. To
make the matter worse, we may also need to handle
input from a completely unseen domain.

In this paper, we propose a framework to address
two domain dependency problems: (i) how to effec-
tively construct a WS model to handle input from
a given domain in a data-poor setting; (ii) how to
effectively handle out-of-domain input. To address
the first problem, we propose a new domain adap-
tation solution based on the concept of stacked en-
semble (SE) learning (Limkonchotiwat et al., 2020)
and data augmentation. To handle out-of-domain
input, we use an ensemble of domain-specific mod-
els to produce predictive results.

The crux of our proposed method lies in the
following technical contributions:
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• We introduce multiple deep learning mod-
els following the concept of SE to construct
domain-specific models that obtain better per-
formance than the original SE and existing
techniques in domain-adaptation problems.
We call this technique Deep Stacked Ensemble
(DSE).

• To make sure that each domain has sufficient
data to build an accurate model, we design a
data augmentation approach which consists of
two techniques to generate hard-to-segment
and semi-hard-to-segment samples to help im-
prove the performance based on Masked Lan-
guage Model (MLM).

• We use multiple domain-specific models and
a result aggregation module to form an ensem-
ble learning framework addressing the out-of-
domain problems. We call this method Multi-
Domain Ensemble (MDE).

• Furthermore, we propose a multiple task
dataset called “VISTEC-TP-TH-2021”, a so-
cial media dataset for Thai text processing,
annotated for four text processing tasks: word
segmentation, named-entity boundary, and
misspelling detection and correction.

To assess the effectiveness of our approach, we
compare our method with competitors in domain
adaptation and out-of-domain scenarios on Thai,
Chinese, Japanese, and Urdu. Experimental results
showed that DSE improved the performance of
the state-of-the-art Thai word segmentation (TWS)
from 93.47% and 84.03% to 96.67% and 91.51%
at character and word levels in domain adapta-
tion settings. With the proposed data augmenta-
tion approach, our domain-specific model has im-
proved even further at both character and word
levels. For out-of-domain scenarios, our MDE
framework outperformed the state-of-the-art TWS
and multi-criteria baseline at character and word
levels. Moreover, we applied our framework to
Chinese, Japanese, and Urdu which resulted in im-
provement showing the applicability of our method
to other languages. We make our code available at:
github.com/mrpeerat/OSKut

2 Related Work

In this section, we discuss literature related to our
investigation, namely ensemble learning, domain
adaption, and data augmentation.
Ensemble Learning. Recently, considerable re-
search attention has been dedicated to applying en-

semble learning to boost the performance obtained
from individual models (Sikdar and Gambäck,
2017; Chen et al., 2020a; Kuwabara et al., 2020)
and to introduce previously ignored features for
ensemble models such as provenance information
in slot filtering (Viswanathan et al., 2015).

Several studies have used ensemble methods
to boost the accuracy in WS. For example, Liu
and Lin (2014) proposed a probabilistic ensemble
learning framework using multiple weak word seg-
menters to form a strong segmenter. Moreover,
Min et al. (2015) proposed an ensemble learning
model to address the word segmentation and Part-
of-Speech tagging problems by combining both
discriminative and generative methods.
Domain Adaptation. Several WS studies pro-
posed techniques to adapt the data distribution from
one domain to another (Zhang et al., 2013; Ding
et al., 2020). Another popular approach is to add
new features or change network architectures of
the target model (Monroe et al., 2014; Liu et al.,
2014; Bao et al., 2017; Huang et al., 2020).

Ding et al. (2020) presented a semi-supervised
approach for performing Chinese WS on a new do-
main by using adversarial training to help learn the
difference between the source and target domain.
Recently, Limkonchotiwat et al. (2020) proposed a
filter-and-refine solution based on the stacked en-
semble (SE) to convert a base model to a target
domain. The SE consists of a domain-generic base
model and a domain-specific model that analyzes
the output of the domain-generic model and revises
the segmentation. The method achieved similar per-
formance to traditional transfer learning methods
while requiring no access to the domain-generic
model weights.
Data Augmentation and Self-Supervised learn-
ing. Word segmentation for low-resource lan-
guages is a challenging task due to the data limita-
tion. Most Thai WS models report below 90% accu-
racy in domain-adaptation settings (Kittinaradorn
et al., 2019; Chormai et al., 2020). Many re-
searchers proposed data augmentation methods for
Asian languages to increase the performance of
WS models by using existing models’ output as
input to new models such as synthetic data, entropy
parser, and character embedding (Zheng et al.,
2018; Wang et al., 2019; Fung et al., 2004).

With the advent of large language models (De-
vlin et al., 2018; Yang et al., 2019; Brown et al.,
2020), we have been witnessing an explosion in

github.com/mrpeerat/OSKut
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self-supervised learning techniques. Data aug-
mentation methods such as the Masked Language
Model (MLM) using BERT (Devlin et al., 2018)
allow us to generate new sentences that are similar
to real data by randomly selecting words in a sen-
tence to replace them with new words (Chen et al.,
2020b; Liao et al., 2020). Yavuz et al. (2020) pro-
posed MaskAugment, a controllable mechanism
and augmentation method that used a pre-trained
BERT model to replace words in a sentence. The
method is used in an unsupervised teacher-student
framework to improve domain adaptation for dia-
log act task. Furthermore, Li et al. (2020) proposed
a MLM-based augmentation method that could also
preserve the underlying labels of the sentence in
the aspect term extraction task.
Out-Of-Domain Scenarios. While domain adap-
tation presents a useful paradigm to adjust an ex-
isting model to a target domain, it is impracticable
to anticipate all different input types in advance.
Hence, the ability to handle samples from unseen
domains (i.e., out-of-domain samples) is critical to
the solution’s performance. For example, Wagner
et al. (2020) proposed utilizing treebank vectors
and a method to interpolate a prediction from exist-
ing treebank vectors to handle out-of-domain input
samples. Ng et al. (2020) proposed a solution uti-
lizing data augmentation to generate training sam-
ples to diversify the training set so that the model
can handle out-of-domain samples better.
Discussion. For domain adaptation, an ensem-
ble learning method such as SE (Limkonchoti-
wat et al., 2020) provides a flexible framework
for adapting any base model to a target domain.
We hypothesize that we can improve the accuracy
of SE by introducing a deep learning architecture
at the domain-specific part. However, this adjust-
ment would require a larger amount of data for
each domain than the original SE method which
uses a traditional Conditional Random Field (CRF)
model (Lafferty et al., 2001). To tackle this prob-
lem, data-augmentation presents an avenue to ad-
dress the data requirements. Regarding out-of-
domain scenarios, we hypothesize that an ensemble
of domain-specific models can be used to boost the
accuracy of out-of-domain situations. This is the
first WS work to address this problem without us-
ing any out-of-domain data.

3 Methodology

In this section, we present the overview of do-
main adaptation in Section 3.1. We present our

domain adaptation solution based on the concept of
stacked ensemble (SE) learning (Limkonchotiwat
et al., 2020) and an MLM-based data augmentation
method in Section 3.2. Section 3.3 presents how
multiple domain-specific models can work as an
ensemble to support out-of-domain scenarios.
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(b) Domain-specific model with stacked ensemble.

Figure 1: Comparison between transfer Learning (TL)
and SE to build domain-specific (DS) models. For
domain-specific with transfer learning, there is one
model that is first trained on domain-generic (DG) data
then domain-specific data. For SE there are two models.
The first is a domain-generic model that feeds initial
prediction results to a second domain-specific model.

3.1 Overview of Domain Adaptation

A popular method to construct a domain-specific
(DS) model is to adapt from a domain-generic (DG)
base model using transfer learning as shown in Fig-
ure 1a. Stacked ensemble learning presents an alter-
native when making changes to the base model is
impossible. Unlike transfer learning, the SE model
consists of two parts: a domain-generic model and
a domain-specific model as shown in Figure 1b.
The domain-specific model takes the output pre-
dictions from the domain-generic model to make
better predictions on the target domain. Before
feeding into the domain-specific model, there is
also a filter-and-refine stage where only uncertain
predictions are re-visited by the domain-specific
model. Only the domain-specific model is trained
on the target data, while the base model is left un-
touched.

The main advantages of SE over TL are as fol-
lows: (i) the architecture of the domain-specific
model can be selected independently of the exist-
ing domain-generic one; (ii) it is able to handle
models where we cannot adjust their weights, i.e.,
black boxes. Consequently, we adopt SE as our ap-
proach to tackling the domain adaptation problem.
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3.2 Deep Stacked Ensemble (DSE)

As stated earlier, SE allows us to introduce a new
architecture to handle domain-specific input. To
exploit this advantage, we introduce the Bidirec-
tional Long Short-Term Memory (Bi-LSTM) with
Attention mechanism to the current state-of-the-art
TWS architecture (Kittinaradorn et al., 2019). We
call our proposed domain adaptation method Deep
Stacked Ensemble (DSE).

Figure 2 shows the structure of the domain spe-
cific part of our solution. There are three main
kinds of features. A character n-gram is passed
through a CNN following Kittinaradorn et al.
(2019) to create an embedding vector (shown in
blue). A character type n-gram which indicates
whether a character is either a vowel, digit, special
character, or an English character, is turned into an
embedding vector (shown in red). Lastly, we use
probability and entropy values from the domain-
generic model, which indicates whether a character
is a start or end of a word or not in a dictionary, as
the additional features (colored as green). We then
concatenate all of the embeddings and feed them to
the Bi-LSTM layer (Hochreiter and Schmidhuber,
1997; Ma et al., 2018).

The Attention model is connected to the Bi-
LSTM output layer for improved accuracy because
the attention mechanism is effective at capturing
long-range dependencies (Duan and Zhao, 2020).
The attention layer is followed by a fully connected
network that ends with a single sigmoid output
for Thai and Chinese (boundary or not) and a soft-
max output for Japanese and Urdu (the beginning,
middle, or end of a word, or a word with a single
character).

Window n-gram
Character

Window n-gram
Character Type

Additional Features
(Prob,Entropy,Dict Check)

Concatenate

Bi-LSTM
1 Layer

Attention

Sigmoid output

Forward
Backward

CNN

Dense

embeddings

embeddings embeddings

Figure 2: The domain-specific model of DSE.

Ablation studies, results given in Table 11, show
that each component in the domain-specific model
improves the performance incrementally. Unlike
the original SE that relies only on the CRF as the
domain-specific model, our deep learning approach
to construct the domain-specific model can capture
intricate WS patterns in the domain better than the
original SE and transfer learning method.

However, unlike deep learning approaches, the
classical machine learning approach, i.e., CRF,
does not require a large amount of training data.
To handle this problem, we propose the data aug-
mentation technique at the character level. This
can increase the amount of training data and thus
improves the performance significantly.

Data Augmentation The main advantage of using
a separate model for each domain is the ability
to handle contradicting segmentation conditions
from different domains (Fu et al., 2020). How-
ever, this approach requires a substantial amount
of data in each domain as stated earlier. To miti-
gate this problem, we also propose two data aug-
mentation methods based on the Masked Language
Model (MLM) WangchanBERTa (Lowphansirikul
et al., 2021) trained on Thai Wikipedia Dump. As
shown in Figure 3, we mask words based on the
output of the domain-generic model. The output
posteriors from the model are used to compute the
character-level entropy values. Then, the values are
summed together to represent the score for each
word. We select the words with the highest scores
to mask in order to perform data augmentation.
This is done to favor long words, since long words
are harder to segment. We select the the top-k
words to mask and replace them (substitution) us-
ing MLM. This a pretrained process to ensure the
generation of hard-to-segment sentences. We also
introduce semi-hard-to-segment samples by pre-
ferring word insertion after the word (rather than
substitution). The same MLM is used to perform
next word prediction instead of masked prediction.
The ratio between hard-to-segment and semi-hard-
to-segment is 80:20. This is found via grid search
(see Table 13).

The insertion method gives the best performance
compared with other semi-hard-to-segment gener-
ation methods (see the results in Table 13). The
entropy selection method, compared with competi-
tive selection methods in Table 12, shows that our
method has the best performance for all Top-k se-
lection and average scores.
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นั�งตากลมรมิทะเล
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นั�ง|ตาก|ลม|ที�|รมิ|ทะเล

INPUT

นั�ง|ตาก|ลม|[mask]

Semi-Hard
Sample

(next word
prediction)

Figure 3: Overview of our data augmentation pipeline.

3.3 Muti-Domain Ensemble (MDE)
It is unrealistic to expect that the training and test
distributions always match. Getting new training
data for the out-of-domain scenarios can be expen-
sive and time consuming (Ng et al., 2020; Liu et al.,
2019). In such cases, transfer learning or the previ-
ously described DSE method are not sufficient.

We propose a framework, which utilizes an en-
semble of domain-specific models to handle out-
of-domain samples, called Muti-Domain Ensemble
(MDE). Figure 4 presents the structure of MDE.

INPUT OUTPUT
Result 

Aggregation 
Moduleนั�งตากลมที�ทะเล

D1,3,4: นั�ง|ตาก|ลม|ที�|ทะเล

D2: นั�ง|ตา|กลม|ที�|ทะเล

"นั�ง|ตาก|ลม|ที�|ทะเล"
(I'm having some fresh

air on the beach)

(I'm having some fresh air on the beach)

(I'm Rolling the eyes on the beach)

MODEL
DG

MODEL
DS1

MODEL
DG

MODEL
DS4

MODEL
DG

MODEL
DS3

MODEL
DG

MODEL
DS2

Figure 4: Multi-Domain Ensemble (MDE).

The framework consists of multiple word seg-
mentation models, where each model is adapted
to a specific target domain (except for the out-of-
domain data) using the method described in Sec-
tion 3.2. Results from multiple word segmentation
models are combined using a result aggregator to
form the final prediction. In this investigation, we
formulate two result aggregation strategies as fol-
lows. (i) We compute a simple average of the pos-
terior output from each model. Then, we predict
the class that has the highest probability: this is a
basic method for ensemble modeling (Avg); (ii) We
calculate the entropy from each model based on
their posterior distribution output. We then choose
the prediction of the model with the lowest entropy

and we call it Min Entropy (ME).
The results of the MDE framework and aggre-

gation module given in Tables 5 and 10 show that
the entropy method performs better than the basic
method and improves the performance significantly
over other models in out-of-domain scenarios.

4 Performance Evaluations on Thai
Word Segmentation

In this section, we report results from experimen-
tal studies on four Thai word segmentation (TWS)
benchmark datasets. The studies are organized as
follows. (i) we compare our method with competi-
tive methods on domain adaptation; (ii) we show
the effect of the data augmentation technique on
domain adaptation; (iii) we report the results on
out-of-domain setups; (iv) we show the effect of
WS in downstream tasks.

Note that experimental studies on Chinese, Urdu,
and Japanese are presented in Section 5.

4.1 Experimental Setup

Competitive Methods. We evaluate our pro-
posed solution against two state-of-the-art methods
namely DeepCut (DC) (Kittinaradorn et al., 2019)
and AttaCut (AC) (Chormai et al., 2020). These
methods are based on the Convolutional Neural
Network (CNN) and trained on a generic corpus
(BEST2009 (Boriboon et al., 2009)). For domain
adaptation experiments, we also applied the con-
cept of Transfer Learning (TL) to adapt DC and
AC to the target corpora, and we call these adapta-
tions TL-DC and TL-AC, respectively. Similarly,
for the Stacked Ensemble Filter-and-Refine (SEFR)
method (Limkonchotiwat et al., 2020), we created
two variants, SE-DC and SE-AC, using DC and AC
as the base model, respectively. For the evaluation
of our method, Deep Stack Ensemble (DSE), we
followed the same principle and created two vari-
ants DSE-DC and DSE-AC based on DC and AC,
respectively.

Evaluation Metrics. We use F1 score as the evalu-
ation metric for the TWS task at character and word
levels to avoid the overestimation of TWS (Chor-
mai et al., 2020; Limkonchotiwat et al., 2020).

Parameter Settings. In these experiments, we
used grid search on 4 parameters including Bi-
LSTM nodes, attention nodes, optimizer, and top-k
inside the domain-specific model. We started the
learning rate at 0.01 on an optimizer. For every 10
steps where the loss did not decrease, the learning
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rate was multiplied by a factor of 0.1. We set the
number of training epochs to 300 with an option of
early stopping. For the CNN layer and character
embedding settings, we followed Kittinaradorn
et al. (2019). We tuned the top-k value of the fil-
tering system in a domain-specific model to be the
same as the original SE. For the top-k value in the
out-of-domain scenarios, we used the same k for
all domain-specific models in the domain adapta-
tion settings. Lastly, we tuned all of the parameters
by using 10% of training data of the target domain.
The hyper-parameters and their values are given in
Table 1.

Hyper-parameters Values for grid search
Optimizer [Adam,RMSprop]

Learning Rate 0.01

Bi-LSTM nodes [128, 160, 192, 224, 256]

Attention nodes [32, 64, 96, 128, 160]

Top-k [1-100]

Table 1: Hyper-parameters list.

4.2 Datasets

Benchmark Datasets. Our benchmark corpora
can be seen in Table 2. They vary in domain and
size from very small (Wisesight (Suriyawongkul
et al., 2019) social media domain), moderate
(TNHC (Sawatphol, 2019) classical literature), and
large (LST20 (Boonkwan et al., 2020) generic).

Lang Corpora # Sentences # Words
TH Wisesight 1K [0.16K] 22K [3.9K]

TH TNHC 13K [7K] 374K [239K]

TH LST20 63.3K [5.2K] 2.7M [207K]

TH VISTEC 39.8K [9.9K] 2.7M [690K]

Table 2: TWS corpora (# Training [# Testing]).

New Dataset. Due to social media data being
underrepresented and difficult (Medina Serrano
et al., 2020; Benton et al., 2017), it is challenging
to improve the performance of models with only
997 training sentences. Most TWS models (Kit-
tinaradorn et al., 2019; Chormai et al., 2020) per-
formed under 82% in out-of-domain social media
scenarios (Wisesight). To address this problem, we
introduce a new dataset called “VISTEC-TP-TH-
20211” (VISTEC), which consists of 49,997 text
samples from Twitter (2017-2019). VISTEC cor-
pus contains 49,997 sentences with 3.39M words
where the collection was manually annotated by
linguists on four tasks, namely word segmentation,

1https://github.com/mrpeerat/OSKut/
tree/main/VISTEC-TP-TH-2021

misspelling detection and correction, and named
entity recognition. In the data collection process,
we focused on the longest sentences to create a
more challenging dataset due to the fact that long
sentences made the model’s performance decrease
significantly compared with short sentences in the
same domain (Section 4.3). The Out-of-Vocabulary
rate on the test set is 13.65%.

We followed Boriboon et al. (2009) for the word
and named entity tasks annotation guideline. We
also included new guidelines about word editing
criteria for misspelt words such as words used on
the internet (Netspeak), transliterated loanwords,
abbreviations, and shortened words, by using the
Royal Institute Thai dictionary. We compared our
dataset to the biggest Thai social media dictio-
nary (Horsuwan et al., 2020) and found 79K words
that did not appear in the dictionary.

4.3 Domain Adaptation

Without Data Augmentation. We evaluate the
performance of our domain-specific model against
competitive methods in four TWS benchmark cor-
pora, WS160, TNHC, LST20, and VISTEC. The
experimental results are given in Table 3. The com-
petitive methods are defined in Section 4.1.

The DSE-DC (DeepCut) outperformed the
strongest base model, DC, by 3.2% and 7.2% on
WS160, 6.23% and 13.74% on TNHC, 4.41% and
10.18% on LST20, and 4.59% and 11.13% on VIS-
TEC at character and word levels, respectively. Our
domain-specific model also outperformed the orig-
inal SE by 2.16% and 6.46% on SE-DC and 1.87%
and 4.88% on SE-AC (AttaCut) at character and
word levels on all setups. More importantly, our
domain-specific model outperformed TL (transfer
learning) methods showing the strength of our DSE
model.

As expected, the newly constructed TWS so-
cial media dataset (VISTEC) shows that even TL-
DC performed below 91% at word level, a large
drop from the 96% achieved in the generic domain
LST20 corpus. Also, the VISTEC dataset creates a
new challenge for the social media domain. Com-
paring the WS160 and VISTEC datasets, the AC’s
performance decreased from 93.5% to 91.47% and
84.04% to 79.30% at the word level and the char-
acter level, respectively.

With Data Augmentation. In this experiment, we
show the effect of the data augmentation in do-
main adaptation settings for different amounts of

https://github.com/mrpeerat/OSKut/tree/main/VISTEC-TP-TH-2021
https://github.com/mrpeerat/OSKut/tree/main/VISTEC-TP-TH-2021
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Method
WS160 TNHC LST20 VISTEC

Char Word Char Word Char Word Char Word
DC 93.47 84.03 89.48 75.40 94.60 87.15 92.77 81.78

AC 93.50 84.04 88.82 73.71 95.24 87.21 91.47 79.31

TL-DC 96.30 90.60 95.43 88.60 98.63 96.30 96.78 90.99

TL-AC 94.10 85.00 90.57 77.54 98.04 94.77 95.47 89.27

SE-DC 95.20 86.90 95.20 84.10 94.96 87.72 94.76 86.33

SE-AC 94.50 85.60 93.70 83.90 96.30 89.87 93.86 84.43

DSE-DC 96.67 91.51 95.71 89.14 99.01 97.33 97.36 92.91
DSE-AC 94.57 86.24 95.51 88.52 98.46 95.79 97.31 92.78

Table 3: Performance comparison on TWS in domain
adaptation settings. TL, SE, and DSE models used tar-
get domain data besides BEST2009. DC = DeepCut,
AC = AttaCut, TL = transfer learning, SE= stacked en-
semble, and DSE = deep stacked ensemble.

adaptation data. We report the findings of the data
augmentation process on 2 corpora, i.e., Wisesight
(social media domain) which is the smallest corpus
and LST20 which is the largest generic domain cor-
pus LST20 (see Table 2). We fixed the top-k value
in the data augmentation step at 60% and 10% of
the segmentation predictions of the Wisesight and
LST20 corpora, respectively. This value is found
via grid search (see Table 12). We then use these
augmented data with TL, SE, and DSE.

As shown in Table 4, the data augmentation pro-
cess can improve the performance in the small cor-
pus, i.e., Wisesight (WS160). DSE-DC (DeepCut)
outperformed the base model by 5.01% and 12.72%
at character and word levels. Also, DSE-DC out-
performed TL-DC by 1.39% and 3.36% at the char-
acter and word levels respectively.

Method WS160 (F1) LST20 (F1)
Char Word Char Word

DC 93.47 84.03 94.60 87.15
AC 93.50 84.04 95.24 87.21

TL-DC 97.69 93.96 98.11 94.00
TL-AC 97.59 94.57 97.45 93.25
SE-DC 95.08 86.37 96.47 90.40
SE-AC 94.66 86.36 96.28 89.77

DSE-DC 98.48 96.75 98.67 97.03
DSE-AC 98.60 96.99 98.61 96.18

Table 4: Performance on augmented WS160 and
LST20.

However, since LST20 is sufficiently large, the
augmentation did not produce performance im-
provement with respect to the model constructed
using the original data only.

4.4 The Effect of Data Augmentation in
Insufficient Data Scenarios

In this experiment, we evaluated the transfer learn-
ing (TL) and our method (DSE) trained on a vary-

ing numbers of sentences ranging from 100 to 1000
on the large datasets TNHC, LST20, and VISTEC
to show the effectiveness of data augmentation in
the insufficient data scenarios. As can be seen from
Figure 5, the data augmentation improved the per-
formance by 0.77% on average for TNHC, 1.55%
for LST20, and 0.19% for VISTEC using DSE on
the proposed data augmentation technique. Also,
the transfer learning F1 performance is improved
by 0.14% on average for TNHC and 0.57% for VIS-
TEC. However, the performance of transfer learn-
ing on the LST20 data augmentation technique did
not improve on this method as the baseline model
(DeepCut) was trained on the same domain as the
LST20 corpus. The performance of transfer learn-
ing in this setting is similar to the LST20 transfer
learning model in Table 3.

The results of our method in insufficient data sce-
narios show that we improved the performance us-
ing the proposed data augmentation method when
the original data is insufficient. Also, the best num-
ber of sentences for the augmentation technique in
transfer learning is between 100 to 500 sentences
and for our method is 500 to 1,000 sentences.

4.5 Experiments on Out-of-Domain
Scenarios

In this experiment, we evaluated our Multi-Domain
Ensemble (MDE) framework against two meth-
ods namely, DC trained on BEST2009 and Multi-
Criteria (MC). MC is a multi-task model which
learns multiple segmentation criteria from differ-
ent domains jointly use shared layers (Chen et al.,
2017). For MC and MDE, the target domains were
left out from the training and the models are trained
on the remaining domain.

As shown in Table 5, the performance improve-
ments on Wisesight and TNHC were statistically
significant (P<0.001 using McNemar’s test) com-
pared with MDE-ME and DC. Moreover, in com-
parison to DC, the performance improvement pro-
vided by MDE-Avg was also statistically signifi-
cant on TNHC. As a result of MDE framework,
we improved the performance from the base model
(DC) at character and word level by 1.17% and
3.53% on WS160, 2.97% and 6.77% on TNHC,
0.26% and 0.42% on LST20, and 0.68% and 1.17%
on VISTEC. Moreover, our MDE framework also
outperformed the MC model in this experiment
with significant results. In addition, the ME (Min
Entropy) can improve the performance better than
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Figure 5: The effectiveness of Data Augmentation with limitation of training data with DSE and TL at Chracter-
level F1.

the Avg except on TNHC.

Method
WS160 TNHC LST20 VISTEC

Char Word Char Word Char Word Char Word
DC 93.47 84.03 89.48 75.40 94.60 87.15 92.77 81.78

MC-Avg 88.59 72.30 84.96 72.36 87.55 66.52 89.67 70.38

MC-ME 91.59 84.80 85.13 72.63 91.10 80.70 90.81 77.13

MDE-Avg 93.85 84.64 92.45 82.17 94.81 87.54 93.17 82.71

MDE-ME 94.64 87.56 90.29 76.98 94.86 87.57 93.45 83.53

Table 5: Out-of-domain experimental results when the
base model of MDE is DC (DeepCut), ME = Min En-
tropy.

As mentioned earlier, word segmentation is a
domain-dependent task and we cannot expect the
input to always be in domain. A model that can
robustly handle the out-of-domain scenarios is de-
sirable. Even with the improvement gained by our
proposed solution, the gap between out-of-domain
and domain adaptation is still large, showing po-
tential for further investigation. In the next experi-
ment, we show the effect of the data augmentation
on downstream tasks.

4.6 The Effect of Word Segmentation and
Data Augmentation on Downstream
Tasks

Previously, we showed the proposed data augmen-
tation improved the performance of TWS in the
domain adaptation settings. In this experiment, we
applied TWS to downstream tasks such as named
entity recognition (NER), text classification, and
sentiment analysis compared with the TWS base
model (DC and AC), TL, DSE, and DSE with
augmented data. For the text classification experi-
ments, we use Wongnai corpus and Wisesight cor-
pus for sentiment analysis. The exact model setting
and evaluation metric follow Thai classification
benchmark 2. For the NER experiment, we used
NCRF++ (Yang and Zhang, 2018) trained with
data from Nutcha (2016)’s work. We trained our

2https://github.com/PyThaiNLP/
classification-benchmarks

DSE and competitive methods (except the baseline
model) on the Wisesight corpus to show the perfor-
mance of the proposed augmentation technique.

The results are given in Table 6. When the down-
stream tasks are not dependent on WS performance,
the results one similar i.e., text and sentiment clas-
sification tasks. On the other hand, when the down-
stream task is dependent on WS performance, i.e.,
NER, we can significantly improve the downstream
task. For example, we improved the performance of
DSE-DC from 93.47% to 96.67% at the character
level, and when combined with data augmentation,
increased the accuracy to 98.48%. As a result, the
F1 score in the NER task increased from 63.46%
to 72.27%.

Method TC SA NER
DC 57.10 71.55 63.46
AC 57.20 71.66 72.98

TL-DC 57.26 72.38 61.70
TL-AC 56.72 71.61 64.28

DSE-DC 57.04 72.63 71.47
+ Augment 58.01 72.27 72.27
DSE-AC 57.01 72.35 66.60

+ Augment 56.99 72.41 73.47

Table 6: The effect of TWS data augmentation on
downstream tasks. All models were trained on Wis-
esight.

5 Chinese, Urdu, and Japanese Word
Segmentation

In this section, we demonstrate the generalizabil-
ity of our method on Chinese word segmenta-
tion (CWS), Urdu word segmentation (UWS), and
Japanese word segmentation (JWS). For Chinese
and Urdu, we performed in-domain experiments
showing the effectiveness of DSE over SE and other
competitive baselines. For Japanese and Chinese,
we show the effectiveness of DSE and MDE over
baselines in domain adaptation and out-of-domain
settings. The corpora used in these experiments
are shown in Table 7. The exact setup and evalua-
tion metrics follow those of Limkonchotiwat et al.
(2020).

https://github.com/PyThaiNLP/classification-benchmarks
https://github.com/PyThaiNLP/classification-benchmarks
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Lang Corpora # Sentences # Words
C AS (Emerson, 2005) 636K [13K] 4.8M [110K]
C CITYU (CI) 46K [1.1K] 1.2M [28K]
C MSR (MS) 56K [3.5K] 1.4M [91K]
C PKU (PK) 7.7K [1.1K ] 371K [48K]
J GSD (GS) (Asahara et al.,

2018)
7K [0.5K] 159K [12K]

J Modern (MO) 0.6K [0.16K] 11K [2.6K]
J PUD (PU) 0.7K [0.19K] 19K [5K]
U UCRF (UC) (Bin Zia

et al., 2018)
3.5K [825] 90K [21K]

Table 7: WS corpora (# Training [# testing]) for Chi-
nese (C), Japanese (J), and Urdu (U).

In-Domain Experiments on Chinese and Urdu.
For Chinese, we used PyWordSeg (Chuang, 2019)
trained on each of the four Chinese corpora as our
baseline models (BL). We then trained SE and DSE
models on top of each baseline model for each
domain. For Urdu, we used the model and dataset
provided by Bin Zia et al. (2018). The results are
summarized in Table 8.

Method Chinese Urdu
AS CI MS PK UC

BL 97.09 94.30 87.29 85.76 93.73
SE 97.51 96.13 93.82 93.55 93.90

DSE 97.85 96.67 96.89 95.85 95.14

Table 8: F1-scores on in-domain CWS and UWS tasks
for each corpus. BL refers to the baseline chosen for
each language.

Both stacked ensemble methods improve over
the baseline models in all settings showing the
potential of stacked ensemble in improving WS
performance. Moreover, the proposed DSE outper-
forms the original SE (Limkonchotiwat et al., 2020)
significantly for MSR, PKU, and UCRF (P<0.001).
The largest performance improvement is over 10%
on the PKU corpus.
Domain Adaptation on Japanese. As in the TWS
experiments, DSE can also be used for domain
adaptation by training the domain-specific por-
tion on the target domain. For this JWS task, we
used Nagisa (Ikeda, 2018) trained on Balanced
Corpus of Contemporary Written Japanese (BC-
CWJ) (Maekawa et al.) corpora as the base model.
The domain-specific part of the SE was trained on
the target corpus to create an adapted model. Note
that the Nagisa model released does not lend itself
for transfer learning because the authors did not
provide the model weights. From Table 9 SE and
DSE improves significantly over the baseline show-
ing the effectiveness of SE in situations when one
cannot perform typical transfer learning.
Out-of-Domain Experiments on Chinese and

Method Japanese
GS MO PU

BL 87.10 78.80 87.10
SE 90.11 90.27 91.76

DSE 92.36 90.65 91.89

Table 9: F1-scores on domain adaptation JWS tasks for
each corpus.

Japanese. Multiple models can form an MDE to
provide robustness in out-of-domain scenarios. For
Chinese, we used PyWordSeg trained on the AS
corpus as the base model. The MDE included two
domains (non-target) and was tested on the left-out
target domain.

Method Chinese Japanese
CI MS PK GS MO PU

BL 92.51 83.92 82.21 87.10 78.80 87.10
MDE-Avg 88.90 89.15 89.77 87.11 79.36 87.42
MDE-ME 93.98 93.01 93.56 87.12 79.39 87.44

Table 10: F1-scores on out-of-domain CWS and JWS
experiments.

Table 10 summarizes the results of the out-of-
domain experiments. The MDE provides a minimal
improvement over the baseline on JWS. We hypoth-
esize that this is because two out of the three cor-
pora are too small to train a reliable model. How-
ever, on Chinese the MDE provides large gains
over the baseline with the min entropy method per-
forming better than the simple averaging method.

6 Concluding Remarks

This investigation presents a set of solutions to ad-
dress two domain dependency problems: handling
cross-domain and out-of-domain samples. Our key
findings are as follows. First, we applied deep
learning to the original stacked ensemble method
and obtained a significant improvement. Second,
we show that data augmentation is an effective
method to combat the low-resource limitation in
domain adaptation. Third, we can use an ensemble
of domain-specific models to obtain a performance
improvement over each domain-specific model act-
ing alone. Finally, in addition to Thai, we can apply
the same principle to Chinese, Japanese, and Urdu
and obtain similar improvements. As future work,
we plan to experiment with novel techniques, i.e.,
Transformer and contrastive learning.
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A Appendices

A.1 Ablation Studies

In this experiment, we show the effect of Bi-LSTM
with attention mechanism on the performance of
the TWS domain adaption problem with the help
of an ablation study. This study was performed on
the Wisesight corpus (test set) and used DC (Deep-
Cut) as the base model. As can been seen from
Table 11, each component significantly improved
the performance from the base model.

System F1 Char F1 Word
Baseline 93.47 84.03

+ Additional
Feature

94.27 85.39

+ Bi-LSTM 96.31 90.35
+ Attention 96.67 91.51

Table 11: TWS domain adaptation ablation studies.

A.2 How to Select a Word to Mask? Entropy
vs Random vs Maximum Length
Selections.

The Section 3.2 presented the way we select a word
to augment and compared it against the traditional
method i.e., random selection. In this study, we
show the validation score of random, entropy, and
maximum length selections in our data augmenta-
tion technique on the Wisesight corpus with DC
base model by varying the k value from top-10%
to 100% on the substitution method and fixed top-
20% value for the insertion method.

The validation score results are given in Table 12,
the best range top-k value for the data augmenta-
tion is 50% to 60%. The performance of entropy
selection is better than competitive methods with
reasonable results. Due to the fact that long words
are harder to segment than short ones, the entropy
selection method favors long words with a high
uncertainty. Maximum length selection, gives a
similar score with entropy selection due to the fact
that high uncertainty score mostly comes from long
words. Also, the best F1 score is obtained using top
60% not 100% as words in top-60% might have the
most incorrect answers and bias from frequency
word.

A.3 Ablation Studies For Different
Semi-Hard-Sample Procedures

Section 3.2 mentioned a competitive method to
produce semi-hard-to-segment samples. We use

Top-k Entropy
Select

ES RS MLS
char word char word char word

10 99.74 99.29 99.50 98.67 99.71 99.13

20 99.82 99.50 99.66 99.11 99.81 99.49

30 99.80 99.45 99.82 99.57 99.79 99.54

40 99.77 99.42 99.81 99.59 99.81 99.55

50 99.90 99.75 99.79 99.46 99.84 99.64

60 99.90 99.77 99.84 99.56 99.87 99.70

70 99.79 99.44 99.87 99.67 99.79 99.44

80 99.76 99.41 99.87 99.70 99.76 99.41

90 99.80 99.45 99.80 99.55 99.76 99.46

100 99.86 99.66 99.85 99.70 99.86 99.66

AVG 99.81 99.51 99.78 99.46 99.80 99.50

Table 12: Performance comparison (F1) on entropy se-
lection (ES) vs random selection (RS) VS maximum
length selection (MLS) on validation scores.

the semi-hard-to-segment method with substitution
by fixing the k value at top-60% for substitution
method and we vary k in the range of 10% to 100%
on the semi-hard-to-segment methods to show the
performance of each method. We show the valida-
tion score on Wisesight (training data) with char-
acter and word levels, respectively. The results are
presented in Table 13. As can be seen, the inser-
tion method reports the best performance on every
top-k entropy selection. The deletion method is
inappropriate due to the fact that we might delete
some information in the training data.

Top-k Entropy
Select

Insertion Deletion
char word char word

10 99.79 99.54 99.80 99.61

20 99.90 99.77 99.77 99.40

30 99.90 99.65 99.75 99.32

40 99.81 99.67 99.79 99.39

50 99.85 99.69 99.64 98.96

60 99.86 99.62 99.54 98.71

70 99.88 99.66 98.93 97.00

80 99.84 99.67 98.97 97.15

90 99.90 99.66 97.84 94.11

100 99.88 99.62 93.84 84.31

AVG 99.86 99.66 98.79 96.80

Table 13: Performance comparison on insertion VS
deletion to produce semi-hard-to-segment samples
with WS160 (F1 validation score).

A.4 Error Analysis
We performed an error analysis on Wisesight
(WS160) corpora for DC, SE-DC, and DSE-DC
to investigate the improvement from the baselines
as well as the benefits of our method in domain
adaptation setups. We used the same setting as
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mentioned in Section 4.3. The samples presented
here were randomly selected from the Wisesight
validation set.

As shown in Figure 6, DSE-DC did better espe-
cially on compound words. However, all models
still cannot properly handle the special character
(+), since the character is rare in the WS160 corpus.

Actual: ไม|่รุ|้นะ|คบั|แพ|้นํ�าหอม|หรอ|แบบ|นี�
DeepCut: ไม|่รุน้ะ|คบั|แพ|้นํ�า|หอม|หรอ|แบบ|นี�

SE-DeepCut: ไม|่รุน้ะ|คบั|แพ|้นํ�า|หอม|หรอ|แบบ|นี�
DSE-DeepCut: ไม|่รุ|้นะ|คบั|แพ|้นํ�าหอม|หรอ|แบบ|นี�

Actual: แต|่เทยีน่า|มนั|ขาย|ไม|่ด|ี |นสิสนั|คง|เนน้|ทํา|อโีค|คา|เต็ม|ตวั|555+
DeepCut: แต|่เทยี|น่า|มนั|ขาย|ไม|่ด|ี |นสิสนั|คง|เนน้|ทํา|อโีคคา|เต็มตวั|555|+

SE-DeepCut: แต|่เทยี|น่า|มนั|ขาย|ไม|่ด|ี |นสิสนั|คง|เนน้|ทํา|อโีคคา|เต็มตวั|555|+
DSE-DeepCut: แต|่เทยีน่า|มนั|ขาย|ไม|่ด|ี |นสิสนั|คง|เนน้|ทํา|อโีค|คา|เต็ม|ตวั|555|+

Actual: อยาก|กงิ|บาบกีอ้น|บฟุ|อกี|อะ่| |คดิถงึ|ที�|ปี|ที�|แลว้|ไป|กนิ|กะ|มงึ|งะ่
DeepCut: อยาก|กงิบาบกีอ้น|บฟุ|อกี|อะ่| |คดิ|ถงึ|ที�|ปี|ที�|แลว้|ไป|กนิกะ|มงึงะ่

SE-DeepCut: อยาก|กงิบาบกีอ้น|บฟุ|อกี|อะ่| |คดิ|ถงึ|ที�|ปี|ที�|แลว้|ไป|กนิ|กะ|มงึงะ่
DSE-DeepCut: อยาก|กงิ|บาบกีอ้น|บฟุ|อกี|อะ่| |คดิถงึ|ที�|ปี|ที�|แลว้|ไป|กนิ|กะ|มงึ|งะ่

Figure 6: The example of segmentation results in
WS160 validation dataset.


