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Abstract

Recent studies report that many machine read-
ing comprehension (MRC) models can per-
form closely to or even better than humans on
benchmark datasets. However, existing works
indicate that many MRC models may learn
shortcuts to outwit these benchmarks, but the
performance is unsatisfactory in real-world ap-
plications. In this work, we attempt to ex-
plore, instead of the expected comprehension
skills, why these models learn the shortcuts.
Based on the observation that a large portion
of questions in current datasets have shortcut
solutions, we argue that larger proportion of
shortcut questions in training data make mod-
els rely on shortcut tricks excessively. To in-
vestigate this hypothesis, we carefully design
two synthetic datasets with annotations that
indicate whether a question can be answered
using shortcut solutions. We further propose
two new methods to quantitatively analyze
the learning difficulty regarding shortcut and
challenging questions, and revealing the inher-
ent learning mechanism behind the different
performance between the two kinds of ques-
tions. A thorough empirical analysis shows
that MRC models tend to learn shortcut ques-
tions earlier than challenging questions, and
the high proportions of shortcut questions in
training sets hinder models from exploring the
sophisticated reasoning skills in the later stage
of training.

1 Introduction

The task of machine reading comprehension
(MRC) aims at evaluating whether a model can un-
derstand natural language texts by answering a se-
ries of questions. Recently, MRC research has seen
considerable progress in terms of model perfor-
mance, and many models are reported to approach
or even outperform human-level performance on
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Figure 1: An illustration of shortcuts in Machine Read-
ing Comprehension. P is an excerpt of the original pas-
sage.

different benchmarks. These benchmarks are de-
signed to address challenging features, such as evi-
dence checking in multi-document inference (Yang
et al., 2018), co-reference resolution (Dasigi et al.,
2019), dialog understanding (Reddy et al., 2019),
symbolic reasoning (Dua et al., 2019), and so on.

However, recent analysis indicates that many
MRC models unintentionally learn shortcuts to
trick on specific benchmarks, while having infe-
rior performance in real comprehension challenges
(Sugawara et al., 2018). For example, when answer-
ing Q.1 in Figure 1, we expect an MRC model to
understand the semantic relation between come out
and begun, and output the answer, September 1876,
by bridging the co-reference among Scholastic jour-
nal, Scholastic magazine and one-page journal. In
fact, a model can easily find the answer without
following the mentioned reasoning process, since
it can just recognize September 1876 as the only
time expression in the passage to answer a when
question. We consider such kind of tricks that use
partial evidence to produce, perhaps unreliable,
answers as shortcuts to the expected comprehen-
sion challenges, e.g., co-reference resolution in this

989

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 989-1002
August 1-6, 2021. ©2021 Association for Computational Linguistics



example. The questions with shortcut solutions
are referred to as shortcut questions. For clarity,
a model is considered to have learned shortcuts
when it relies on those tricks to obtain correct an-
swers for most shortcut questions while perform-
ing worse on questions where challenging skills
are necessary.

Previous works have found that, relying on short-
cut tricks, models may not need to pay attention to
the critical components of questions and documents
(Mudrakarta et al., 2018) in order to get the correct
answers. Thus, many current MRC models can
be either vulnerable to disturbance (Jia and Liang,
2017), or lack of flexibility to question/passage
changes (Sugawara et al., 2020). These efforts dis-
close the impact of shortcut phenomenon on MRC
studies. However, concerns have been raised on
why MRC models learn these shortcuts while ig-
noring the designed comprehension challenges.

To properly investigate this problem, our first
obstacle is that there are no existing MRC datasets
that are labeled whether a question has shortcut
solutions. This deficiency makes it hard to for-
mally analysis how the performance of a model
is affected by the shortcuts questions, and almost
impossible to examine whether the model correctly
answers a question via shortcuts. Secondly, pre-
vious methods disclose the shortcut phenomenon
by analyzing the model outputs through a series of
carefully designed experiments, but fail to explain
how the MRC models learn the shortcuts tricks.
We need new methods to help us quantitatively in-
vestigate the learning mechanisms that make the
difference when MRC models learn to answer the
shortcuts questions and questions that require chal-
lenging reasoning skills.

In this work, we carefully design two synthetic
MRC datasets to support our controlled experimen-
tal analysis. Specifically, in these datasets, each
(passage, question) instance has a shortcut version
paired with a challenging one where complex com-
prehension skills are required to answer the ques-
tion. Our construction method ensures that the two
versions of questions are as close as possible, in
terms of style, size, and topics, which enable us to
conduct controlled experiments regarding the nec-
essary skills to obtain answers. We design a series
of experiments to quantitatively explain how short-
cut questions affect MRC model performance and
how the models learn these tricks and challenging
skills during the training process. We also propose

two evaluation methods to quantify the learning
difficulty of specific question sets. We find that
shortcut questions are usually easier to learn, and
the dominant gradient-based optimizers drive MRC
models to learn the shortcut questions earlier in the
learning process. The priority of fitting shortcut
questions hinders models from exploring sophis-
ticated reasoning skills in later stage of training.
Our code and datasets can be found in https://
github.com/luciusssss/why-learn-shortcut

To summarize, our main contributions are the
following: 1) We design two synthetic datasets
to study two commonly seen shortcuts in MRC
benchmarks, question word matching and simple
matching, against a challenging reasoning pattern
paraphrasing. 2) We propose two simple methods
as a probe to help investigate the inherent learning
mechanism behind the different performance on
shortcut questions and challenging ones. 3) We
conduct thorough experiments to quantitatively ex-
plain the behaviors of MRC models under different
settings, and show that the proportions of shortcut
questions greatly affect model performance, which
may hinder MRC models from learning sophisti-
cated reasoning skills.

2 Synthetic Dataset Construction

To study the impact of shortcut questions in model
training, we require the datasets to be annotated
with whether each question has shortcut solutions,
or can only be answered via complex reasoning.
However, none of existing MRC datasets have such
annotations. We thus design two synthetic datasets
where it is known whether shortcut solutions exist
for a question.

More importantly, we need to conduct controlled
experiments and ensure, for each question, the ex-
istence of shortcuts solutions is the only indepen-
dent variable. The extraneous variables, such as
sizes of datasets, topics, answer types, and even the
vocabulary, should be controlled relatively steady.
Thus, in our designed datasets, each entry has a
shortcut version instance and a challenging version.
The question of the shortcut version can be cor-
rectly solved by a certain shortcut trick, while an
expected comprehension skill is required to deal
with the challenging version. Note that we expect
the two versions of questions are as close as possi-
ble so that we can switch between the two versions
freely while maintaining other factors relatively
steady.
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Figure 2: An illustration of how the instances in the synthetic datasets are constructed from original SQuAD data.
Each instance has a shortcut version paired with a challenging version where comprehension skills are necessary.

In this work, we focus on paraphrasing (Para)
as the complex reasoning challenge, since it widely
exists in many recent MRC datasets (Trischler et al.,
2017; Reddy et al., 2019; Clark et al., 2019). The
paraphrasing challenge requires MRC models to
identify the same meaning represented in different
words. Regarding the shortcut tricks, we study two
typical kinds: question word matching (QWM) and
simple matching (SpM) (Sugawara et al., 2018).
For QWM, MRC models can simply obtain an an-
swer phrase by recognizing the expected entity type
confined by the wh-question words of question Q).
For SpM, a model can find the answers by identi-
fying the word overlap between answer sentences
and the questions.

OWM-Para Dataset: As elaborated in Algo-
rithm 1, given an original instance (@, P) from
SQuAD (Rajpurkar et al., 2016), we paraphrase
the question @ in (), to embed the paraphrasing
challenge, and derive the corresponding shortcut
version by dropping the sentences containing other
entities with the matched type according to the
question words from the given passage.

An example is shown in the left of Figure 2. In
the challenging version of Q.2, both Beyonce and
Lisa are person names which match the question
word who. Thus, one should at least recognize
the paraphrasing relationship between named the
most influential music girl and rated as the most
powerful female musician to distinguish between
the two names to infer the correct answer. For the

Algorithm 1 Construction of QWM-Para

Input: SQuAD
Output: QWM-Para
1: QWM-Para + ()
2: for each instance (Q, P) in SQuAD do
if Q) does not start with who, when, where then
Discard this instance.
end if
if the answer sentence contains other entities matching
the question word then
7 Discard this instance.
8: end if
9: Use back translation to paraphrase (), obtain Q)
0 if the non-stop-word overlap rate between (), and the
answer sentence > 25% then

A

11: Discard the instance.
12: end if
13: Delete sentences in passage P that does not contain

the golden answer but containing other entities matching
the question word, note the modified passage as Ps.
14: I < the shortcut instance version (Qp, Ps)
15: 1. + the challenging instance version (Q, P)
16: Append the pair of questions, (I, I..), to QWM-Para.
17: end for

shortcut version, removing the sentence containing
Lisa from the passage, which is also of the expected
answer type person indicated by the question word
who, would help a model easily get the correct
answer, Beyonce.

SpM-Para Dataset: As shown in Algorithm 2,
for instances from SQuAD, we paraphrase the an-
swer sentences in the passage to embed the para-
phrasing challenge and obtain its challenging ver-
sion. We insert the paraphrased answer sentence
in front of the original one in the passage to con-
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Algorithm 2 Construction of SpM-Para

Input: SQuAD
Output: SpM-Para
1: SpM-Para < ()
2: for each instance (@, P) in SQuAD do
3: if the non-stop-word overlap rate between @) and the
answer sentence S < 75% then
Discard the instance.
end if
Use back translation to paraphrase the answer sen-
tence S in P, obtain .Sj.
7 if the answer span no longer exists in .S, then
8: Discard this instance.
9: end if
0: if the non-stop-word overlap rate between () and S,
> 25% then
11: Discard the instance.
12: end if
13: Replace S in P with S, and shuffle sentences, noted
the modified passage as P..
14: Append S), to P and shuffle sentences, noted the
modified passage as Ps.
15: I « the shortcut instance version (Q, Ps)
16: 1. < the challenging instance version (@, P.)
17: Appen d the pair of questions, (I, I.), to SpM-Para.
18: end for

AR

struct the corresponding shortcut version, where a
model can obtain the answers by either identifying
the paraphrase in the passage or using the simple
matching trick via the original answer sentences.
We randomly shuffle all sentences in the passage
to prevent models from learning the pattern of sen-
tence orders in the shortcut version, i.e., there are
two adjacent answer sentences in the passage. Here,
we assume the sentence-level shuffling operation
will not affect the answers and solutions for most
questions, since the supporting evidence is often
concentrated in a single sentence. This can also
be supported by Sugawara et al. (2020)’s findings
that the performance of BERT-large (Devlin et al.,
2019) on SQuAD only drops by around 1.2% after
sentence order shuffling.

For example, in the shortcut version of Q.3
shown in the right of Figure 2, MRC models can
find the answer, Beyonce, either from the matching
context, rated as the most powerful female musi-
cian, or via the paraphrased one, named as the most
influential music girl. For the challenging version,
only the paraphrased answer sentence is provided,
thus, the paraphrasing skill is necessary.

Dataset Details  Our synthetic training and test
sets are derived from the accessible training and
development sets of SQuUAD, respectively. We
adopt back translation to obtain paraphrases of texts
(Dong et al., 2017). A sentence is translated from
English to German, then to Chinese, and finally
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back to English to obtain its paraphrased version.!

The QWM-Para dataset contains 7072 entries,
each containing two versions of (question, passage)
tuples, 6306/766 for training and testing, respec-
tively. And for SpM-Para, there are 8514 entries,
7562/952 for training and testing, respectively.

Quality Analysis = We randomly sample 20 en-
tries from each training set of the synthetic datasets,
manually analyzing their answerability. We find
that 76/80 questions could be correctly answered.
The unanswerable questions result from the wrong
paraphrasing. Furthermore, among the answerable
questions, the paraphrasing skill is necessary in
30 out of 36 questions in the challenging version,
and 36 out of 40 questions of the shortcut version
can be correctly answered via the corresponding
shortcut trick.

3 How the Shortcut Questions Affect
Model Performance?

Previous efforts show that shortcut questions
widely exist in current datasets (Sugawara et al.,
2020). However, there are few quantitative analysis
to discuss how these shortcut questions affect the
model performance. A reasonable guess is that,
when trained with too many shortcut questions, the
models tend to fit the shortcut tricks, which are
possible solutions to a large amount of questions
in training. We thus argue that the high propor-
tions of shortcut questions in training data make
models rely on the shortcut tricks.

One straightforward way to elaborate on this
point is to observe the model performance on chal-
lenging test questions when the model is trained
with different proportions of shortcut questions.
For example, if a model trained on a dataset, in
which 90% of questions are shortcut ones, can-
not perform as well as its 10% variant on chal-
lenging test questions, that will probably indicate
that higher proportions of shortcut questions in the
training data may hinder the model from learning
other challenging skills.

Setup  We evaluate two popular MRC models,
BiDAF (Minjoon et al., 2017) and BERT-base (De-
vlin et al., 2019), which are widely adopted in the
research for shortcut phenomena (Sugawara et al.,
2018; Min et al., 2019; Si et al., 2019; Sugawara
et al., 2020). For each combination of model and

'We use Baidu Translate API (http://api.fanyi.
baidu.com).
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Figure 3: F1 scores on challenging and shortcut questions with different proportions of shortcut questions in
training. The error bars represent the standard deviations of five runs.

dataset, we train 10 versions of the model, adjusting
the proportion of shortcut questions in the training
set from 0% to 90%, and report performance on
pure challenging and pure shortcut test sets. We
report the mean and standard deviation in five runs
to alleviate the impact of randomness. Detailed
settings are elaborated in Appendix A.

Results and Analysis  Figure 3 shows the per-
formance of BiDAF and BERT on QWM-Para and
SpM-Para when trained with various proportions of
shortcut questions. For both models, the F1 scores
on challenging versions of both test sets drop sub-
stantially with the increase in shortcut questions
for training (Figure 3 (a) ~ (d)). This result indi-
cates that higher proportions of shortcut questions
in training limit the model’s ability to solve chal-
lenging questions.

Take BiDAF on QWM-Para as an example (Fig-
ure 3 (a)). The F1 score on the test set of challeng-
ing questions is 69% after training BiDAF with
a dataset entirely composed of challenging ques-
tions, showing that even a simple model is able
to learn the paraphrasing skill from shortcut-free
training data. As the proportion of shortcut train-
ing questions increases, the model tends to learn
shortcut tricks and performs worse on the chal-
lenging testing data. The F1 score on challenging
questions drops to 55% when 90% of the training
data are shortcut questions. This drop shows that
training data with a high proportion of shortcuts
actually hinders the model from capturing para-
phrasing skills to solve challenging questions. In
contrast, the performance on shortcut questions are
relative steady to the changes of shortcut propor-
tions during training. When trained with sufficient
challenging questions, models not only perform
well on comprehension challenges, but also cor-
rectly answer the shortcut questions where only
partial evidence is required.

In Figure 3, we can observe similar trends in
model performance on SpM-Para. The perfor-
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mance on challenging questions also drops with
higher proportions of shortcut training questions.
Compared with BiDAF, although the overall scores
of BERT are better, BERT also performs poorly
on questions that require to perform paraphras-
ing when trained with more shortcut questions, as
shown in Figure 3 (b) & (d).

Case Study  When answering the example ques-
tion Q.4 from QWM-Para, BiDAF trained with
pure challenging questions tends to detect the cor-
relation between graduate and received his mas-
ter’s degree, and locates the correct answer /1506
when there are two spans matching the question
word when. However, when there are more than
70% shortcut questions in training, BiDAF only
captures the type constraint from the question word
when, and fails to identify the paraphrasing phe-
nomenon to answer the challenging version.

Q.4: When did Luther graduate?

P-challenging: In 1501, at the age of 19, he entered the
University of Erfurt. ... He received his master’s degree in
[ 15 06] Ans

P-shortcut: He received his master’s degree in [1506] Ans

4 Whether Question Word Matching is
Easier to Learn than Paraphrasing?

It is still confusing that, with the coexistence of
both shortcut and challenging questions for train-
ing, even in a 50%-50% distribution, both BERT
and BiDAF still learn shortcut tricks better, thus,
achieve much higher performance on shortcut ques-
tions comparing to the challenging ones. We think
one possible reason is that MRC models may learn
the shortcut tricks, like QWM, with less compu-
tational resources than the comprehension chal-
lenges, like identifying paraphrasing. In this case,
MRC models could better learn the shortcut tricks
with equal or even lower proportions of shortcut
questions during training.
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To validate this hypothesis, we propose two sim-
ple but effective methods to measure the difference
in required computational resources. Specifically,
we can train models with either pure shortcut ques-
tions or challenging ones, and compare the learning
speed and required parameter sizes when achieving
certain performance levels on the training sets.

For learning speed, we train MRC models with
different steps and observe how the performance
changes. Intuitively, models should converge faster
on easier training data.

For parameter sizes, our intuition is that the mod-
els should learn the easier questions with fewer
parameters. However, the high computational con-
sumption prevents us from pre-training the models
like BERT with different parameter sizes. To simu-
late BERT with fewer parameters, we mask some
hidden units in the last hidden layer of BERT and
use the number of unmasked units to reflect the
parameter size. The information in these masked
units could not be conveyed to the span boundary
prediction module. Thus, only partial parameters
could be used to make the final predictions.

Setup  We use BERT as the basic learner and
train on the training sets of QWM-Para and SpM-
Para. We report model performance on the training
data with various learning settings. We use all the
parameters when adjusting learning steps. When
tuning parameter size, we fix the learning steps
to 400 and 450 for QWM-Para and SpM-Para, re-
spectively. All other settings including batch size,
optimizer, and learning rate are fixed. We report the
mean and standard deviation in five runs to allevi-
ate the impact of randomness. The implementation
details are similar to §3, elaborated in Appendix A.

Results and Analysis  Figure 4 compares the
performance of BERT trained on the shortcut ques-
tions and challenging questions separately under
different settings. On both QWM-Para and SpM-

Para, BERT converges faster in learning short-
cut questions than learning challenging ones (Fig-
ure 4 (a) & (b)). When fixing the training steps,
BERT could learn to answer the shortcut questions
with fewer parameters (Figure 4 (c) & (d)). These
results show that shortcut questions may be easier
for models to learn than the ones requiring complex
reasoning skills.

Take QWM-Para as an example. As can be seen
from Figure 4 (a), BERT trained on the shortcut
questions achieves a 90% F1-score on the training
set after 250 steps. When trained on the challenging
version, this score will not reach 90% until 350
steps. This result indicates that models could learn
to answer the shortcut questions with the QWM
trick faster than the paraphrasing skill.

When we train BERT on QWM-Para with differ-
ent numbers of output units masked (Figure 4 (c)),
BERT could reach the F1-score of 91% on shortcut
data with no fewer than 96 unmasked hidden units.
However, when trained on the challenging ques-
tions, BERT has to use 384 hidden units to reach
the 91% F1 score, which indicates that the ques-
tions with the paraphrasing challenge may require
more parameters to learn.

We observe similar trends on SpM-Para (Fig-
ure 4 (b) & (d)). BERT requires more parameters
and training steps to learn the challenging version
questions in SpM-Para than the shortcut version.
To some extent, these results confirm our hypothe-
sis that learning to answer questions with shortcut
tricks like SpM or QWM requires smaller amounts
of computational resources than the questions re-
quiring challenging skills like paraphrasing.

Case Study For the example question Q.S5,
BERT trained on shortcut questions could correctly
answer its shortcut version and find the only loca-
tion name, Paldcio da Alvorada, with only 48 un-
masked hidden units. However, when trained with
the challenging data only, the model predicts the
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other location name, the Monumental Axis as the
answer with such parameter size. BERT could not
recognize the paraphrasing relationship between
the place the president live and presidential resi-
dence and choose the correct answer, Paldcio da
Alvorada, from the distracting location name, until
using all 748 parameters.

Q.5: Where does the president of Brazil live, in Por-
tuguese?

P-challenging: ... on a triangle of land jutting into the
lake, is the Palace of the Dawn ([ Paldcio da Alvorada] ons;
the presidential residence). Between the federal and civic
buildings on the Monumental Axis is the city ’s cathedral...
P-shortcut: ... on a triangle of land jutting into the lake,
is the Palace of the Dawn ([ Paldcio da Alvorada] s, s; the
presidential residence)

5 How do Models Learn Shortcuts?

In previous section, we show that shortcut ques-
tions are easier to learn compared to the questions
that require the complex paraphrasing skill. Then,
it is interesting that, trained with a mixture of both
versions of questions, how such discrepancy affects
or even drives the learning procedure, e.g., how the
increasing of challenging training questions allevi-
ate the over reliance on shortcut tricks.

We guess one of the possible reasons is how
most existing MRC models are optimized. We hy-
pothesize that with a larger proportion of shortcut
questions for training, the models have learned
the shortcut tricks at the early stage, which may
affect the models’ further exploration for chal-
lenging skills. In other words, in the early stage of
training, models tend to find the easiest way to fit
the training data with gradient descent. Since the
shortcut tricks require less computational resources
to learn, fitting these tricks may be a priority. Af-
terwards, since the shortcut trick can be used to
answer most of the training questions correctly, the
limited unsolved questions remained may not moti-
vate the models to explore sophisticated solutions
that require challenging skills.

To validate this idea, we investigate how the mod-
els converge during training with different shortcut
proportions in the training data. Notice that if a
model can only answer the shorfcut version of a
question correctly, it is highly likely that the model
only adopts the shortcut trick for this question in-
stead of performing sophisticated reasoning skills.
Thus, we think the performance gap on two ver-
sions of test data may indicate to what extent the
model relies on the shortcut tricks, e.g., the smaller
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the performance gap is, the stronger complex rea-
soning skills the model have learned.

Setups  We explore how BERT and BiDAF con-
verge with 10% and 90% shortcut training ques-
tions on QWM-Para and SpM-Para. We report the
F1 scores on the challenging and shortcut test ques-
tions, respectively, and together with their perfor-
mance gaps. We compare the model performance
at different learning steps to investigate when and
how well the models learn the shortcut tricks and
the challenging comprehension skills. The imple-
mentation details are the same as §3, elaborated in
Appendix A.

Results and Analysis  Figure 5 illustrates how
the MRC models converge during training under
different settings. The gap line (green with “x”
shows the gap between models’ performance on
shortcut questions and that on challenging ones.

For all settings, in the first few epochs, the
model performance on shortcut questions increases
rapidly, much faster than that on challenging ques-
tions, causing a steep rise of the performance gap.
This result indicates that models may learn the
shortcut tricks at the early stage of training, thus
quickly and correctly answering more shortcut
questions. And then, for the following epochs after
reaching the peaks, the gap lines slightly go down
(Figure 5 (a), (c), (e), and (f)) or maintain almost
unchanged (Figure 5 (b), (d), (g), and (h)), which
also indicates the models may learn the challeng-
ing skills later than shortcut tricks. One possible
reason is the gradient based optimizer drives the
model to optimize the global target greedily via
the easiest direction. Thus, trained with a mix-
ture of shortcut and challenging questions, models
choose to learn the shortcut tricks, which require
less computational resources to learn, earlier than
the sophisticated paraphrasing skills.

Comparing models with different proportions of
shortcut training questions, we find that, with 90%
shortcut training questions (Figure 5 (b), (d), (f)
and (h)), the performance gap remains at a high
level in the later training stage, where the perfor-
mance on the challenging test questions is relatively
lower. These results provide evidence that, for most
cases, after fitting on the shortcut questions, models
seem to fail to explore the sophisticated reasoning
skills.

When there are only 10% of shortcut training
data (Figure 5 (a), (c), (e), and (g)), we can ob-
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Figure 5: F1 scores on challenging and shortcut questions with different training steps under different settings.
10% and 90% are the proportions of shortcut questions in the training datasets. Gaps (green lines with “x” dots)
represent the performance gap between shortcut questions and challenging ones, which is smoothed by averaging

over fixed-size windows to mitigate periodic fluctuations.

serve that after a few hundreds of steps, the gap
lines stop increasing and even slightly go down.
This phenomenon shows that higher proportions
of challenging questions in the training set could
encourage the models to explore the sophisticated
reasoning skills, but in a later stage of training.

Take BiDAF trained on QWM-Para as an exam-
ple (Figure 5 (a) & (b)). The F1 scores on shortcut
test questions increase quickly in the first 300 steps,
while the performance gap also widens rapidly, in-
dicating a possible fast fitting on the shortcut tricks.
In Figure 5 (b), with 90% shortcut training ques-
tions, the model performance on challenging ques-
tions are relatively steady during the next 800 steps,
while the F1 score on shortcut questions maintains
a high level of about 85%. This result shows that
after fitting on the shortcut tricks, the model trained
with a higher shortcut proportion has almost cor-
rectly answered all the shortcut questions but fail to
answer the challenging ones. Actually, with the gra-
dient based optimizer, it is difficult for the model
to learn the challenging questions while keeping
the high performance on the shortcut ones, which
account for 90% of the training set. We guess it
is because the few unsolved challenging questions
could not motivate the model to explore sophisti-
cated reasoning skills.

On the contrary, when 90% of the training data
require challenging skills, the gap line peaks at
0.27, as shown in Figure 5 (a). Afterwards, the gap
decreases to 0.24, with the F1 score on challenging

questions increasing to more than 60%. Larger pro-
portions of challenging questions for training pre-
vent the models from heavily relying on the short-
cut tricks. This phenomenon may be because, with
fewer shortcut questions in training, the fitting of
shortcut tricks only benefits the training objective
in a small favor. The large number of challenging
questions that can not be correctly answered during
the early training steps now encourage models to
explore more complicated reasoning skills.

Case Study  When answering the example ques-
tion Q.6 from SpM-Para, BERT trained with 10%
shortcut questions tends to learn the simple match-
ing trick quickly and correctly answers the shortcut
version as early as 380 steps. However, the model
cannot correctly answer the challenging variant un-
til 630 steps. This difference demonstrates that,
training with both type of questions, BERT can
learn the simple matching trick earlier than identi-
fying the required paraphrasing between why de-
fections occur and errors caused by.

Q.6: Why do these defections occur?

P-challenging: ... Most of these errors are caused by
[economic or financial factors] ans ...

P-shortcut: ... Most of these defections occur because of
[economic or financial factors] ans. Most of these errors
are caused by [economic or financial factors] ans. ...
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6 Related Works

Reading documents to answer natural language
questions has drawn more and more attention in
recent years (Xu et al., 2016; Minjoon et al., 2017;
Lai et al., 2019; Glass et al., 2020). Most previous
works focus on revealing the shortcut phenomenon
in MRC from different perspectives. They find
that manually designed features (Chen et al., 2016)
or simple model architectures (Weissenborn et al.,
2017) could obtain competitive performance, indi-
cating that complicated inference procedure may
be dispensable. Even without reading the entire
questions or documents, models can still correctly
answer a large portion of the questions (Sugawara
et al., 2018; Kaushik and Lipton, 2018; Min et al.,
2019). Therefore, current MRC datasets may lack
the benchmarking capacity on requisite skills (Sug-
awara et al., 2020), and models may be vulnerable
to adversarial attacks (Jia and Liang, 2017; Wal-
lace et al., 2019; Si et al., 2019). However, they
do not formally discuss or analyze why models
could learn shortcuts from the perspectives of the
learning procedure.

On the way of designing better MRC datasets,
Jiang and Bansal (2019) construct adversarial ques-
tions to guide model learning the multi-hop reason-
ing skills. Bartolo et al. (2020) propose a model-in-
loop paradigm to annotate challenging questions.
More recent works (Jhamtani and Clark, 2020; Ho
et al., 2020) propose new datasets with evidence
based metrics to evaluate whether the questions are
solved via shortcuts. Our work aims at providing
empirical evidence and analysis to the community
by tracing into the learning procedure and explain-
ing how the MRC models learn shortcuts, which is
orthogonal to the existing works.

For a more general machine learning perspec-
tive, there are also efforts trying to explain how
models learn easy and hard instances during train-
ing. Kalimeris et al. (2019) prove that models tend
to learn easier decision boundaries at the begin-
ning stage of training. Our results empirically con-
firms this theoretical conclusion in the task of MRC
and quantitatively explain that larger proportions of
shortcut questions in training make MRC models
rely on shortcut tricks, rather than comprehension
skills like recognizing the paraphrase relationship.

7 Conclusions

In this work, we try to answer why many MRC
models learn shortcut tricks while ignoring the

pre-designed comprehension challenges that are
purposely embedded in many benchmark datasets.
We argue that large proportions of shortcut ques-
tions in training data push MRC models to rely
on shortcut tricks excessively. To properly investi-
gate, we first design two synthetic datasets where
each instance has a shortcut version paired with
a challenging one which requires paraphrasing, a
complex reasoning skill, to answer, rather than per-
forming question word matching or simple match-
ing. With these datasets, we are able to adjust the
proportion of shortcut questions in both training
and testing, while maintaining other factors rela-
tively steady. We propose two methods to examine
the model training process regarding the shortcut
questions, which enable us to take a closer look at
the learning mechanisms of BiDAF and BERT un-
der different training settings. We find that learning
shortcut questions generally requires less computa-
tional resources, and MRC models usually learn the
shortcut questions at their early stage of training.
Our findings reveal that, with larger proportions
of shortcut questions for training, MRC models
will learn the shortcut tricks quickly while ignor-
ing the designed comprehension challenges, since
the remaining truly challenging questions, usually
limited in size, may not motivate models to explore
sophisticated solutions in the later training stage.
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A Implement Details

Synthetic Dataset Construction During the
construction of synthetic datasets, we used Stan-
ford CoreNLP (Manning et al., 2014) to identify
named entities and stop-words.

We set two empirical thresholds for identifying
questions can be solved by Simple Matching or re-
quiring paraphrasing skills. We consider a question
as solvable via the simple matching trick if more
than 75% of non-stop words in the question ex-
actly appear in the answer sentence. On the other
hand, if the matching rate is below 25%, we think
it is unsolvable via simple matching, calling for
other skills like paraphrasing. Thus, in dataset con-
struction, if the matching rate is above 25% after
paraphrasing, we consider that the back transla-
tion fails to incorporate paraphrasing skills into the
instance.

We construct the synthetic datasets from SQuAD
(Rajpurkar et al., 2016). Compared with more re-
cent MRC datasets (Yang et al., 2018; Kwiatkowski
et al., 2019), most questions in SQuUAD can be
solved by a single sentence with simple matching
so that we can conveniently use back translation to
construct questions with paraphrasing challenges.

Paraphrasing in SpM-para When constructing
the SpM-Para dataset, we only select the instances
whose questions are very similar to the correspond-
ing answer sentences (overlap > 75%) to ensure
that a simple matching step can obtain the answers.
For the shortcut-version of an instance, we insert
the paraphrased answer sentence into passage and
keep both the original answer sentence and para-
phrased answer sentence (see Algorithm 2). This
operation aims to control the shortcut instances to
have both shortcut solutions and challenging solu-
tions. For the challenging version, we only keep
the paraphrased answer sentences in the passages
and discard the original answer sentence, so that
such instances can only be solved by identifying
the embedded paraphrasing relationship.

Hyper-Parameters for QA models  We adopt
BERT (BERT-based uncased) (Devlin et al., 2019)
and BiDAF (Minjoon et al., 2017) models with the
implementation in SogouMRC tools (Wu et al.,
2019). The hyper-parameters are shown in Ta-
ble 1. We used 100-d glove vectors (Pennington
et al., 2014) in BiDAF. Notice that these hyper-
parameters are adopted in §3, §4, and §5. Our code
and datasets can be found in https://github.

com/luciusssss/why—-learn-shortcut

For the simple matching setting where multiple
answer spans may appear in one passage, we follow
(Pang et al., 2019) and aggregate the possibilities of
each span before computing the likelihood losses.

Data Sampling in Difficulty Evaluation In §4,
we train BERT on the training sets of QWM-Para
and SpM-Para and observe how the model con-
verges with different learning steps and parameter
sizes. However, we find BERT achieves outstand-
ing performance on both datasets with only one or
two epochs. This is because the strong learning
ability of BERT model and, with only one kind of
answering pattern, both the pure shortcut and chal-
lenging training sets are relatively easy to learn.

Under this circumstance, BERT performance on
most of the evaluation checkpoints after one epoch
will almost reach the final performance, which
make the comparison vague. If we compare the
checkpoints within one epoch, considering that
models have only been trained on partial train-
ing data, the evaluation results would reflect the
models’ generalization ability on unseen questions.
This differs from our purpose of evaluation, namely
comparing the fitting difficulty of different kinds
of questions. Therefore, we randomly sample 1000
pair of instances for training and evaluation. With
less training data, BERT will not converge in only
one or two epochs, thus we could truly evaluate the
learning ability.

Computation Cost  We train the models on an
NVIDIA 1080 Ti GPU. The number of parameters
is SM for BiDAF and 110M for BERT. The average
training time on synthetic datasets for an epoch is
1 minute for BiDAF and 10 minutes for BERT.

BERT-base Uncased  BiDAF
# Epoch 3 15
Batch size 6 30
Optimizer AdamWeightDecay ~ Adam
Learning rate ~ 3e-5 le-3

Table 1: Hyper-Parameters for the experiments in §4,
§5, and $6.

B A Variant of QWM-Para Dataset

When we train models with different proportions of
shortcut questions on QWM-Para (Figure 3 (a) &
(b), which is described in §3), we observe that even
with pure challenging questions in training, BiDAF
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Question Word Matching Substituted

Q.7: Who was rated as the most powerful female musician?
P: Forbes Magazine rated Beyonce as the most powerful female

musician. She released a new album with Lisa...

Step1 Paraphrase
Question

0.7:Who was named the most
influential music girl?

Step2 Drop
Redundant Entities

4

P: Forbes Magazine rated Beyonce as the
most powerful female musician.

Step3 Substitute
Entities

0.7: Who was named the most
influential music girl?

P: Forbes Magazine rated Bella
as the most powerful female
musician....

0.7: Who was named the most
influential music girl?

P: Forbes Magazine rated
America as the most powerful
female musician....

Shortcut Version

Challenging Version

Figure 6: An illustration of how the questions in the
new synthetic datasets, question word matching substi-
tuted, are constructed from original questions.

and BERT still perform much better on shortcut
questions than on the challenging ones. We think
this is possibly because in these settings, models
fail to exploit the paraphrasing skill but learn to
guess one from the the entities matching the ques-
tion words as the answer. Using such a guessing
trick instead of the paraphrasing skill could im-
prove the performance on the challenging ques-
tions to some extent, but it results in more gains on
the shortcut questions. Therefore, even with 100%
challenging questions in training, the gap between
the performance on challenging and shortcut test
questions is still wide.

To avoid these guess solutions, we redesign
a variant of the QWM-Para dataset, named as
QWM/subs-Para.> We aim at investigating: 1)
Whether this variant could avoid the guessing al-
ternative and decrease the performance gaps be-
tween challenge questions and shortcut ones when
training with relatively lower shortcut proportions.
2) Whether the experiments on this variant still
confirms our previous findings about how shortcut
questions in training affect model performance and
learning procedure, as described in §3 and §5.

B.1 Dataset Construction

The construction process of QWM/subs-Para is
shown in Figure 6. The first two steps, question
paraphrasing and redundant entities dropping, are
the same as those in the construction of shortcut
questions in QWM-Para (see §2). Then, we per-

2subs refers to substituted, elaborated in §B.1.

(a) BIDAF on QWM/subs-Para (b) BERT on QWM/subs-Para
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Figure 7: F1 scores on challenging and shortcut ques-
tions with different proportions of shortcut questions in
training. This experiment is conducted on QWM/subs-
Para. The error bars represent the standard deviations
of five runs.

90(a) BiDAF on QWM/subs-Para, 10%12 90(b) BiDAF on QWM/subs-Para, 90%3

—*— Challenging —*— Challenging

80 10 80
Shortcut Shortcut
70 8 70 25
60 //M*N 6 60 20
15
50 s 50
40 40 10
2
5

—— Gap (Shortcut-Challenging) |, ,—+ Gap (Shortcut-Challenging)
L 4 =l

0 200 400 600 800 1000 0 200 400 600 800 1000
(c) BERT on QWM/subs-Para, 10% D(d) BERT on QWM/subs-Para, 90%Z

—*— Challenging
Shortcyt 20

—»— Challenging 20
Shortcut @75
80 7 15 go

70 10 70
60 60
5
50 50
AR et et dede
0

/
| —*— Gap (Shortcut-Challenging)

i
1 —#— Gap (Shortcut-Challenging)

o 100 200 300 400 500 0 100 200 300 400 500

Figure 8: F1 scores on challenging and shortcut ques-
tions with different training steps under different set-
tings. This experiment is conducted on QWM/subs-
Para. 10% and 90% are the ratios of shortcut ques-
tions in the training datasets. Gaps (green lines with “x”
dots) represents the performance gap between shortcut
questions and challenging ones, which is smoothed by
averaging over fixed-size windows to mitigate periodic
fluctuations.

form entity substitution to avoid the potential guess-
ing solutions.

Particularly, for each candidate question, we
substitute all the entities in the passage with ran-
dom ones whose type uniformly distributes in Per-
son/Time/Location to construct the challenging
questions. With this random substitution, one can
hardly guess the correct answer via the question
words. As shown in Q.7, after substituting the
answer entity Beyonce to America, one can not an-
swer the new question by simply finding a Person
entity according to the question word who. Replac-
ing a person’s name with a location may break the
original semantic, but it will force the model to
comprehend the context to find the answers. For
the shortcut version, we also conduct the random
entity substitution, but within the same entity types,
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e.g., from Beyonce to Bella.

This strategy could avoid the models from learn-
ing the trick that identifying replaced words as the
answers.

B.2 Results and Analysis

Shown in Figure 7, we can see that, when con-
structing the challenging questions with entity sub-
stitution, both BiDAF and BERT model perform
comparably between challenging and shortcut test
questions with 100% challenging questions in train-
ing. These results provide evidence that, after the
substitution, models could not use guessing as an
alternative solutions to the paraphrasing skill.

We conduct similar experiments in §3, §5 on
QOWM/subs-Para, which is shown in Figure 7 and
Figure 8, respectively. The tendency could also
support our previous findings. For example, the
larger shortcut ratio expands the performance gaps
between challenging and shortcut questions in Fig-
ure 7.
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