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Abstract

Cognate prediction is the task of generating, in
a given language, the likely cognates of words
in a related language, where cognates are
words in related languages that have evolved
from a common ancestor word. It is a task
for which little data exists and which can aid
linguists in the discovery of previously undis-
covered relations. Previous work has applied
machine translation (MT) techniques to this
task, based on the tasks’ similarities, with-
out, however, studying their numerous differ-
ences or optimising architectural choices and
hyper-parameters. In this paper, we inves-
tigate whether cognate prediction can bene-
fit from insights from low-resource MT. We
first compare statistical MT (SMT) and neural
MT (NMT) architectures in a bilingual setup.
We then study the impact of employing data
augmentation techniques commonly seen to
give gains in low-resource MT: monolingual
pretraining, backtranslation and multilingual-
ity. Our experiments on several Romance lan-
guages show that cognate prediction behaves
only to a certain extent like a standard low-
resource MT task. In particular, MT architec-
tures, both statistical and neural, can be suc-
cessfully used for the task, but using supple-
mentary monolingual data is not always as ben-
eficial as using additional language data, con-
trarily to what is observed for MT.

1 Introduction

The Neogrammarians (Osthoff and Brugmann,
1878) formalised one of the main hypotheses of
the then recent field of comparative linguistics, the
regularity of sound changes: if a phone in a word, at
a given moment in the history of a given language,
evolves into another phone, then all occurrences of
the same phone in the same phonetic context in the
same language evolve in the same way.

Sound changes are usually identified by look-
ing at the attested (or hypothesised) phonetic form

of specific sets of words, called cognates, whose
definition varies in the literature depending on the
field.! We use an extension of the customary defini-
tion used in historical linguistics, as described for
instance in (Hauer and Kondrak, 2011; List et al.,
2017), which is the following: given two languages
with a common ancestor, two words are said to be
cognates if they are an evolution of the same word
from said ancestor, having undergone the sound
changes characteristic of their respective languages’
evolution. We extend it by also allowing the an-
cestor word (from the parent language) to also be
considered a cognate. For example, Latin bonus
‘good’ gave Italian buono ‘id.’, Spanish bueno ‘id.
and Spanish bono ‘id.” by inheritance, and they are
all cognates, whereas Spanish abonar ‘to fertilise’,
obtained by derivation, is related but not a cognate

(Figure 1).
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Figure 1: Related words in Italian and Spanish, both
the outcome of Latin bonus ‘good’. Plain arrows rep-
resent inheritance, dotted arrows derivation. “?” indi-
cates that the word is not present in our database.

Cognate identification (finding cognate pairs in
a multilingual word set) and prediction (producing

!Cognates have for example been defined as words sharing
spelling and meaning, regardless of their etymology (Frunza
and Inkpen, 2006, 2009), or words etymologically related no
matter the relation (Hamaildinen and Rueter, 2019).



likely cognates in related languages) are two of the
fundamental tasks of historical linguistics. Over
the last three decades, automatic cognate identifica-
tion has benefited from advances in computational
techniques, first using dictionary-based methods
(Dinu and Ciobanu, 2014) and purely statistical
methods (Mitkov et al., 2007; McCoy and Frank,
2018), then statistical methods combined with clus-
tering algorithms (Hall and Klein, 2010, 2011; List
etal., 2017; St Arnaud et al., 2017), statistical meth-
ods combined with neural classifiers (Inkpen et al.,
2005; Frunza and Inkpen, 2006, 2009; Hauer and
Kondrak, 2011; Dinu and Ciobanu, 2014) and neu-
ral networks only (Ciobanu and Dinu, 2014; Rama,
2016; Kumar et al., 2017; Soisalon-Soininen and
Granroth-Wilding, 2019).

Automatic cognate prediction is less studied de-
spite its interesting applications, such as predict-
ing plausible new cognates to help field linguists
(Bodt et al., 2018) and inducing translation lexicons
(Mann and Yarowsky, 2001). In the last few years,
it has been approached as an MT task, as it can be
seen as modelling sequence-to-sequence correspon-
dences. Using neural networks has been promising
(Beinborn et al., 2013; Wu and Yarowsky, 2018;
Dekker, 2018; Haméldinen and Rueter, 2019; Four-
rier and Sagot, 2020a), although in most works the
hyper-parameters of the neural models were not
optimised. Moreover, the differences between MT
and cognate prediction have not been studied.

In this paper, we choose to study the application
of MT approaches to the cognate prediction task.
Our aim is to investigate whether the task can ben-
efit from techniques commonly seen to improve
standard low-resource MT. We first highlight the
specific characteristics of cognate prediction, and
(to our knowledge) provide the first detailed analy-
sis of the expected differences with standard MT.
We then compare MT architectures (bilingual SMT
vs. bilingual and multilingual NMT) when applied
to cognate prediction. We study how to leverage
extra data in our NMT models, either monolingual
(via backtranslation or pretraining) or multilingual
(introducing new languages). We experiment with
Latin and its Romance descendants Spanish and
Italian for all our experiments, as well as added
French and Portuguese in a data augmentation set-
ting. We find that cognate prediction is only similar
to standard MT to a certain extent: the task can be
modelled well using standard MT architectures (ad-
justed for a low-resource setting), and extending

neural architectures to a multilingual setting signif-
icantly improves the results. In such multilingual
settings, further improvements can be obtained by
leveraging data from extra languages. However,
using extra monolingual data via backtranslation
or pretraining is not always as beneficial as it is in
standard MT settings.?

2 Related Work

2.1 Cognate Prediction

Cognate prediction is the task that aims to produce
from words in a source language plausible cognates
in a target language (according to the aforemen-
tioned definition of cognates). It is a lexical task
that models regular, word-internal sound changes
that transform words over time. It has been ap-
proached with phylogenetic trees combined with
stochastic sound change models (Bouchard et al.,
2007; Bouchard-Coté et al., 2009; Bouchard-Coté
et al., 2013), purely statistical methods (Bodt et al.,
2018), neural networks (Mulloni, 2007), language
models (Hauer et al., 2019) and character-level
MT techniques (Beinborn et al., 2013; Wu and
Yarowsky, 2018; Dekker, 2018; Hamilédinen and
Rueter, 2019; Fourrier and Sagot, 2020a; Meloni
et al., 2021), because of its similarity to a transla-
tion task (modelling sequence-to-sequence cross-
lingual correspondences between words).

2.2 Low-resource MT

Since data is scarce, we postulate that cognate pre-
diction could benefit from low-resource MT set-
tings techniques and architectural choices.

2.2.1 Architecture Comparison

Several papers comparing SMT with NMT (recur-
rent neural networks (RNNs) with attention) in
low-resource settings conclude that SMT performs
better, being more accurate and less prone to over-
fitting (Skadina and Pinnis, 2017; Dowling et al.,
2018; Singh and Hujon, 2020). However, as Dowl-
ing et al. (2018) themselves note, they did not op-
timise hyper-parameters for NMT. Sennrich and
Zhang (2019) analysed and reproduced previous
comparisons, to conclude that SMT can actually
be outperformed by NMT when architectures and
hyper-parameters are carefully chosen, but only
above a certain quantity of data.

*Both our code and data are freely available at http:
//github.com/clefourrier/CopperMT.
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2.2.2 Leveraging Extra Data

Several techniques are commonly used in low-
resource MT to mitigate the lack of parallel data:
monolingual pretraining, backtranslation and using
data from additional languages.

Monolingual pretraining (unsupervised) has,
as in other NLP tasks, been highly beneficial to
MT (Song et al., 2019; Conneau and Lample, 2019;
Devlin et al., 2019; Liu et al., 2020). Before train-
ing on a translation task, model parameters are first
pretrained using a language modelling objective,
which enables the exploitation of monolingual data,
more freely available than bilingual data.

Backtranslation originated in SMT (Bertoldi
and Federico, 2009; Bojar and Tamchyna, 2011),
and has been standard in NMT for several years
(Sennrich et al., 2016; Edunov et al., 2018). Its
goal is to artificially create larger quantities of par-
allel data from monolingual datasets, which are
often more readily available. Target-side monolin-
gual data is provided to a bilingual model trained
in the opposite direction (target-to-source), which
produces synthetic source-side data. The data is
then filtered to keep the highest quality sentences.
The newly generated dataset, made of synthetic
source-side data parallel to real target-side data is
then combined with the original bilingual set to
train a new model.

Training multilingual NMT models has been
shown to help low-resource scenarios by pro-
viding data in other languages and constraining
the hidden representations to a shared, language-
independent space. The amount of sharing between
languages varies according to the approach, from
multi-encoder, multi-decoder architectures (Luong
et al., 2016), optionally sharing attention mecha-
nisms (Firat et al., 2016a), to approaches with a
single shared encoder and decoder (Ha et al., 2016;
Johnson et al., 2017).

3 Differences between Cognate
Prediction and MT

Cognate prediction and MT both focus on learning
sequence-to-sequence correspondences. However,
amongst the works using MT techniques for cog-
nate prediction, little attention has been paid to their
differences; the underlying linguistic assumptions
and aims are quite distinct, which could impact the
transferability of choices and techniques from MT.

Representation Units MT processes sentences
split into individual (graphemic) units that can be of

diverse granularity levels (characters, subwords or
words). Cognate prediction, on the other hand, in-
volves predicting sound correspondences from one
cognate word to another, and so is best modelled us-
ing sequences of phones (like character-level MT).

Reordering and Alignment In MT, the corre-
spondence between source and target sentences
can involve long-distance reorderings, whereas
the reorderings sometimes found in the correspon-
dence between cognates are almost always local
(e.g. metatheses). We therefore expect SMT, which
is somewhat limited with respect to the modelling
of long-distance context, to be less penalised in
the cognate prediction setting than it usually is a
standard MT setting.

Sample Length The input sequence to MT is
the sentence, whereas for cognate prediction it is
the word. Even with different segmentation gran-
ularities for MT, the average sequence length is
generally much shorter for cognate prediction than
for MT. Again, this could mean that SMT is less
penalised than it is in the standard MT setup.

Modelled Relations MT involves symmetrical
relations between sentences, whereas cognate pre-
diction, as defined above, is inherently ambiguous
in a counter-intuitive way (especially because it
is structurally different from the usual MT ambi-
guity, where many valid translations exist for the
same input). The cognate task models both sym-
metrical and asymmetrical relationships between
cognates: parent-to-child (e.g. LA—ES), i.e. mod-
elling sequences of regular sound changes, is non-
ambiguous, whereas child-to-parent (e.g. ES—LA)
and as a result, child-to-child (e.g. IT<+ES) is in-
trinsically ambiguous, as two distinct sounds in the
parent language can result in the same outcome in
the child language. When two distinct sounds in the
child language are the outcome of the same sound
in the parent language, it is always because their
(word-internal) phonetic contexts were different in
the parent language. In other words, the parent-to-
child direction is (virtually) non-ambiguous, but
might require taking the phonetic context into ac-
count. However, the child-to-parent direction is
intrinsically ambiguous, which results from the
fact that a sound in the child language can be the
regular outcome of more than one sound in the par-
ent language: for instance Spanish /b/ comes from
Latin /p/ in abria (from Latin aperire) but from
Latin /b/ in habria (from Latin habed).



Ambiguity Management When using cognate
prediction as a tool to aid linguists, as in (Bodt
and List, 2019), our aim is not to predict the single
correct answer, but to provide a list of plausible
candidates. In MT however, while many transla-
tions can be produced by the model (some better
than others—including poor ones), it is possible
to simply use the best ranked translation. In cog-
nate prediction, as a consequence of the inherent
ambiguity of the task discussed above, at most one
prediction is correct, other predictions could have
been correct (i.e. they are compatible with the pho-
netic laws involved), while other predictions are
incorrect. A linguist would be interested in all
correct or plausible predictions, not just the best
ranked one, and there is therefore a need for n-best
prediction.

Relevance of Leveraging Extra Data Whereas
MT models could theoretically be trained on any
sentence pair that are translations of each other,
cognate prediction is far more limited in terms of
which data can be used; cognacy relations only
link a limited number of words in specific language
pairs, limiting not only available parallel data but
also the potential for synthetic data (e.g. via back-
translation). Using generic translation lexicons
may help, but, as they do not only contain cognate
pairs, all non-cognate pairs they contain (parallel
borrowings from a third language and etymologi-
cally unrelated translations) are effectively noise
for our task (Fourrier, 2020).

4 Experimental setup

Bearing in mind these differences, we seek to deter-
mine whether MT architectures and techniques are
well suited to tackling the task of cognate predic-
tion, paying attention to avoid the pitfalls raised by
Sennrich and Zhang (2019) by carefully selecting
architecture sizes and other hyper-parameters.

For our baselines, we train several character-
level> MT models (SMT vs. RNNs and Transform-
ers) in a bilingual setup, training a single model for
each language pair.

We then assess the impact of techniques com-
monly used to improve MT in low-resource scenar-
ios. We first investigate the impact of using mono-
lingual data for all 3 architecture types, via pretrain-
ing and backtranslation,* then take advantage of

3We use here the customary term “character-level MT,”
although in our case, characters correspond to phones.
*We detail what pretraining and backtranslation means for

the ability of NMT to accommodate multilingual
architectures to experiment with a multi-encoder
multi-decoder architecture (Firat et al., 2016b) in-
volving all language directions.

Finally, we test whether there can be any benefit
from combining multilinguality with either pre-
training or backtranslation.

4.1 Data

Our datasets (detailed below) are bilingual cognate
lexicons for all our experiments, extended with
monolingual lexicons for backtranslation and pre-
training (see Table 1). As we focus on sound corre-
spondences, we phonetise our datasets. Each word
is phonetised into IPA using espeak (Dudding-
ton, 2007-2015), then cleaned to remove diacritics
and homogenise double consonant representations.
For example, conocer ‘to know’ is phonetised as
[konoBer], then split into phones (segmented into
[k,0,n, 0,0, ¢, r]).

BILINGUAL | LA-IT LA-ES ES-IT
#words 5,109 4,271 1,804
#phones 77,771 63,131 24,576
#Unique phones 34 39 38
Avg. word length 7.62 7.40 6.81
MONOLINGUAL | ES IT LA
#words 78,412 99,949 18,639
#phones 626,175 815,562 142,955
#Unique phones 38 40 29
Word length 7.98 8.24 7.67

Table 1: Dataset statistics for our lexicons.

Bilingual Lexicons Our bilingual cognate lex-
icons contain cognate pairs (between 657 and
5,109 depending on the language pair), extracted
from the etymological database EtymDB2 (Four-
rier and Sagot, 2020b) following (Fourrier and
Sagot, 2020a) for extraction and duplicate manage-
ment, then phonetised as described above. We use
the lexicons containing Latin, Italian and Spanish
(LA-IT, LA-ES, ES-IT) in all experiments. They
respectively contain 5,109, 4,271 and 1,804 words
for a total of 77,771, 63,131 and 24,576 phones
(ES-IT being considerably smaller), with on aver-
age 40 different and unique phones.

We run all experiments on three different
train/dev/test splits in order to obtain confidence
scores. For the bilingual (baseline) and multilin-
gual setups, each split is obtained by sampling sen-
tences 80%/10%/10% randomly.

our SMT models in Section 4.4.



Monolingual Lexicons Monolingual datasets
are used for the monolingual pretraining and back-
translation experiments. They were extracted from
a multilingual translation graph, YaMTG (Hanoka
and Sagot, 2014), by keeping all unique words
for each language of interest. To remove noise,
words containing non-alphabetic characters were
discarded (punctuation marks, parentheses, etc.).
The final datasets (cleaned and phonetised) contain
between 18,639 and 99,949 unique words (the LA
set is more than 4 times smaller than the others).

4.2 MT Architectures
4.2.1 SMT

We train a separate SMT model for each language
direction using the MOSES toolkit (Koehn et al.,
2007). Our bilingual training data is aligned with
GIZA++ (Och and Ney, 2003). The target data for
the pair is used to train a 3-gram language model us-
ing KenLM (Heafield, 2011). We tune our models
using MERT based on BLEU on the dev set.

4.2.2 NMT

We compare two encoder-decoder NMT models:
the RNN (bi-GRU) with attention (Bahdanau et al.,
2015; Luong et al., 2015) and the Transformer
(Vaswani et al., 2017). We use the multilingual
Transformer implementation of fairseq (Ott
et al., 2019), and extend the library with an imple-
mentation of the multilingual RNN with attention
(following the many-to-many setting from (Firat
et al., 2016a) but with separate attention mecha-
nisms for each decoder).’ Each model is composed
of one encoder per input language, and one decoder
(and its own attention) per output language.® We
train each model for 20 epochs (which is systemati-
cally after convergence), using the Adam optimiser
(Kingma and Ba, 2015), the cross-entropy loss, and
dev BLEU as selection criterion.

4.2.3 Hyper-parameter Selection

We ran optimisation experiments for all possible
bilingual and multilingual architectures, using three
different data splits for each parameter combination
studied, and choosing the models performing best

>These implementations are used in all setups, bilingual
(using one language as source and one as target) as well as
multilingual.

®Ina multilingual setup, encoders, decoders and attention
mechanisms can either be shared between languages or be
language-specific. In preliminary experiments, using indepen-
dent items proved to be the most effective. We also observe
that a coherent phonetic embedding space is learned during
training (described in Appendix A.2).

across seeds. Our initial parameters were selected
from preliminary experiments (in bold in Table 2).

Values studied

{0.01, 0.05, 0.001}

x {10, 30, 65, 100}

{8, 12, 16, 20, 24}

x {18, 36, 54,72}
1,2,4

1,2,3,4

None, Bahdanau, Luong
(dot, concat, general)

Parameters

1) Learning rate x Batch size
2) Embed. dim. x Hidden dim.
3) Number of layers

4) Number of heads
4) Attention type

Table 2: Parameter exploration experiments for NMT
models. In bold, the initial parameters at each step.

Table 2 contains the successive parameter ex-
ploration steps: at the end of a step, we automat-
ically selected (according to average dev BLEU)
the step-best value, used as input parameter for the
next parameter exploration step.” The final best
parameters are given in Appendix A.1. Smaller
learning rates (0.005 and 0.001) are better, while
there is no observable pattern to the best batch sizes
or numbers of layers. Interestingly, however, for
the RNNs, the best results are obtained with the
highest hidden dimension irrespective of the em-
bedding size (72 vs. 20 or 24), whereas, for the
Transformers, best results are obtained with the
largest embedding size irrespective of the hidden
dimension (24 vs. 54 or 72). Increasing the number
of layers or using more than 1 head almost always
increases performance.

4.3 Evaluation

For our task, we use the most commonly used MT
evaluation metric, BLEU (Papineni et al., 2002), us-
ing the sacreBLEU implementation (Post, 2018).
It is based on the proportion of 1- to 4-grams in the
prediction that match the reference.

In standard MT, BLEU can under-score the many
valid translations that do not match the reference.
For cognate prediction, however, we expect a sin-
gle correct prediction in most cases (there are a few
exceptions such as variants due to gender distinc-
tions specific to the target language). This makes
BLEU better suited to the cognate prediction task
than it is to standard MT.

"When looking at multilingual models, we chose the model
performing best on most languages, as measured by comparing
the sum of the ranks (according to their average performance
per language) of each model over all language pairs.

8BLEU is also more adapted than an exact match, as it
allows us to compare how close the prediction is to the refer-

ence and in cognate prediction does not suffer from the same
problems as in standard MT.



4.4 Leveraging Extra Data

Monolingual pretraining For NMT, one way to
take advantage of additional monolingual data is
to teach the model to “map” each language to it-
self by using an identity function objective on the
monolingual data for the model’s target language.’
Using monolingual target data during pretraining
allows each target decoder to have access to more
target data (which avoids overfitting), while we ex-
pect it to be beneficial to encoders too, since our
source and target languages tend to share common
sound patterns in cognate prediction, being closely
related. In practice, we pretrain the model for 5
epochs'® using the identity function objective to-
gether with the initial cognate prediction objective
(on the original bilingual data) and then fine-tuned
on the cognate task as before for 20 epochs.

For SMT, model parameters cannot be pretrained
as in NMT, so in the guise of pretraining, we take
the nearest equivalent: we use target-side monolin-
gual data to train an extra language model.

For each language pair, the monolingual dataset
we use is composed of 90% of the target monolin-
gual data. The bilingual data is the same as before.

Backtranslation For each architecture type, we
use the previously chosen models to predict 10-
best results for each seed from the monolingual
target-side data, and construct synthetic cognate
pairs from monolingual lexicons and source-side
predictions. For each word, we keep the first pre-
diction of the 10 that also appears in the relevant
monolingual source language lexicon as our new
source, and the initial source as target (this is akin
to filtering back-translated data (e.g. to in-domain
data) in MT, a standard practice). We discard pairs
with no prediction match.

This large back-translated bilingual dataset is
extended with our original training set. For NMT,
it is used to train a new model for 10 epochs,'’
which is then fine-tuned for 20 epochs with the
original bilingual training set. For SMT, it is used
(instead of the original bilingual data) to train a
new phrase table.

Multilingual NMT We exploit the fact that
NMT can readily be made multilingual by training
a single model on all language directions at once.

“For the multilingual model, this means that every encoder
will see data from all languages, whereas each decoder will
only see data from its specific language.

!0This number of epochs is systematically big enough to
reach convergence.

5 Results
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Figure 2: BLEU scores. Colours indicate the model
type: RNNs in orange (col 1 to 4), Transformers in
blue (col 5 to 8), SMT in green (col 9 to 11). Colour
shades indicate the value of n in n-best predictions (1,
2, 3, 5 and 10 from bottom to top). The letters (x-axis)
indicate the setup: S - standard/bilingual, P - with pre-
training, B - with backtranslation, M - multilingual.
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5.1 Baseline: Bilingual setup

1-best Results At a first glance (Figure 2, “S”
columns), SMT and RNN appear to have rela-
tively similar results, varying between 58.1 and
76.9 BLEU depending on the language pair, outper-
forming the Transformer by 5 to 15 points on av-
erage. However, SMT performs better for IT<+ES
(pair with the least data), and RNNs for the other
pairs. This confirms results from the literature in-
dicating that SMT outperforms NMT when data
is too scarce, and seems to indicates that the data
threshold at which NMT outperforms SMT (for our
Romance cognates) is around 3,000 word pairs for
RNNSs, and has not been reached for Transformers.

n-best Results The BLEU scores for NMT and
SMT increase by about the same amount for each
new n (n < 10), reaching between 79.3 and 91.9
BLEU score at n = 10 for RNN and SMT. The
Transformer, however, does not catch up.

5.2 Leveraging Extra Data
5.2.1 Pretraining, backtranslation

Both pretraining the models and using backtransla-
tion (Figure 2, “P” and “B” columns) increase the
results of the Transformer models by 1 to 9 points,
though they are still below the RNN baseline. It
is likely the added monolingual data mitigates the
effect of too scarce bilingual sets. The impact on
RNN performance is negligible for most language
pairs, apart from the lowest resourced one (ES-IT),
for which backtranslation increases results. Lastly,
these methods seem to mostly decrease SMT per-
formance, due to noisy data diluting the original
(correct) bilingual data (cf. Section 3); this is less
of a problem for NMT models, because they are
then fine-tuned on the cognate task specifically.

5.2.2 Multilinguality

Data augmentation through a multilingual setup
(Figure 2, “M” columns) seems to be the most
successful data augmentation method for RNNs
(increasing performance almost all the times), and
allows them to finally outperform bilingual SMT
for the least-resourced pair as well (ES<+IT). The
Transformers benefit less from this technique than
from adding extra monolingual data, apart for
ESIT, most likely for the same reason as ear-
lier: this dataset being the smallest, adding words
in ES and IT from other language pairs helps to
learn the translation and stabilises learning. This
technique is not applicable to SMT.

Impact of the Translation Direction We ob-
serve that the for child-to-parent directions (ES
or IT to LA), backtranslation is almost as success-
ful as multilinguality for RNNs. For child-to-child
directions (ES to IT and IT to ES), the SMT base-
line performs best in the baseline setup (with par-
allel data only), although RNNs surpass it when
backtranslation or multilinguality is used. For the
parent-to-child directions (LA to ES or IT), mul-
tilinguality helps RNNs slightly more than back-
translation.

5.3 Combining data augmentation methods

We choose to combine the best performing data aug-
mentation technique overall, multilinguality, with
pretraining and backtranslation (Figure 3) for our
NMT models.

Multilinguality + pretraining Combining mul-
tilinguality with pretraining has virtually no signif-
icant impact on the RNNs’ results with respect to
multilinguality only. For the Transformers, how-
ever, it increases the results by 2 to 3 BLEU on
average.



Source context Target context Source Target SMT pred. RNN pred.
(a) AMBIGUOUS SOUND CORRESPONDENCE NOT LEARNED WELL

corvino ‘raven’ corvino ‘id. [korfino] [korvimo] [korviino ] [korbiino]
liebre ‘hare’ lepre ‘id. [liePre] [lerpre] [liebre:] [liervre]
(b) MEANING AND/OR FORM OF THE COGNATES CHANGED TOO MUCH

calana ‘kind/sort’ quale ‘what/which’  [kalapa] [kwazle] [kalap:] [kalap:]
pie ‘foot’ piede ‘id. [pjel [pje:de] [pe] [peire]

(c) DATA ERROR

suspirar ‘to sigh’ squillan ‘(it) rings’  [suspirar] [skwil:an] [sospira:re] [sospira:re]
frenesi ‘frenzy’ frenetico ‘frenetic’ [frenesi] [frenetiko] [fremezi] [frones:]
(d) MODEL MISTAKE

licencioso ‘licencious’  licenciozo ‘id’ [libenBjoso]  [litfentsioizo]  [litfentsioizo]  [litfentso]

Table 3: Prediction errors examples across ES—IT datasets for both SMT and RNN.

Multilinguality + backtranslation Combining
multilinguality with backtranslation provides the
best results overall for Transformers (both being
the best performing methods for these models). For
the RNNs, however, the performance increase is
smaller for most languages, and we even observe a
decrease in performance when translating from ES
(which was not the case with bilingual models).

6 Discussion

We discuss the results of the best performing
models for the best seed across all architectures
(SMT, multilingual + pretraining RNN and mul-
tilingual + backtranslation Transformer) from
ES—IT. More than a third of the predicted words
are above 90 BLEU!! (resp. 35.4/46.4/38.1% for
SMT/RNN/Transformer), and for error analysis,
we study the words below this threshold. The ob-
servations generalise to other language pairs.

6.1 Predictions

Close Results We observe a lot of inaccurate but
very close translations (e.g. Spanish conveniente
‘convenient’, phonetised [kombenjente], was pre-
dicted as corresponding to Italian [konvenjente]
instead of [konveniente], with only one phone dif-
ferent, and coherently so). Sometimes these trans-
lations have a very bad score: Spanish pulpito
‘pulpit’, phonetised [pulpito], was predicted as
[pulpi:to] instead of [pulpito], two close pronun-
ciations, for a sentence BLEU score of only 20.

Analysis of wrong results Wrongly predicted
cognates correspond to four cases, as defined in

"'"To study the BLEU of individual words, we use the sen-
tenceBLEU function from sacreBLEU with its default pa-
rameters.

Table 3.!> We carried out a manual error analy-
sis, and observed that their distribution was similar
across models (resp. SMT/RNN/Transformer):

(a) 84.6/81.4/79.5% were cognates with an am-
biguous sound correspondence (e.g. Spanish
[B] to Italian [b/v/p]).

(b) 10.3/13.4/11.6% were cognates that had ei-
ther evolved too far away from one another
or contain rare sound correspondences, such
as pie ‘foot’, phonetised [pje], predicted [pe]
and [pe:re] instead of [pje:de] piede ‘“foot’.

(c) 0.9/0.9/0.9% corresponded to data errors, such
as suspirar ‘to sigh’, phonetised as [suspirar],
which was predicted as [sospiraire] sospirare
‘to sigh’, its actual cognate, instead of its erro-
neous counterpart in our database ([skwil:an]
squillan “(it) rings’).

(d) 4.3/4.3/8.0% were model errors, such as “for-
getting” part of a word during translation.

6.2 Usefulness of n-best results

The average position at which the best prediction
(according to dev BLEU) occurs (in 10-best predic-
tions) is between 1 and 3 (Table 7 in Appendix A.3).
The lowest indices occur for Spanish (between 1
and 1.7) and Italian (between 1.6 and 2.2). The
highest indices encountered occur when going for
IT—LA or ES—LA (between 2 and 3). This il-
lustrates the importance of n-best prediction when
predicting cognates from child to parent languages,
due to ambiguity. Standard deviations are between
2 and 3: for these languages, when studying cog-
nate prediction, it is interesting to at least check the
5-best results.

12Statistics are provided for the best models of the best seed,
but examples are taken across seeds and models.



6.3 Language choice in a multilingual setup

To study the impact of the language pairs used in
the multilingual setup, we train additional multilin-
gual neural models on only 1000 pairs of ES-IT
data (single set), complemented by either nothing
(to act as baseline), an extra 600 pairs of ES-IT, or
600 pairs of ES-L and I'T-L (L being either Latin,
a parent language, French, a related language, or
Portuguese, more closely related to Spanish than
Italian). The rest of the data (Table 4) is split
equally between dev and test.

BILINGUAL | FR-IT FR-ES PT-IT PT-ES
#words 666 657 1,503 1,874
#phones 8,698 8,530 20,738 25,867
#Unique phones 40 43 36 41
Word length 6.53 6.49 6.90 6.90

Table 4: Supplementary bilingual lexicon statistics.

As we saw in Section 5.1, the Transformers’
scores are far more affected by low resource set-
tings than the RNNs. We therefore study the impact
of adding extra languages with RNNs only.

BASELINE ES—IT IT—ES

1000 pairs 53.9+34 66.6+4.2
ADDED DATA ES—IT IT—ES

Same language pair 62.5 £2.5 71.8£1.7
Latin 57.1+1.8 67.4+3.3
French 58.5+2.0 67.0+2.8
Portuguese 588+ 1.1 66.9+2.9

Table 5: BLEU for different multilingual settings.

Results on our new low-resourced baseline are
lower than the our previous baselines by around 10
points (Table 5), which is expected, since we use
less data for training.

Adding 600 pairs of ES—IT words has more ef-
fect on ES—IT performance than adding any other
pair of related languages, which indicates that, un-
surprisingly, the best possible extra data to pro-
vide is in the language pair of interest. When
adding a related extra language, the results are bet-
ter than with the initial data only. From Spanish,
the performance is best when adding Portuguese,
its most closely related language, then French, then
Latin. From Italian, we observe the opposite trend.
Adding an extra language seems to help most to
translate from, and not to, the language it is most
closely related to. For very low-resource settings,
where extra pairs of the languages of interest might

not be available, it will probably be interesting to
explore using extra languages related to the source
language.

7 Conclusion

We examined the differences between cognate pre-
diction and MT, in terms of data as well as under-
lying linguistic assumptions and aims. We then ob-
served that, above a certain training data size, SMT
and multilingual RNNs provide the best BLEU
scores for the task, SMT still being unrivalled when
it comes to smaller datasets (which coincides with
previous work comparing SMT and NMT for low-
resource settings).

When studying how to increase the amount of
training data seen by our models, we found that ex-
ploiting the multilinguality of NMT architectures
consistently provided better results than adding
monolingual lexicons (through pretraining or back-
translation), which contain noise for our task; com-
bining the methods provided a significant amelio-
ration for Transformers only. Adding multilingual
data by training with extra languages also proved
interesting, and we found the best possible extra
data to add in a multilingual setting is, first, data
from the languages at hand, followed by pairs be-
tween them and a parent language, then finally data
from additional languages as close as possible to
the source language.

We conclude that cognate prediction can benefit
from certain conclusions drawn in standard low-
resource MT, but that its specificities (intrinsic am-
biguity which requires n-best prediction, reliance
on cognate data only) must be systematically taken
into account. Computational cognate prediction us-
ing MT techniques is a field in its infancy, and the
work in this paper can be extended along several
axes: working on less studied language families,
or using the method in collaboration with linguists
to better understand the etymology and history of
languages.
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A Appendix

A.1 Parameter Exploration Results

This section presents the hyperparameters which lead to the best dev BLEU across seeds, chosen during
Section 4.2.3, and used for all subsequent experiments.

Model Learning rate  Batch size Embed. dim Hidden dim #layers Model specific
RNN Attention type
ES—IT 0.005 65 20 54 1 Luong-dot
IT—ES 0.005 65 20 72 1 Luong-dot
ES—LA 0.001 10 24 72 4 Luong-dot
LA—ES 0.005 100 20 72 1 Luong-dot
IT-LA 0.001 10 24 72 2 Bahdanau-dot
LA—IT 0.001 10 20 72 2 Luong-dot
Multilingual 0.001 10 24 72 2 Luong-general
Transformers #heads
ES—IT 0.005 65 24 54 1 1

IT—ES 0.005 30 24 54 1 3

ES—LA 0.005 65 24 54 1 2

LA—ES 0.001 10 24 72 4 2

IT-LA 0.001 10 24 72 4 3

LA—IT 0.005 65 24 72 2 3

Multilingual 0.005 30 24 72 4 3

Luong-dot and Luong-general refer respectively to the dot and general attentions in (Luong et al., 2015), while
Bahdanau-dot refers to our own implementation of the attention from (Bahdanau et al., 2015), simplified using
the dot product to compute attention weights introduced in (Luong et al., 2015). See the code implementation
with this paper for more detail.

Table 6: Results of parameter exploration experiments for RNN and Transformer models.
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Figure 4: PCA of IT phonetic source embeddings (ES—IT RNN), coloured according to place of articulation.

Our learned embeddings seem to contain relevant phonetic information. For instance, applying a
principal component analyses (PCA) and colouring consonants according to place, we can see that they
are coherently divided, as illustrated for an ES—IT RNN model in Figure 4. More precisely, the figure
shows the PCA of the learned source phonetic embeddings of one RNN model, for IT consonant phones,
coloured according to place of articulation. It is radially organised, with a smooth transition between
labio-dentals from the centre [b] to the bottom [p:], and from centre alveolar to left post alveolar.!?

3We observed similar results for our other languages and architectures. They also hold when colouring consonants according
to manner of articulation, and when colouring vowels according to backness or height.



A.3 Average position of the best result among the 10-best results.

We present here at which position the best prediction (according to sentenceBLEU, from sacreBLEU)
occurs amongst the 10-best predictions. For example, when going from Spanish terroso ‘muddy’, phone-
tised [teroso], to Italian terroso ‘muddy’, phonetised [terro:zo], the RNN predicted [tero:zo], [terd:zo],
[terro:zo], [terro:zo], [terros:], [terro:zo], [terros:], [terro:zo], [teros:], and [teros:o]: the correct result
corresponds to the 4" position.

For all multilingual models, we computed the sentence BLEU score for each of the 10-best predictions
and saved the position of the highest scoring prediction. We averaged these positions for all words in the
test set and calculated the standard deviation. Table 7 contains the full results, analysed in Section 6.2.

IT—ES ES—IT IT—-LA LA—IT ES—LA LA—ES
SMT 1.08£1.93 2.12+255 2.014+250 1.67£230 249+2.68 1.30+2.14
Multilingual RNN 1.04+£2.03 1.67+242 220+254 1.63+£238 251+£2.68 1.38£2.30

Multilingual Transformer 1.34 £2.17 1.94+2.34 2424265 217+£257 2.78+2.73 1.64+231

Table 7: Average position of the closest prediction to the reference amongst the 10-best predictions.



