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Abstract

The widespread use of offensive content in so-
cial media has led to an abundance of research
in detecting language such as hate speech,
cyberbullying, and cyber-aggression. Recent
work presented the OLID dataset, which fol-
lows a taxonomy for offensive language identi-
fication that provides meaningful information
for understanding the type and the target of of-
fensive messages. However, it is limited in
size and it might be biased towards offensive
language as it was collected using keywords.
In this work, we present SOLID, an expanded
dataset, where the tweets were collected in a
more principled manner. SOLID contains over
nine million English tweets labeled in a semi-
supervised fashion. We demonstrate that using
SOLID along with OLID yields sizable perfor-
mance gains on the OLID test set for two dif-
ferent models, especially for the lower levels
of the taxonomy.

1 Introduction

Offensive language in social media has become
a concern for governments, online communities,
and social media platforms. Free speech is an im-
portant right, but moderation is needed in order to
avoid unexpected serious repercussions. In fact,
this is so serious that many countries have passed
or are planning legislation that makes platforms
responsible for their content, e.g., the Online Harm
Bill (HM Government, 2019) in the UK and the
Digital Services Act (European Commission, 2020)
in the EU. Even in the United States, content moder-
ation or the lack thereof can have significant impact
on business (e.g., Parler was denied server space),
government (U.S. Capitol Riots), and individuals
(hate speech is linked to self-harm). Explainabil-
ity is needed to indicate in detail why content has

WARNING: This paper contains tweet examples and
words that are offensive in nature.
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been deleted or flagged as inappropriate. Moreover,
users can be educated by such feedback to avoid
future biases.

There have been several areas of work in the
detection of offensive language (Basile et al.,
2019; Fortuna and Nunes, 2018; Ranasinghe and
Zampieri, 2020), covering overlapping character-
istics such as toxicity, hate speech, cyberbullying,
and cyber-aggression. Further, using a hierarchi-
cal approach to analyze different aspects of the
offensive content, such as the type and the target of
the offense, helps provide explainability. The Of-
fensive Language Identification Dataset, or OLID,
(Zampieri et al., 2019a) is one such example, and
it has been widely used in research. OLID con-
tains 14,100 English tweets, which were manually
annotated using a three-level taxonomy:

A: Offensive Language Detection

B: Categorization of Offensive Language

C: Offensive Language Target Identification
The taxonomy proposed in OLID makes it possi-
ble to represent different kinds of offensive con-
tent as a function of the fype and the rarget of a
post. For example, offensive messages targeting
a group are likely hate speech, whereas offensive
messages targeting an individual are likely cyber-
bullying. OLID has been used to annotate datasets
in languages such as Arabic (Mubarak et al., 2021),
and Greek (Pitenis et al., 2020), allowing for multi-
lingual learning and analysis.

An inherent feature of the hierarchical annota-
tion is that the lower levels of the taxonomy con-
tain a subset of the instances in the higher lev-
els, and thus there are fewer instances in the cat-
egories in each subsequent level. This makes it
very difficult to train robust deep learning mod-
els on such datasets. Moreover, due to the natu-
ral infrequency of offensive language (e.g., less
than 3% of the tweets are offensive when se-
lected at random), obtaining offensive content is
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a costly and time-consuming effort. In this pa-
per, we address these limitations by proposing a
new dataset: Semi-Supervised Offensive Language
Identification Datatset (SOLID)!. Our contribu-
tions are as follows:

1. We are the first to apply a semi-supervised
method for collecting new offensive data us-
ing OLID as a seed dataset, thus avoiding the
need for time-consuming annotation.

2. We create and publicly release SOLID, a
training dataset containing 9 million English
tweets for offensive language identification,
the largest dataset for this task. SOLID is the
official dataset of the SemEval shared task
OffensEval 2020 (Zampieri et al., 2020).

3. We demonstrate sizeable improvements over
prior work on the mid and lower levels of the
taxonomy, where gold training data is scarce
when training on SOLID and testing on OLID.

4. We provide a new larger test set and a com-
prehensive analysis of EASY (i.e., simple ex-
plicit tweets such as using curse words) and
HARD (i.e., more implicit tweets that use un-
derhanded comments or racial slurs) examples
of offensive tweets.

The remainder of this paper is organized as fol-
lows: Section 2 presents related studies in aggres-
sion identification, bullying detection, and other
related tasks. Section 3 describes the OLID dataset
and annotation taxonomy. Section 4 introduces the
computational models used in this study. Section
5 presents the SOLID dataset. Section 6 discusses
the experimental results and Section 6.3 offers ad-
ditional discussion and analysis. Finally, Section
7 concludes and discusses possible directions for
future work.

2 Related Work

There have been several recent studies on offen-
sive language detection and related tasks such as
hate speech, cyberbulling, aggression, and toxic
comment detection.

Hate speech identification is by far the most stud-
ied abusive language detection task (Ousidhoum
et al., 2019; Chung et al., 2019; Mathew et al.,
2021). One of the most widely used datasets is the
one by Davidson et al. (2017), which contains over
24,000 English tweets labeled as non-offensive,

! Available at: https://sites.google.com/sit
e/offensevalsharedtask/solid
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hate speech, and profanity. A recent shared task on
the topic is HatEval (Basile et al., 2019).

In cyberbullying detection, Xu et al. (2012)
used sentiment analysis and topic models to iden-
tify relevant topics. Dadvar et al. (2013) and
Safi Samghabadi et al. (2020) studied the use of
the conversational context for detecting cyberbul-
lying. In particular, Dadvar et al. (2013) used user-
related features such as the frequency of profanity
in previous messages. More recent work has ad-
dressed the issues of scalable and timely detection
of cyberbullying in online social networks. To this
end, Rafiq et al. (2018) employed a dynamic pri-
ority scheduler, and Yao et al. (2019) proposed
a sequential hypothesis testing. Safi Samghabadi
et al. (2020) constructed a dataset of cyberbullying
episodes from the semi-anonymous social network
ask.fm.

There were two editions of the TRAC shared task
on Aggression Identification (Kumar et al., 2018,
2020) which provided participants with datasets
containing annotated Facebook posts and com-
ments in English and Hindi for training and val-
idation. Facebook and Twitter datasets were used
for testing. The goal was to discriminate between
three classes: non-aggressive, covertly aggressive,
and overly aggressive. Two other shared tasks
addressed toxic language. The Toxic Comment
Classification Challenge® at Kaggle provided par-
ticipants with comments from Wikipedia annotated
using six labels: toxic, severe toxic, obscene, threat,
insult, and identity hate. The recent SemEval-2021
Toxic Spans Detection shared task addressed the
identification of the token spans that made a post
toxic (Pavlopoulos et al., 2021).

There were several shared tasks that have fo-
cused specifically on offensive language identifica-
tion. For example, GermEval 2018 (Wiegand et al.,
2018) which focused on offensive language identi-
fication in German tweets, HASOC 2019 (Mandl
etal., 2019), and TRAC 2018 (Fortuna et al., 2018).

In this paper, we extend the prior work of the
OLID dataset (Zampieri et al., 2019a). OLID is
annotated using a hierarchical annotation schema
as in (Basile et al., 2019; Mandl et al., 2019). In
contrast to prior approaches, it takes both the tar-
get and the type of offensive content into account.
This allows multiple types of offensive content
(e.g., hate speech and cyberbullying) to be repre-

http://kaggle.com/c/jigsaw-toxic-comm
ent-classification-challenge
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sented in OLID’s taxonomy. We create a large-
scale semi-supervised dataset using the same anno-
tation taxonomy as in OLID.

3 The OLID Dataset

The OLID (Zampieri et al., 2019a) dataset tackles
the challenge of detecting offensive language us-
ing a labeling schema that classifies each example
using the following three-level hierarchy:

Level A: Offensive Language Detection Is the
text offensive?

OFF Inappropriate language, insults, or threats.
NOT Neither offensive, nor profane.

Level B: Categorization of Offensive Language
Is the offensive text targeted?

TIN Targeted insult or threat towards a group or
individual.

UNT Untargeted profanity or swearing.

Level C: Offensive Language Target Identifica-
tion What is the target of the offense?

IND The target is an individual explicitly or im-
plicitly mentioned in the conversation;

GRP Hate speech, targeting a group of people
based on ethnicity, gender, sexual orientation, reli-
gion, or other common characteristic.

OTH Targets that do not fall into the previous cate-
gories (e.g., organizations, events, and issues.)

The taxonomy was successfully adopted for sev-
eral languages (Mubarak et al., 2021; Pitenis et al.,
2020; Sigurbergsson and Derczynski, 2020; Col-
tekin, 2020), and it was used in a series of shared
tasks (Zampieri et al., 2019b; Mandl et al., 2019).
Tweets from the OLID dataset labeled with the tax-
onomy are shown in Table 1. The OLID dataset
consists of 13,241 training and 860 test tweets.

Table 2 presents detailed statistics about the dis-
tribution of the labels. There is a substantial class
imbalance on each level of annotation, especially
at Level B. Furthermore, there is a sizable differ-
ence in the total number of annotations between
the levels due to the schema (e.g., Level C is 1/3
smaller than Level A), and the data sizes for B and
C are rather small. These drawbacks indicate the
need to create a larger dataset.

4 Models

In this section, we describe the models used for
semi-supervised annotation and for evaluating the

Tweet A B C
@USER Anyone care what that dirtbag says? OFF TIN IND

Poor sad liberals. No hope for them. OFF TIN GRP
LMAO....YOU SUCK NFL OFF TIN OTH
@USER What insanely ridiculous bullshit. = OFF UNT
@USER you are also the king of taste NOT

Table 1: Examples from the OLID dataset.

contribution of SOLID for offensive language iden-
tification. We use a suite of heterogeneous machine
learning models: PMI (Turney and Littman, 2003),
FastText (Joulin et al., 2017), LSTM (Hochreiter
and Schmidhuber, 1997), and BERT (Devlin et al.,
2019). They have diverse inductive biases, which
is an essential prerequisite for our semi-supervised
setup (see Section 4.5). We assume that an en-
semble of models with different inductive biases
decreases each individual model’s bias.

41 PMI

We use a PMI-based model that computes the n-
gram-based similarity of a tweet to the tweets of a
particular class c in the training dataset. The model
is considered naive as it accounts only for the n-
gram frequencies in the discrete token space and
only in the context of n neighboring tokens. We
compute the PMI score (Turney and Littman, 2003)
of each n-gram in the training set w.r.t. each class:

PMI(wi,c;) = logs (p(wi) *p(cs)

where p(w;, ¢;) is the frequency of n-gram w; in
instances of class ¢;, p(w;) is the frequency of
n-gram w; in instances from the entire training
dataset, and p(c;) is the frequency of class c;. Ad-
ditionally, we find that semantically oriented PMI
scores (Turney and Littman, 2003) improve the
performance of this naive method:

wi, c;) * p(C\ {c;

PAL- 50U o) =ton (S A
where C'\ {c;} is the set of all classes except c;.
At training time, we collect the frequencies of the
n-grams on the training set. At inference time,
we use the frequencies to calculate PMI and PMI-
SO scores for each unigram and bigram in each
instance and then average PMI and PMI-SO to a
single score for each instance and class. Finally,
we select the class with the highest score. If the
instance contains no words with associated scores,
we choose NOT for Level A, UNT for Level B —
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OLID SOLID

Level Label Train Test Train  Test
A OFF 4,640 240 1,448,861 3,002
NOT 9,460 620 7,640,279 2,991

B TIN 4,089 213 149,550 1,546
UNT 551 27 39,424 1,451

IND 2,507 100 120,330 1,055

C GRP 1,152 78 22,176 349
OTH 430 35 7,043 140

Table 2: Train and Test data distribution for the OLID
and the SOLID datasets.

the classes most likely to contain neutral orienta-
tion, and the majority class IND for Level C. We
remove words appearing less than five times in the
training set and add a smoothing factor of 0.01 to
all frequencies.

4.2 FastText

A suitable extension to the word-based model
is to use subword representations to overcome
the naturally noisy structure of tweets. FastText
(FT) (Joulin et al., 2017) is a strong subword
model which has shown strong performance on
various tasks without the need for extensive hyper-
parameter tuning. It uses a shallow neural model
for text classification similar to the continuous bag-
of-words model (Mikolov et al., 2013). Instead of
predicting the word based on its neighbors, it pre-
dicts the target label based on the sample’s words.
FT provides a valuable, diverse modeling represen-
tation to the ensemble due to its differences with
the simple PMI model and the heavy-lifting LSTM
and BERT models. We train FT with bigrams and
a learning rate of 0.01 for Levels A and B and with
trigrams and a learning rate of 0.09 for Level C.
All tasks use a window size five and a hierarchical
softmax loss.

43 LSTM

In contrast to the prior models, the LSTM
model (Hochreiter and Schmidhuber, 1997,
Vaswani et al., 2017) can account for long-distance
relations between words. First is an embedding
layer initialized with a concatenation of the GloVe
300-dimensional (Pennington et al., 2014) and Fast-
Text’s Common Crawl 300-dimensional embed-
dings (Grave et al., 2018). It is followed by a
dropout and a bi-directional LSTM layer with an
attention mechanism on top of it. We concatenate
the attention mechanism’s output with averaged
and maximum global poolings on the outputs of
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the LSTM model. The final prediction is produced
by a sigmoid layer for Levels A and B, where we
have a binary classification, and a softmax layer for
Level C, where we have three classes. We train the
LSTM model using early stopping with patience
for no improvements over the validation loss of up
to five epochs. Level A uses a hidden size of 128, a
dropout rate of 0.3, a batch size of 256, and a learn-
ing rate of 0.0002. Levels B and C use a hidden
size of 50, a dropout rate of 0.1, a batch size of 32,
and a learning rate of 0.0001. The Adam optimizer
is used for training.

4.4 BERT

The Transformer architecture (Vaswani et al., 2017)
has achieved (nearly) state-of-the-art performance
for several NLP tasks. It displays both high rep-
resentational power and robustness across tasks.
We exploit the benefits of transfer learning in a
low-resource setup by using the pre-trained BERT
model (Devlin et al., 2019) and fine-tune it to our
task. We use the base uncased model implementa-
tion from HuggingFace (Wolf et al., 2020), which
has 12 layers, a hidden size of 768, and 12 atten-
tion heads, amounting to 110 million parameters.
‘We fine-tune the BERT model for each task, start-
ing from the pre-trained base model. We fine-tune
BERT for 2, 3, and 3 epochs for Level A, B, and C,
respectively. We use learning rates of 0.00002 for
Levels A and B, and 0.00004 for Level C. We apply
per-class weights to cope with the data imbalance
in Level C as follows: IND=1, GRP=2, OTH=10.
We use the Adam optimizer and a linear warm-up
schedule with a 0.05 warm-up ratio.

4.5 Democratic Co-training

Democratic co-training (Zhou and Goldman, 2004)
is a semi-supervised technique used to create large
datasets with noisy labels when provided with a set
of diverse models trained in a supervised way. This
approach has been successfully applied in tasks
like time series prediction with missing data (Mo-
hamed et al., 2007), early prognosis of academic
performance (Kostopoulos et al., 2019), and in the
health domain (Longstaff et al., 2010). Using mod-
els with diverse inductive biases to label the target
tweet can help ameliorate the individual model bi-
ases and produce predictions with a lower degree
of noise.

In our work, we employ democratic co-training
to create semi-supervised labels for all three levels
of SOLID using OLID as our seed dataset. Dis-



tant supervision is conducted by the ensemble of
models with different inductive biases as follows:

1. Train N diverse supervised models {M;(X)},
where j € [1, N] on a labeled dataset X =
{(zi,y:)}, where i € [1,|X]]

2. For each example 2/ in the unannotated
dataset X’ = {(z})}, |i € [1,|X|]) and each
model M;, predict the confidence p;j for the
positive class.

5 The SOLID Dataset

In this section, we describe the process of collect-
ing a large dataset of over 12 million tweets All
of the data was labeled using the democratic co-
training approach described in the previous section.
The statistics for the dataset are shown in Table 2.

5.1 A Large-Scale Dataset of Tweets

We collected our data from Twitter using the Twit-
ter streaming API® via Twython* in 2019. We
search the API using the 20 most common English
stopwords (e.g. the, of, and, to) to ensure truly ran-
dom tweets and avoid rate limits. Using stopwords
ensures that we are more likely to obtain English
tweets as well as a diverse set of random tweets.
We kept the stream running the entire time and
continuously choose a stopword at random based
on its frequency in Project Gutenberg, a sizeable
monolingual corpus. We collected 1,000 tweets
for each stopword. Thus, tweets, including more
frequent stopwords, are collected more frequently.
A full list of the stopwords and their frequency is
shown in Appendix A.1. We used this approach
to help mitigate biases found in OLID. OLID was
collected using a predefined list of keywords that
were more likely to retrieve offensive tweets. This
caused offensive tweets in OLID to be explicit and
easier to classify. In contrast, the tweets collected
in SOLID contain implicit and explicit offensive
text. This allows us to study the performance of
models in hard classification cases.

We used the langdetect tool’ to select En-
glish tweets and discarded tweets with less than 18
characters or less than two words. We substituted
all user mentions with @QUSER for anonymization
purposes. We also ignored tweets with URLSs as
those don’t tend to be offensive and might be less
self-contained, e.g., they could have a link to an ar-

*https://developer.twitter.com/en/docs
‘nttps://twython.readthedocs.io
‘https://pypi.org/project/langdetect/

Model Level A Level B Level C
Majority Baseline 0.419 0.470 0.214
BERT 0.816 0.705 0.568
PMI 0.684 0.498 0.461
LSTM 0.681 0.657 0.585
FastText 0.662 0.470 0.590

Table 3: Macro-F1 score of the models in the demo-
cratic co-training ensemble on the OLID test set.

ticle, image, video, etc. Understanding such tweets
would require going beyond their purely textual
content. In total, we collected over 12 million
tweets. We kept 9 million as training data, and
we created a new test dataset from a portion of the
remaining 3 million tweets.

5.2 Semi-Supervised Training Dataset

We used the democratic co-training setup described
in Subsection 4.5 to create the semi-supervised
dataset. We first trained each model on the OLID
dataset using 10% of the training dataset for vali-
dation. The performance of the individual models
on the OLID dataset is shown in Table 3. BERT is
the best model for Level A. The PMI model per-
forms almost on par with the LSTM model. We
expect this is due to the size of the dataset and the
fact that a simple lexicon of curse words would be
highly predictive of the offensive content present
in a tweet. The performance of the FastText model
is the lowest by 2 points. BERT performs best for
Level B, followed by the LSTM model. The task is
more challenging at this level for the frequency and
n-gram-based approaches of PMI and FastText.

Finally, the overall performance of the models at
Level C decreases further. This is expected as the
size of the dataset becomes smaller, and the task is
a three-way classification, whereas Levels A and B
are two-way. BERT and LSTM outperform Fast-
Text and PMI, with BERT being the best model.
The decrease in the performance in the final level
can lead to increased noise in the semi-supervised
labels, but we use an ensemble of four models, and
we provide the average and the standard deviation
of the confidence across the models on each in-
stance to mitigate this. As we show later, these
scores can be successfully used to filter out a large
amount of noise in the semi-supervised dataset,
thus yielding performance improvements.

We compute the aggregated single prediction
based on the average and the standard deviation of
the confidences predicted by each of the models:
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Level Text BERT LSTM FT PMI AVG STD Label E/H
@USER he fucking kills me. he knew it was coming 0.919 0.958 0.852 0.509 0.809 0.177 OFF E
A His kissing days are over, he’s a pelican now! 0.659 0.304 0.568 0.523 0.514 0.131 NOT H
i think we’re all in love with winona ryder 0.060 0.038 0.017 0.480 0.102 0.155 NOT E
Guess I'll just never understand the fucking dynamics 0.901 0.569 0.001 0.617 0.522 0.327 UNT H
B @USER Government is a bunch of bitches. 0.013  0.221 0.000 0.397 0.158 0.164 TIN E
@USER Give me the date. Fuck them other niggas Bro 0.882 0.666 0.983 0.701 0.808 0.131 TIN E
I’m irritated as fuck
@USER He was useless stupid guy 0.807 0915 1.000 0.480 0.801 0.197 IND E
C It’s like mass shootings is the reg in this shit hole country! 0.826  0.479 0.693 0.570 0.642 0.131 OTH H
Getting these niggas tatted is a overstatement are yadead 0.700 0.691 0.770 0.491 0.663 0.104 GRP H

serious

Table 4: Training data aggregation examples. Columns 3-6 show the confidence of each of the models with respect
to the positive class in Levels A and B (OFF, UNT) and only for the corresponding class in C (one example for
each of the classes: TIN, GRP, OTH). The label column shows manual annotations, and the last column shows
whether the tweet is considered Easy (E) or Hard (H) based on its AVG confidence.

SOLID = {(},p})|i € [1,|SOLID|))} , where p),
=avg({p/’ls € [1, N]}). sd({p;’|j € [1,N]}). In
particular, we compute the scores based on the con-
fidences for the positive class at Levels A and B
and the confidences for the IND, GRP, and OTH
classes at Level C. We performed the above ag-
gregation step instead of just using the scores of
each model to avoid over-fitting to any particular
model in the ensemble. This helps to prevent bi-
ases on individual models in future uses of the
dataset. Further, the standard deviation and the av-
erage scores can be used to filter instances that the
models disagree on, thus reducing potential noise
in the semi-supervised annotations.

The dataset is labeled using the semi-supervised
manner by assigning a Level A label to all the
tweets. Then, we select the subset of tweets that
are likely to be offensive for all models (BERT
and LSTM > .5, PMI and FT=OFF) as instances
that should be assigned a label for Level B. We
chose the tweets likely to be TIN at Level B with
a standard deviation lower than 0.25 for Level C.
Thus, only the instances that are most likely to be
offensive are considered at Levels B and C, and
only those that are most likely to be offensive and
targeted are considered at Level C. The size and
the label distribution across the datasets can be
found in Table 2 and examples of tweets along
with models’ prediction confidences can be found
in Table 4.

5.3 SOLID Test Dataset

The OLID test set is very small, particularly for
Levels B and C. Therefore, we also annotated a
portion of our held-out 3 million tweets to create
anew SOLID test set to obtain more stable results

and to analyze the performance in more detail.

First, all co-authors of this paper (five annota-
tors) annotated 48 tweets that were predicted to be
OFF in order to measure inter-annotator agreement
(IAA) using Py = . frecment per_amotation
We found TAA to be 0.988 for Level A; an al-
most perfect agreement for OFF/NOT. The IAA
for Level B was 0.818, indicating a good agree-
ment on whether the offensive tweet was TIN/UNT.
Finally, for Level C, the IAA was 0.630, which is
lower but still considered reasonable as Level C
is more complicated due to its 3-way annotation
schema: IND/GRP/OTH. In addition, a tweet may
address targets of different types (e.g., both an in-
dividual and a group), but only one label can be
chosen.

After having observed high IAA, we annotated
additional offensive tweets with a single annotation
per instance. We divided our Level A data into four
portions based on model confidence:

¢ if BERT > .8 A PMI=OFF A FT=OFF A

LSTM > .8 then Easy OFF [2380 tweets]
¢ else if BERT > SAPMI=OFF A FT=O0FF
A LSTM > .5 then Hard OFF [835 tweets]
¢ else if BERT <.2 A PMI=NOT A FT=NOT
A LSTM <.8 then Easy NOT [2500 tweets]
¢ else if BERT < .5A PMI=NOT A FT=NOT
A LSTM < .5 then Hard NOT [278 tweets]
Note, PMI = OFF and FT = OFF designates that
the model’s probability is higher for the OFF class
than for the NOT class. We selected the rest of
the thresholds after a manual examination of the
confidence scores for each model. We chose the
threshold where the model is confident and mostly
correct.
We annotated 3,493 tweets for Level A. The
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# Type Prediction Tweet Gold Label

1  Easy OFF this job got me all the way fucked up real shit OFF UNT

2 Easy OFF @USER It’s such a pain in the ass OFF UNT

3 Easy OFF witf ari her ass tooo big OFF TIN IND
4  Easy NOT This account owner asks for people to think rationally. ~NOT

5 Hard OFF It sucks feeling so alone in a world full of people NOT

6 Hard OFF @USER We are a country of morons OFF TIN GRP
7 Hard NOT Hate the sin not the sinner... NOT

8 Hard NOT Somebody come get her she’s dancing like a stripper OFF TIN IND

Table 5: Example tweets from the SOLID Test dataset and its four subsets. Shown are the difficulty of each subset
(Type), the ensemble model prediction for the examples in each subset (Prediction), an example tweet’s text, and

the manually annotated gold label.

Model Gold Label
Type Prediction @ OFF NOT Total
easy OFF 2,187 193 2,380
easy NOT 0 2,500 2,500
hard OFF 670 165 835
hard NOT 145 133 278
Total 3,002 2,991 5,993

Table 6: Statistics of the SOLID Test dataset grouped
by difficulty (Type) and model prediction.

number of annotations at each level is shown above
in square brackets. Furthermore, to create a com-
plete test dataset for Level A (where we only la-
beled offensive tweets), we also took a random
set of 2,500 Easy NOT tweets. The resulting test
sizes are shown in Table 2. Of the 3,493 annotated
tweets, 491 were determined to be NOT. In total,
there are 5,993 tweets in our test set. In all cases,
all three levels were annotated, but the decision of
whether a tweet in Level B/C is Easy or Hard is
still based on its Level A confidence.

Table 5 shows some tweets and whether they
are Easy OFF/NOT (lines 1-4) or Hard OFF/NOT
(lines 5-8), and Table 6 shows statistics regarding
the Easy and Hard examples in the test dataset.
Note that determining the labels for the Hard ex-
amples is not simple and the model does make
incorrect predictions such as in lines 5 and 8 of Ta-
ble 5. In fact, 25% of the Hard OFF tweets that we
annotated were NOT. In contrast, 8% of the Easy
OFF tweets were judged to be NOT.

6 Experiments and Evaluation

In this section we describe our experiments and
results when training with OLID + SOLID data
compared to just OLID on the OLID test set.
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6.1 Experimental Setup

We used the BERT and FastText models from the
semi-supervised annotation set up to estimate the
performance improvements when training on the
supervised dataset OLID together with the semi-
supervised SOLID. The models in all sets of exper-
iments were fine-tuned on a 10% validation split
of the training set used during co-training. We
explored different schemes to combine OLID and
SOLID, as well as different thresholds for the con-
fidence of the instances in SOLID. We achieved im-
provements for Levels B and C by upsampling the
underrepresented classes: we sampled K instances
of each class, where K is the number of instances
for the most frequent class. We also removed the
warm-up in Levels B and C, which improved the
results further.

FastText. The FastText model used an external
command-line tool without control over the train-
ing. Therefore, we merged the training splits of
OLID and SOLID, randomly shuffled them, and
trained models with the combined dataset. The
FastText model has the same parameters used
above in co-training.

BERT. Due to the computational requirements of
BERT, we subsampled 20,000 tweets from SOLID
in Level A and B for BERT. Including more semi-
supervised instances did not improve the perfor-
mance. During training, we used SOLID in the first
epoch and OLID in the following two epochs for
Level A. Using SOLID after training with OLID
yielded worse results. We assume this can be ex-
plained by the fact that the semi-supervised dataset
by construction contains labels that are not golden
truth. It can be used as an initial step to guide
the model towards a better local minimum. On
the other hand, we conjecture that the supervised



Level Baseline BERT FastText
¥ iN¢ OLID +SOLID OLID +SOLID

A 0419 0.816 0.809 0.662 0.720
B 0470 0.687 0.729 0.470 0.591
C 0214 0.589 0.643 0.590 0.515

Table 7: Macro-F1 score on the OLID test set for BERT
and FastText with and without training on SOLID com-
pared to the majority class baseline.

dataset is better suited for fine-tuning the model
towards the local minimum with the gold data, par-
ticularly in Level A, where the training split of
OLID is already sufficient for training BERT. For
Levels B and C, we trained for two epochs with
the training split of OLID and then for one epoch
with SOLID. At Levels B and C, we observed that
training with SOLID in the first epochs and then
fine-tuning with OLID did not improve the perfor-
mance. Furthermore, training with OLID and then
using SOLID for the final epochs yielded substan-
tial performance improvements. We assume this is
due to the small training size of OLID which can
cause the model to overfit to a suboptimal local
minimum when used in the final training epochs.

Selecting SOLID Instances. We filter the train-
ing instances from SOLID to be the most confident
examples based on the average probability score
provided in SOLID when training with FastText
and BERT. We choose the threshold for the average
confidence score based on the validation dataset as
follows:

Level A: avg(OFF) <0.20 U avg(OFF) >0.70

Level B: avg(UNT) <0.35 U avg(UNT) >0.65

Level C: avg(IND) > 0.80 U avg(GRP) >
0.70 U avg(OTH) > 0.65
To select a label for each instance, we choose: NOT
when avg(OFF) < 0.20, otherwise OFF in Level
A; UNT when avg(UNT) > 0.65, otherwise TIN
in Level B; the class with the highest probability in
Level C.

6.2 OLID Results

In this section we describe our results on the OLID
test set using just OLID and adding SOLID. The
results are shown in Table 7.

The results for Level A are improved only with
FastText, which is a weaker model (see Table 3). It
leverages a large performance improvement when
trained with OLID+SOLID. On the other hand, the
BERT model already achieves high performance
without augmenting OLID with SOLID because

. BERT FastText
Model  Baseline ., /" corip  oLID +SOLID
Full 0338 0922 0923 0856 0.860
A Easy 0.400 0983 0.983 0936 0.940
Hard 0.444 0557 0570 0525 0.536
Full 0.236 0559 0.666 0355 0.493
B Easy 0232 0569 0.677 0349 0.509
Hard 0.234 0542 0.649 0363 0.467
Full 0203 0.627 0.645 0387 0.504
C Easy 0.201 0.635 0.644 0378 0.504
Hard 0.205 0.616 0.649 0397 0.505

Table 8: Experimental results (macro-F1 scores) on the
SOLID Test dataset, and on its Easy and Hard subsets,
compared to the majority class baseline.

OLID is large enough for Level A. As a result,
including semi-supervised data did not improve
the performance. Our findings are in line with the
study of Longstaff et al. (2010), who observed
that democratic co-training performs well when the
initial classifier’s accuracy was low.

The OLID training dataset is smaller for Level B,
and the task is more complex. Moreover, the Fast-
Text model here performs on par with the majority
class baseline. Augmenting OLID with SOLID
yields performance improvements for both models.
We achieve an improvement of 0.042 points for
BERT and a large margin of improvement of 0.121
points for FastText.

Finally, in Level C, the supervised OLID data
is even smaller, and the complexity of the subtask
is more pronounced, mainly due to it having three
possible labels. Interestingly, using SOLID for Fast-
Text does not yield better results. This might be due
to the model already achieving high performance
on par with BERT (see Table 3), while democratic
co-training performs well when the initial classi-
fier’s performance is low. Additionally, this may
be due to the instability of the test set for Level C,
which is very small. On the other hand, the SOLID
data helps the BERT model by a large margin of
0.054 points.

6.3 SOLID Results

In the previous section, we showed noticeable im-
provements on the OLID dataset using SOLID.
However, OLID is small (particularly for Levels B
and C). Showcasing the performance on a larger
test set, SOLID test, is important for estimating
the models’ stability. We also focus on Easy vs.
Hard examples (based on the confidence computed
during co-training) to gain better insight into why
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some tweets are easier to predict as offensive than
others. Results are shown in Table 8 and signifi-
cantly beat the majority baselines.

The overall Level A results on SOLID test are
92.3% and 86.0% macro-F1 for BERT and Fast-
Text, respectively, with a small improvement when
OLID is augmented with SOLID for FastText only.
This is consistent with what we found on the OLID
test set. Note that the full results for Level A are
much better than on the OLID dataset in Table 7.
We expect that this is partially due to our selection
of tweets for the new test set, indicating that there
are more Easy tweets in it. Similar findings to the
full test set occur with the Easy tweets, but the
scores are even higher. On the other hand, for the
Hard tweets, the results are much lower at 57% and
53.6% for BERT and FastText, respectively. Using
SOLID yields a nice improvement for both models
on the Hard tweets, which was not evident in the
OLID test set in Table 7.

To provide further insight into why the results
are so high for Easy OFF tweets in Level A, we im-
plemented a curse word baseline using the absence
or presence of 22 curse words like fuck, bitch, and
nigga. A full list of the curse words used in the
baseline can be found in Appendix A.1. We found
that most Easy tweets were classified correctly with
this baseline with 93.6% F1-score. In contrast, the
curse word baseline was not effective on the hard
examples, just like the BERT and FastText models.
It achieved a macro-F1 score of 58%, which is one
point higher than the BERT result. The BERT and
FastText models are clearly overfitting to the curse
words. The hard tweets are offensive due to other
language use such as negative biases rather than the
appearance of a curse word such as examples 6 and
8 in Table 5. Classifying these tweets successfully
remains an open challenge.

The difference between Easy OFF/NOT and
Hard OFF/NOT tweets is less pronounced for Lev-
els B and C. The curse word imbalance may have
a small impact on the lower levels as UNT tweets
are more likely to contain curse words. In all cases,
including SOLID with OLID for Levels B and C
yields a nice improvement, indicating that the larger
test set can better showcase the improvements, lead-
ing to more stability. The results for Levels B and C
vary greatly for the two models compared to those
on the OLID test set in Table 7, which points to the
challenges of having a very small test set.

7 Conclusion and Future Work

We presented SOLID, a large-scale semi-supervised
training dataset for offensive language identifica-
tion, which we created using an ensemble of four
different models. To the best of our knowledge,
SOLID is the largest dataset of its kind, contain-
ing nine million English tweets. We have shown
that using SOLID yields noticeable performance
improvements for Levels B and C of the OLID an-
notation schema, as measured on the OLID test set.
Furthermore, in contrast to using keywords, our
approach allows us to distinguish between Hard
and Easy offensive tweets. The latter enables us
to have a deeper understanding of offensive lan-
guage identification and indicates that detecting
Hard offensive tweets is still an open challenge.
Our work encourages safe and positive places on
the web that are free of offensive content, espe-
cially non-obvious cases (i.e., Hard). SOLID is the
official dataset of the SemEval shared task Offen-
sEval 2020 (Zampieri et al., 2020). In the future,
we would like to provide insights and methods for
categorizing Hard tweets.
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download public tweets and we provide only the
user ids of the tweets to ensure that deleted tweets
will no longer be available in our dataset. Further,
in all our examples in this paper, we anonymize
the user names in the tweets. Since no private in-
formation is stored, IRB approval is not required.
All annotations were performed internally by the
authors of the paper.

Biases SOLID is a large-scale semi-supervised
dataset for offensive language detection We note
that determining whether a piece of text is offensive
can be subjective, and thus it is inevitable that there
would be biases in our gold-labeled data. It is
expected that these biases will, therefore, also be
present in the semi-supervised dataset we generated
from such tweets.

While we cannot ensure that no biases occur in
the gold data, we address these concerns by fol-
lowing a well-defined schema, which sets explicit
definitions for offensive content during annotation.
Our high inter-annotator agreement makes us con-
fident that the assignment of the schema to the data
is correct most of the time.

Using semi-supervised techniques to create a
large dataset, SOLID, can cause the biases found in
the gold data to be expanded further. We mitigate
this in two ways. First, we gather tweets based
on the most frequent words in English to ensure a
random set of initial tweets. Next, we construct an
ensemble of models with diverse inductive biases
to label the target tweet, which can help to ame-
liorate the individual model biases and to produce
predictions with a lower degree of noise. At test
time, we aim to have a meaningful ratio of offen-
sive and non-offensive tweets based on a random
collection of tweets. We also label all test offensive
tweets manually. The aim of these steps was to
help reduce the potential biases. Please refer to
Section A.2 of the Appendix for some analysis that
indicates the diversity of the models.

We acknowledge that current semi-supervised
techniques do not address the problem of the bias
inherent in the semi-supervised data coming from
the supervised source model(s), which can also
be studied in future work. Further, we acknowl-
edge that biases can still exist in the ratio of
offensive/non-offensive tweets. The size of the
data and the method of collection for the SOLID
dataset mean that biases are hard to avoid.

In addition, offensive language can vary depend-
ing on demographics, such as the gender of the

924

targeted individual and the target can even be a par-
ticular gender group. Such biases that are present
in natural language data (Olteanu et al., 2019) is an
attractive future study.

Misuse Potential Most datasets compiled from
social media present some risk of misuse. We there-
fore ask researchers to be aware that the SOLID
dataset can be maliciously used to unfairly mod-
erate text (e.g., a tweet) that may not be offensive
based on biases that may or may not be related
to demographics and other information within the
text. Intervention with human moderation would
be required in order to ensure this does not occur.

Intended Use We present SOLID to encourage
research in automatically detecting and stopping
offensive content from being disseminated on the
web. Such systems can be used to alleviate the bur-
den for media moderators, which can suffer from
psychological disorders due to the exposure of ex-
tremely offensive content. Improving the perfor-
mance of offensive content detection systems can
decrease the amount of work for moderators, but
human supervision is required for more intricate
cases and to ensure that the system is not caus-
ing harm. With the possible ramifications of a
highly subjective dataset, we distribute SOLID for
research purposes only, without a license for com-
mercial use. Any biases found in the dataset are
unintentional, and we do not intend to cause harm
to any group or individual.

We believe that this dataset is a useful resource
when used in the appropriate manner with great
potential to improve the performance of current
offensive content detection systems.
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A Appendices

A.1 Data Collection and Analysis

Section 5.1 we described our method for collect-
ing tweets. We collect tweets using the most fre-
quent English words based on the large monolin-
gual Project Gutenberg corpus.® Table 9 shows
the top-20 most frequent words in the corpus and
their frequency which we used to collect tweets.
The normalized value is the percentage of the total
frequency for all top 20 words. We randomly pick
a number between 0 and 1, and choose the word
based on the normalized value. For example, .45
would be “and”.

In Section 6.3, we discussed the simple curse word
baseline used to analyze the Easy OFF/NOT tweets.
Table 10 lists the 22 curse words used in the base-
line.

A.2 Implementation Details

The fine-tuning of the models was performed on a
10% split from the OLID dataset. All models were
trained on an NVIDIA Titan X GPU with 8GB of
RAM.

$https://en.wiktionary.org/wiki/Wikti
onary:Frequency_lists#Project_Gutenberg
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w frequency norm. w frequency norm.
the 56,271,872 020 it 8,058,110 0.79
of 33,950,064 032 with 7,725,512 0.82
and 29,944,184 043 is 7,557,477  0.85
to  25956,096 052 for 7,097,981  0.87
in 17,420,636  0.58 as 7,037,543 0.90
i 11,764,797  0.63 had 6,139,336  0.92
that 11,073,318 0.67 you 6,048,903 0.94
was 10,078,245 0.70 not 5,741,803  0.96
his 8,799,755 0.73  be 5,662,527  0.98

he 8,397,205 0.76  her 5,202,501  1.00

Table 9: The top-20 most frequent English words (w).
Norm. 1is the normalized value based on the total fre-
quency of all the top words. The random number gener-
ated between 0 and 1 determines which word is chosen.

ass arse wtf Imao  fuck
bitch nigga nigger cunt effing
shit hell damn crap  bastard
idiot  stupid racist dumb f*ck
pussy dick

Table 10: The 22 common offensive terms used in the
curse word baseline.

The evaluation metric used for all experiments is
macro F1 from scikit-learn.’. The performance
of the models in the ensemble used for semi-

supervised labelling is provided in Table 11.

Model A B C
BERT 0.788 0.610 0.577
PMI 0.772 0.595 0.536
LSTM 0.599 0.599 0.579
FastText 0.672 0.489 0.456

Table 11: F1 score performance of each model used in
the ensemble on the validation dataset of Levels A, B,
and C.

In Table 12 we show the agreement of the models
for the task prediction. For Levels A and B, it is
more common that all four models agree, while in
Level C, there are more cases when at least one
model disagrees with the rest models. Furthermore,
in Level A, there are almost no cases when the de-
cision is tied with two models disagreeing with the
other two. Finally, as in Level C, the performance
of the models is lower, the disagreement between
the models in the ensemble is the largest and it
is least common for all four models to agree on

‘https://scikit-learn.org/stable/modu
les/generated/sklearn.metrics.fl_score.h
tml
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a prediction. Given the observed agreement rates,
we conclude that there is considerable variance in
the predictions across the models, especially for
the lower levels. We assume this indicates that the
separate models have different rationales to a cer-
tain degree, which can be avoided by the ensemble
combination of the models.

N A B C

4 0517 0598 0.249
3 0392 0275 0417
2 0.091 0.127 0.335

Table 12: Percentage of instances where N models
agree for a predicted label of an instance, N € {2, 3,4},
for Levels A, B, and C.
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