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Abstract
While automatic summarization evaluation
methods developed for English are routinely
applied to other languages, this is the first at-
tempt to systematically quantify their panlin-
guistic efficacy. We take a summarization cor-
pus for eight different languages, and manu-
ally annotate generated summaries for focus
(precision) and coverage (recall). Based on
this, we evaluate 19 summarization evaluation
metrics, and find that using multilingual BERT
within BERTScore performs well across all
languages, at a level above that for English.

1 Introduction

Although manual evaluation (Nenkova and Passon-
neau, 2004; Hardy et al., 2019) of text summa-
rization is more reliable and interpretable, most
research on text summarization employs automatic
evaluations such as ROUGE (Lin, 2004), ME-
TEOR (Lavie and Agarwal, 2007), MoverScore
(Zhao et al., 2019), and BERTScore (Zhang et al.,
2020b) because they are time- and cost-efficient.

In proposing these metrics, the authors measured
correlation with human judgments based on En-
glish datasets that are not representative of modern
summarization systems. For instance, Lin (2004)
use DUC1 2001–2003 for ROUGE (meaning sum-
maries were generated with largely outdated ex-
tractive summarization systems); Zhao et al. (2019)
use the TAC2 dataset for MoverScore (again, fea-
turing summaries from largely defunct systems;
see Peyrard (2019) and Rankel et al. (2013)); and
Zhang et al. (2020b) developed BERTScore based
on a machine translation corpus (WMT). In contem-
poraneous work, Bhandari et al. (2020) address this
issue by annotating English CNN/DailyMail sum-
maries produced by recent summarization models,
and found disparities over results from TAC.

1https://duc.nist.gov/data.html
2https://tac.nist.gov/data/
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Figure 1: Illustration of focus and coverage.

Equally troublingly, ROUGE has become the
default summarization evaluation metric for lan-
guages other than English (Hu et al., 2015; Scialom
et al., 2020; Ladhak et al., 2020; Koto et al., 2020b),
despite there being no systematic validation of its
efficacy across other languages. The questions
we ask in this study, therefore, are twofold: (1)
How well do existing automatic metrics perform
over languages other than English? and (2) What
automatic metric works best across different lan-
guages?

In this paper, we examine content-based summa-
rization evaluation from the aspects of precision
and recall, in the form of focus and coverage to
compare system-generated summaries to ground-
truth summaries (see Figure 1). As advocated by
Koto et al. (2020a), focus and coverage are more
interpretable and fine grained than the harmonic
mean (F1 score) of ROUGE. This is also in line
with the review of Hardy et al. (2019) on linguistic
properties that have been manually evaluated in re-
cent summarization research, who found precision
and recall to be commonly used to complement
ROUGE F1.

While it may seem more natural and reliable to
evaluate focus and coverage based on the source
document than the ground-truth summary, we use
the ground-truth summary in this research for the
following reasons. First, historically, validation of
automatic evaluation metrics for summarization has
been based primarily on ground-truth summaries
(not source documents). Second, ROUGE (Lin,

https://duc.nist.gov/data.html
https://tac.nist.gov/data/
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2004) was initially motivated and assessed based
on coverage over the DUC datasets3 (Lin and Hovy,
2002) using annotations based on reference sum-
maries (not source documents). Third, although
it is certainly possible to generate different sum-
maries for the same source document, we argue
that the variance in content is actually not that
great, especially for single-document summariza-
tion. Lastly, basing human evaluation (of focus and
coverage) on the source article leads to more com-
plicated annotation schemes, and has been shown
to yield poor annotations (Nenkova and Passon-
neau, 2004; Fabbri et al., 2020).

In summary, this paper makes three contribu-
tions: (1) we carry out the first systematic attempt
to quantify the efficacy of automatic summariza-
tion metrics over 8 linguistically-diverse languages,
namely English (EN), Indonesian (ID), French
(FR), Turkish (TR), Mandarin Chinese (ZH), Rus-
sian (RU), German (DE), and Spanish (ES); (2)
we evaluate an extensive range of traditional and
model-based metrics, and find BERTScore to be
the best metric for evaluating both focus and cov-
erage; and (3) we release a manually-annotated
multilingual resource for summarization evaluation
comprising 4,320 annotations. Data and code used
in this paper is available at: https://github.com/
fajri91/Multi SummEval.

2 Related Work

As with much of NLP, research on automatic
summarization metrics has been highly English-
centric. Graham (2015) comprehensively evalu-
ated 192 ROUGE variations based on the DUC-
2004 (English) dataset. Bhandari et al. (2020) re-
leased a new (English) evaluation dataset by anno-
tating CNN/DailyMail using simplified Pyramid
(Nenkova and Passonneau, 2004). First, seman-
tic content units (SCUs) were manually extracted
from the reference, and crowd-workers were then
asked to count the number of SCUs in the sys-
tem summary. Their annotation procedure does
not specifically consider focus, but is closely re-
lated to the coverage aspect of our work. Simi-
larly, Fabbri et al. (2020) annotated the (English)
CNN/DailyMail dataset for the four aspects of co-
herence, consistency, fluency, and relevance. While
their work does not specifically study focus and
coverage, relevance in their work can be interpreted
as the harmonic mean of focus and coverage.

3DUC 2001, 2002, 2003

There is little work on summarization evaluation
for languages other than English, and what work ex-
ists is primarily based on summaries generated by
unsupervised extractive models dating back more
than a decade, for a small handful of languages.
Two years prior to ROUGE, Saggion et al. (2002)
proposed a summarization metric using similar-
ity measures for English and Chinese, based on
cosine similarity, unit overlap, and the longest com-
mon subsequence (“LCS”) between reference and
system summaries. In other work, Saggion et al.
(2010) investigated coverage, responsiveness, and
pyramids for several extractive models in English,
French, and Spanish.

To the best of our knowledge, we are the first
to systemically quantify the panlinguistic efficacy
of evaluation metrics for modern summarization
systems.

3 Evaluation Metrics

We assess a total of 19 different evaluation metrics
that are commonly used in summarization research
(noting that lesser-used metrics such as FRESA
(Saggion et al., 2010) and RESA (Cohan and Go-
harian, 2016) are omitted from this study).

ROUGE (Lin, 2004) measures the lexical
overlap between the system and reference sum-
mary; based on the findings of Graham (2015),
we consider 7 variants in this paper: ROUGE-
1 (unigram), ROUGE-2 (bigram), ROUGE-3
(trigram), ROUGE-L (LCS), ROUGE-S (skip-
bigram), ROUGE-SU (skip-bigram plus unigram),
and ROUGE-W (weighted LCS).4

METEOR (Lavie and Agarwal, 2007) performs
word-to-word matching based on word-alignment,
and was originally developed for MT but has re-
cently been used for summarization evaluation (See
et al., 2017; Chen and Bansal, 2018; Falke and
Gurevych, 2019; Amplayo and Lapata, 2020).5

BLEU (Papineni et al., 2002) is a precision-
based metric originally developed for MT, which
measures the n-gram match between the reference
and system summary. Based on the findings of
Graham (2015), we use BLEU-4 according to the
SacreBLEU implementation (Post, 2018).6

MoverScore (Zhao et al., 2019) measures the
Euclidean distance between two contextualized
BERT representations, and relies on soft align-

4https://github.com/bheinzerling/pyrouge
5http://www.cs.cmu.edu/∼alavie/METEOR/
6https://github.com/mjpost/sacrebleu

https://github.com/fajri91/Multi_SummEval
https://github.com/fajri91/Multi_SummEval
https://github.com/bheinzerling/pyrouge
http://www.cs.cmu.edu/~alavie/METEOR/
https://github.com/mjpost/sacrebleu
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ments of words learned by solving an optimisation
problem.7 We adapt use the default configuration
(n-gram=1) over 5 different pre-trained models, as
detailed below. Note that MoverScore is symmetric
(i.e. MoverScore(x, y) = MoverScore(y, x)), and
as such is not designed to separately evaluate preci-
sion and recall.

BERTScore (Zhang et al., 2020b) computes the
similarity between BERT token embeddings of sys-
tem and reference summaries based on soft overlap,
in the form of precision, recall, and F1 scores.8

Zhang et al. (2020b) found that layer selection (i.e.
which layer to source the token embeddings from)
is critical to performance. Since layer selection in
the original paper was based on MT datasets, we
perform our own layer selection using a similar
methodology as the authors, specifically consid-
ering precision and recall for focus and coverage,
respectively.

For both MoverScore and BERTScore, we ex-
periment with two classes of BERT-style model:
(1) multilingual models, in the form of cased and
uncased multilingual BERT (Devlin et al., 2019),
and base and large XLM-R (Conneau et al., 2020),
for a total of 4 models;9 and (2) a monolingually-
trained BERT for the given language, as listed in
the Appendix. While we expect monolingual BERT
models to perform better, we also focus on multi-
lingual models, both to confirm whether this is the
case, and to be able to draw findings for languages
without monolingual models.

4 Experimental Setup

For each language, we sample 135 documents from
the test set of a pre-existing (single-document) sum-
marization dataset: (1) CNN/DailyMail (English:
Hermann et al. (2015)); (2) Liputan6 (Indonesian:
Koto et al. (2020b)); (3) LCSTS (Chinese: Hu et al.
(2015)); and (4) MLSUM (French, Turkish, Rus-
sian, German, Spanish: Scialom et al. (2020)). We
source summaries based on two popular models:
pointer generator network (See et al., 2017) and
BERT (Liu and Lapata, 2019; Dong et al., 2019),10

and have 3 annotators annotate focus and coverage

7https://github.com/AIPHES/emnlp19-moverscore
8 https://github.com/Tiiiger/bert score
9Note that both multilingual BERT and XLM were ex-

plicitly trained over all eight target languages used in this
paper.

10English, Indonesian and Chinese summaries were gener-
ated with the Liu and Lapata (2019) model, and the Dong et al.
(2019) model was used for the MLSUM-based languages.

Lang Quality (%)
Pearson correlation (r)

Agreement Focus–

Focus Coverage Coverage

EN 90 0.47 0.46 0.58
ID 97 0.64 0.63 0.80
FR 98 0.63 0.65 0.71
TR 97 0.74 0.79 0.74
ZH 92 0.61 0.60 0.78
RU 98 0.60 0.64 0.78
DE 90 0.78 0.83 0.89
ES 95 0.60 0.61 0.76

Table 1: Analysis of the annotations for each language,
in terms of: (1) average quality control score of ap-
proved HITs (%); (2) one-vs-rest human agreement (r);
and (3) correlation (r) between focus and coverage.

for each reference–system summary pair.11 The
motivation for using BERT-based systems is that
our study focuses on non-English summarization,
where BERT-based models dominate.12 The total
number of resulting annotations is: 8 languages ×
135 documents × 2 models × 2 criteria (= focus
and coverage) × 3 annotators = 12,960.

For annotation, we used Amazon Mechanical
Turk13 with the customized Direct Assessment
(“DA”) method (Graham et al., 2015; Graham et al.,
2017), which has become the de facto for MT eval-
uation in WMT. For each HIT (100 samples), DA
incorporates 10 pre-annotated samples for qual-
ity control. Crowd-sourced workers are given two
texts and asked the question (in the local language):
How much information contained in the second text
can also be found in the first text? We combine
focus and coverage annotation into 1 task, as the
only thing that differentiates them is the ordering
of the system and reference summaries, which is
opaque to the annotators.14 Workers responded by
scoring based via a slider button (continuous scale
of 1–100).15

For each HIT, we create 10 samples for quality
control: 5 samples are random pairs (should be

11Summaries for all datasets except LCSTS were sourced
from the authors of the dataset. For LCSTS, we trained the
two models ourselves based on the training data.

12BERT-based summaries are representative of transformer-
based model, and the ROUGE score gap over state-of-the-art
models (Zhang et al., 2020a) for English is only ∼2 points.

13https://www.mturk.com
14For focus, the first text is the reference and the second

text the system summary; for coverage, the order is reversed.
15See Appendix for the MTurk annotation interface for each

language.

https://github.com/AIPHES/emnlp19-moverscore
https://github.com/Tiiiger/bert_score
https://www.mturk.com
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Focus Coverage

EN ID FR TR ZH RU DE ES Avg EN ID FR TR ZH RU DE ES Avg

Traditional Metrics

ROUGE-1 0.61 0.69 0.68 0.81 0.80 0.47 0.88 0.53 0.68 0.62 0.72 0.67 0.83 0.79 0.58 0.89 0.67 0.72
ROUGE-2 0.57 0.63 0.67 0.80 0.76 0.48 0.87 0.61 0.67 0.56 0.66 0.71 0.79 0.75 0.59 0.89 0.67 0.70
ROUGE-3 0.46 0.53 0.59 0.76 0.67 0.31 0.85 0.54 0.59 0.48 0.57 0.63 0.74 0.66 0.46 0.88 0.58 0.62
ROUGE-L 0.60 0.69 0.68 0.81 0.79 0.46 0.87 0.54 0.68 0.61 0.72 0.67 0.83 0.79 0.59 0.89 0.67 0.72
ROUGE-S 0.59 0.65 0.60 0.78 0.70 0.46 0.85 0.51 0.64 0.60 0.69 0.67 0.78 0.73 0.53 0.89 0.64 0.69
ROUGE-SU 0.59 0.66 0.61 0.78 0.72 0.43 0.85 0.50 0.64 0.60 0.70 0.68 0.78 0.75 0.56 0.89 0.65 0.70
ROUGE-W.12 0.60 0.67 0.67 0.81 0.78 0.44 0.87 0.53 0.67 0.58 0.69 0.67 0.81 0.78 0.59 0.89 0.66 0.71
METEOR 0.47 0.67 0.64 0.74 0.81 0.55 0.83 0.60 0.66 0.63 0.71 0.64 0.80 0.78 0.58 0.89 0.69 0.72
BLEU-4 0.46 0.56 0.64 0.70 0.70 0.39 0.85 0.50 0.60 0.48 0.58 0.59 0.67 0.69 0.31 0.85 0.54 0.59

MoverScore

mono-BERT 0.58 0.65 0.71 0.82 0.77 0.49 0.89 0.59 0.69 0.59 0.62 0.67 0.78 0.77 0.41 0.88 0.61 0.67
mBERT (cased) 0.54 0.68 0.77 0.79 0.76 0.60 0.88 0.63 0.70 0.52 0.69 0.72 0.75 0.75 0.49 0.85 0.68 0.68
mBERT (uncased) 0.59 0.69 0.78 0.81 0.76 0.60 0.89 0.67 0.72 0.59 0.69 0.75 0.77 0.75 0.50 0.86 0.70 0.70
XLM (base) 0.53 0.64 0.69 0.80 0.71 0.35 0.87 0.56 0.64 0.58 0.62 0.63 0.74 0.69 0.22 0.85 0.64 0.62
XLM (large) 0.51 0.58 0.68 0.79 0.57 0.33 0.87 0.53 0.61 0.55 0.62 0.59 0.72 0.58 0.21 0.84 0.56 0.58

BERTScore

mono-BERT 0.62 0.71 0.73 0.83 0.82 0.51 0.91 0.67 0.72 0.66 0.74 0.77 0.88 0.80 0.65 0.92 0.74 0.77
mBERT (cased) 0.56 0.71 0.73 0.83 0.78 0.56 0.90 0.59 0.71 0.67 0.73 0.70 0.87 0.79 0.72 0.90 0.71 0.76
mBERT (uncased) 0.61 0.71 0.72 0.83 0.79 0.55 0.90 0.62 0.72 0.64 0.74 0.72 0.87 0.79 0.70 0.90 0.71 0.76
XLM (base) 0.59 0.65 0.67 0.83 0.79 0.34 0.89 0.58 0.67 0.64 0.71 0.66 0.86 0.73 0.67 0.90 0.70 0.74
XLM (large) 0.60 0.66 0.68 0.83 0.79 0.42 0.90 0.60 0.69 0.65 0.70 0.69 0.86 0.74 0.66 0.90 0.70 0.74

Human performance 0.47 0.64 0.63 0.74 0.61 0.60 0.78 0.60 0.63 0.46 0.63 0.65 0.79 0.60 0.64 0.83 0.61 0.65

Table 2: Pearson correlation (r) between automatic metrics and human judgments (for Pointer Generator and BERT
models combined). We compute the precision and recall of ROUGE and BERTScore for focus and coverage,
respectively. BERTScore uses the optimized layer, and other metrics are computed using the default configuration
of the original implementation.

Model Universal layer

Focus Coverage

mBERT (cased) 12 5
mBERT (uncased) 12 6
XLM-R (base) 4 4
XLM-R (large) 10 9

Table 3: Recommended layers for multilingual models.

scored 0) and the remaining 5 samples are rep-
etitions of the same summary with minor edits
(should be scored 100). For each language, we
asked a native speaker to translate all instructions
and the annotation interface. For a single HIT, we
paid USD$13, and set the HIT approval rate to
95%. For HITs to be included in the annotated
data, a quality control score of at least 7 out of 10
needed to be achieved. HITs below this threshold
were re-run (ensuring they were not completed by a
worker who had already completed that HIT), until
three above-threshold annotations were obtained.16

For each language, the HIT approval rate is set
to 95% (with the number of HITs approved vary-
ing across languages). The annotation for English

16We approved all HITs with at least 30 minutes working
time and a minimum quality control score of 5, irrespective
of whether they passed the higher quality-control threshold
required for the ground truth.

was restricted to US-based workers, and for other
languages except Chinese was based on countries
where the language is an official language.17

To obtain focus and coverage values, we follow
standard practice in DA in z-scoring the scores
from each annotator, and then averaging.

5 Results

5.1 Annotation Results

In Table 1, we present the results of the human an-
notation. We first normalize the ratings from each
HIT into a z-score, and one-vs-rest Pearson correla-
tion (excluding quality control items) to provide an
estimate of human agreement/performance.18 For
all languages, we observe that the average quality
and human agreement is moderately high. How-
ever, the agreement does vary, and it affects the
interpretation of the correlation scores when we
assess the automatic metrics later. Note also that
we get the lowest score for English, meaning the
results for non-English languages are actually more

17In MTurk, we did not set a specific location for Chinese
because we found there are no workers in China.

18We follow Lau et al. (2020) in computing one-vs-rest
correlation: we randomly isolate a worker’s score (for each
sample) and compare it against the mean score of the rest
using Pearson’s r, and repeat this for 1000 trials to get the
mean correlation.
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robust.19

Although focus and coverage are positively cor-
related in Table 1, the distribution of scores varies
quite a bit between languages: English annotation
variance is higher than the other languages, and has
the lowest correlation between focus and coverage
(r = 0.57); for French, Russian, and Spanish, sum-
maries generally have low focus and coverage (for
more details, see scatterplots of focus-coverage in
Figure 2 of the Appendix).

5.2 Correlation with Automatic Evaluation

In Table 2 we present the Pearson correlation be-
tween the human annotations and various automatic
metrics, broken down across language and focus
vs. coverage, and (naively) aggregated across lan-
guages in the form of the average correlation. We
also include the one-vs-rest annotator correlation
(Section 5.1) in the last row, as it can be interpreted
as the average performance of a single annotator.
Recognizing the sensitivity of Pearson’s correla-
tion to outliers (Mathur et al., 2020), we manually
examined the distribution of scores for all language–
system combinations for outliers (and present all
scatterplots in Figure 2 of the Appendix).

The general pattern is consistent across lan-
guages: BERTScore performs better than other
metrics in terms of both focus and coverage. This
finding is consistent with that of Fabbri et al. (2020)
wrt expert annotations of relevance (interpreted as
the harmonic mean of our focus and coverage).
ROUGE-1 and ROUGE-L are overall the best ver-
sions of ROUGE, while BLEU-4 performs the
worst. For coverage, METEOR tends to be compet-
itive with ROUGE-1, especially for EN, FR, DE,
and ES, in large part because these languages are
supported by the METEOR lemmatization pack-
age.

For some pre-trained models, MoverScore is
competitive with BERTScore, although the average
correlation is lower, especially for coverage.

We perform layer selection for BERTScore by
selecting the layer that produces the highest cor-
relation. For monolingual BERT the selection is
based on the average correlation across the two
summarization models, while for the multilingual
models it is based on overall result across the 8
languages × 2 models. Table 3 details the recom-
mended layer for computing BERTScore for each

19The relative quality for different languages largely coin-
cides with the findings of Pavlick et al. (2014).

of the multilingual models.20

We observe that BERTScore with monolingual
BERT performs the best, at an average of 0.72
and 0.77 for focus and coverage, resp., but only
marginally above the best of the multilingual mod-
els, namely mBERT uncased (0.72 and 0.76, resp.).
Given that layer selection here was performed uni-
versally across all languages (to ensure generaliz-
ability to other languages), our overall recommen-
dation for the best metric to use is BERTScore with
mBERT uncased.

When we compare the metric results to the one-
vs-rest single-annotator performance from Table 1,
we see a positive correspondence between the rel-
ative scores for annotator agreement and metric
performance, which we suspect is largely an arte-
fact of data quality (i.e. the metrics are assessed
to perform better for languages with high agree-
ment because the quality of the ground-truth is
higher), but further research is required to confirm
this. Generally the best metrics tend to outper-
form single-annotator performance substantially
(>0.10), suggesting these metrics are more reliable
than a single annotator.

6 Conclusion

In this work, we developed a novel dataset for as-
sessing automatic evaluation metrics for focus and
coverage across a broad range of languages and
datasets. We found that BERTScore is the best
metric for the vast majority of languages, and ad-
vocate that this metric be used for summarization
evaluation across different languages in the future,
supplanting ROUGE.
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Figure 2: Annotation result (focus vs. coverage) after z-score normalization for each of the 8 languages.

Lang Model Recommended layer

Focus Coverage

EN bert-base-uncased (Devlin et al., 2019) 1 2
ID indolem/indobert-base-uncased (Koto et al., 2020c) 2 2
ZH bert-base-chinese (Devlin et al., 2019) 8 9
FR camembert-base (Martin et al., 2020) 10 9
TR dbmdz/bert-base-turkish-uncased 12 4
RU DeepPavlov/rubert-base-cased (Kuratov and Arkhipov, 2019) 4 12
DE bert-base-german-dbmdz-uncased 12 12
ES dccuchile/bert-base-spanish-wwm-uncased 4 4

Table 4: Recommended layers for computing focus and coverage via BERTScore with monolingual model.

Language ISO Data Data Split Pointer Generator BERT
Train Dev Test R1 R2 RL R1 R2 RL

English EN CNN/DailyMail 287,226 13,368 11,490 39.53 17.28 36.38 42.13 19.60 39.18
Indonesian ID Liputan6 193,883 10,972 10,792 36.10 19.19 33.56 41.08 22.85 38.01
Chinese ZH LCSTS 2,400,591 8,672 725 32.39 19.92 29.45 38.47 25.45 35.30
French FR MLSUM 392,902 16,059 15,828 26.50 9.49 20.30 28.52 11.73 22.51
Turkish TR MLSUM 249,277 11,565 12,775 39.77 26.45 36.12 41.28 28.16 37.79
Russian RU MLSUM 25,556 750 757 5.39 0.60 4.62 6.01 1.02 5.75
German DE MLSUM 220,887 11,394 10,701 36.86 27.06 35.04 44.11 33.99 42.10
Spanish ES MLSUM 266,367 10,358 13,920 25.05 7.44 19.53 26.48 9.59 21.69

Table 5: Details of datasets and ROUGE scores of summarization models used in this study. Other than for Chinese,
we use summaries provided by the respective authors. For MLSUM, we report slightly different ROUGE-L scores
because we use the original ROUGE package.
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Metrics POINTER GENERATOR BERT

EN ID FR TR ZH RU DE ES Avg EN ID FR TR ZH RU DE ES Avg

Traditional Metrics

ROUGE-1 0.59 0.68 0.54 0.82 0.81 0.52 0.85 0.50 0.66 0.61 0.70 0.73 0.81 0.78 0.59 0.89 0.54 0.71
ROUGE-2 0.60 0.59 0.56 0.83 0.78 0.54 0.86 0.61 0.67 0.53 0.65 0.71 0.77 0.73 0.56 0.87 0.61 0.68
ROUGE-3 0.49 0.52 0.49 0.80 0.68 0.39 0.85 0.56 0.60 0.43 0.53 0.63 0.73 0.63 0.29 0.85 0.54 0.58
ROUGE-L 0.59 0.69 0.55 0.83 0.81 0.51 0.85 0.50 0.67 0.60 0.68 0.73 0.80 0.75 0.58 0.88 0.57 0.70
ROUGE-S 0.60 0.62 0.48 0.79 0.70 0.55 0.83 0.50 0.63 0.58 0.67 0.64 0.76 0.69 0.59 0.86 0.51 0.66
ROUGE-SU 0.59 0.63 0.50 0.79 0.72 0.55 0.83 0.50 0.64 0.58 0.68 0.66 0.77 0.70 0.60 0.86 0.50 0.67
ROUGE-W.12 0.60 0.67 0.56 0.83 0.81 0.52 0.86 0.49 0.66 0.60 0.66 0.72 0.79 0.74 0.55 0.88 0.57 0.69
METEOR 0.49 0.65 0.51 0.82 0.85 0.52 0.86 0.68 0.67 0.45 0.68 0.70 0.71 0.77 0.52 0.85 0.58 0.66
BLEU-4 0.51 0.57 0.60 0.78 0.75 0.46 0.86 0.59 0.64 0.43 0.54 0.66 0.64 0.65 0.51 0.85 0.46 0.59

MoverScore

mono-BERT 0.62 0.67 0.63 0.88 0.80 0.65 0.90 0.60 0.72 0.54 0.63 0.74 0.77 0.73 0.61 0.89 0.58 0.69
mBERT (cased) 0.57 0.62 0.71 0.84 0.79 0.60 0.88 0.71 0.72 0.51 0.71 0.78 0.75 0.73 0.68 0.88 0.59 0.70
mBERT (uncased) 0.63 0.65 0.76 0.88 0.79 0.57 0.89 0.74 0.74 0.54 0.71 0.78 0.76 0.73 0.68 0.88 0.63 0.71
XLM (base) 0.56 0.61 0.60 0.86 0.73 0.32 0.86 0.71 0.66 0.49 0.63 0.71 0.77 0.68 0.52 0.89 0.51 0.65
XLM (large) 0.53 0.57 0.60 0.84 0.62 0.30 0.87 0.63 0.62 0.48 0.58 0.69 0.76 0.52 0.42 0.87 0.46 0.60

BERTScore

mono-BERT 0.62 0.68 0.71 0.86 0.82 0.42 0.90 0.69 0.71 0.62 0.73 0.72 0.80 0.81 0.71 0.91 0.66 0.75
mBERT (cased) 0.61 0.67 0.64 0.84 0.77 0.54 0.89 0.69 0.71 0.58 0.74 0.76 0.81 0.77 0.71 0.91 0.54 0.73
mBERT (uncased) 0.64 0.68 0.67 0.86 0.79 0.48 0.89 0.70 0.72 0.63 0.72 0.73 0.81 0.77 0.69 0.90 0.57 0.73
XLM (base) 0.62 0.65 0.59 0.86 0.80 0.39 0.87 0.63 0.68 0.61 0.64 0.69 0.81 0.78 0.64 0.90 0.56 0.70
XLM (large) 0.63 0.65 0.64 0.87 0.80 0.35 0.88 0.67 0.68 0.64 0.66 0.69 0.80 0.77 0.66 0.90 0.57 0.71

Table 6: Pearson correlation (r) between automatic metrics and human judgments for focus. We compute the
precision for ROUGE and BERTScore. BERTScore uses the optimized layer, and other metrics are computed by
using default configuration of the original implementation.

Metrics POINTER GENERATOR BERT

EN ID FR TR ZH RU DE ES Avg EN ID FR TR ZH RU DE ES Avg

Traditional Metrics

ROUGE-1 0.59 0.73 0.66 0.79 0.82 0.52 0.90 0.67 0.71 0.64 0.71 0.70 0.86 0.76 0.57 0.89 0.70 0.73
ROUGE-2 0.55 0.65 0.68 0.76 0.78 0.63 0.89 0.64 0.70 0.57 0.66 0.72 0.83 0.72 0.52 0.90 0.73 0.71
ROUGE-3 0.49 0.59 0.58 0.69 0.68 0.50 0.88 0.57 0.62 0.48 0.55 0.66 0.79 0.63 0.41 0.89 0.64 0.63
ROUGE-L 0.58 0.74 0.64 0.79 0.82 0.54 0.90 0.66 0.71 0.63 0.70 0.71 0.86 0.77 0.56 0.90 0.72 0.73
ROUGE-S 0.60 0.69 0.63 0.74 0.77 0.52 0.89 0.66 0.69 0.61 0.69 0.69 0.81 0.70 0.51 0.89 0.71 0.70
ROUGE-SU 0.59 0.70 0.64 0.75 0.79 0.52 0.89 0.67 0.69 0.61 0.69 0.70 0.82 0.71 0.57 0.89 0.71 0.71
ROUGE-W.12 0.54 0.71 0.64 0.77 0.81 0.55 0.90 0.65 0.69 0.61 0.68 0.69 0.85 0.75 0.56 0.90 0.68 0.71
METEOR 0.60 0.72 0.65 0.77 0.81 0.55 0.89 0.63 0.70 0.66 0.69 0.69 0.83 0.75 0.59 0.89 0.75 0.73
BLEU-4 0.48 0.61 0.63 0.61 0.70 0.49 0.84 0.50 0.61 0.49 0.56 0.59 0.75 0.67 0.54 0.87 0.59 0.63

MoverScore

mono-BERT 0.57 0.65 0.63 0.73 0.79 0.68 0.86 0.55 0.68 0.61 0.60 0.69 0.86 0.75 0.66 0.91 0.68 0.72
mBERT (cased) 0.53 0.67 0.68 0.71 0.77 0.60 0.82 0.63 0.68 0.53 0.71 0.75 0.82 0.73 0.63 0.89 0.74 0.73
mBERT (uncased) 0.58 0.68 0.74 0.72 0.76 0.58 0.84 0.64 0.69 0.59 0.70 0.76 0.85 0.73 0.65 0.90 0.76 0.74
XLM (base) 0.56 0.61 0.52 0.68 0.71 0.31 0.82 0.62 0.60 0.58 0.64 0.68 0.83 0.65 0.52 0.90 0.68 0.68
XLM (large) 0.52 0.62 0.50 0.66 0.59 0.31 0.82 0.49 0.56 0.57 0.61 0.63 0.82 0.56 0.48 0.88 0.63 0.65

BERTScore

mono-BERT 0.63 0.74 0.76 0.87 0.81 0.72 0.92 0.73 0.77 0.67 0.74 0.78 0.89 0.78 0.63 0.92 0.78 0.77
mBERT (cased) 0.67 0.75 0.67 0.85 0.82 0.70 0.91 0.72 0.76 0.68 0.71 0.74 0.89 0.76 0.69 0.90 0.72 0.76
mBERT (uncased) 0.63 0.75 0.70 0.85 0.81 0.67 0.91 0.71 0.76 0.64 0.73 0.76 0.89 0.77 0.68 0.90 0.73 0.76
XLM (base) 0.66 0.72 0.68 0.84 0.77 0.63 0.91 0.70 0.74 0.64 0.70 0.67 0.88 0.69 0.67 0.89 0.71 0.73
XLM (large) 0.66 0.70 0.68 0.84 0.77 0.59 0.91 0.70 0.73 0.66 0.69 0.70 0.88 0.70 0.69 0.90 0.72 0.74

Table 7: Pearson correlation (r) between automatic metrics and human judgments for coverage. We compute the
recall for ROUGE and BERTScore. BERTScore uses the optimized layer, and other metrics are computed by using
default configuration of the original implementation.
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Figure 3: MTurk annotation interface for English.

Figure 4: MTurk annotation interface for Indonesian.

Figure 5: MTurk annotation interface for Chinese. Due to the page limit for the Appendix, the annotation interface
for the other languages can be found at https://github.com/fajri91/Multi SummEval

https://github.com/fajri91/Multi_SummEval
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Focus Coverage

EN ID FR TR ZH RU DE ES Avg EN ID FR TR ZH RU DE ES Avg

Traditional Metrics

ROUGE-1 0.59 0.69 0.62 0.75 0.80 0.33 0.77 0.45 0.63 0.58 0.71 0.56 0.79 0.78 0.47 0.75 0.59 0.65
ROUGE-2 0.58 0.63 0.64 0.75 0.78 0.37 0.78 0.56 0.64 0.54 0.65 0.62 0.77 0.75 0.39 0.77 0.63 0.64
ROUGE-3 0.49 0.55 0.62 0.70 0.68 0.27 0.77 0.51 0.58 0.47 0.58 0.59 0.69 0.65 0.28 0.75 0.58 0.57
ROUGE-L 0.60 0.69 0.62 0.75 0.80 0.32 0.76 0.46 0.62 0.57 0.70 0.55 0.79 0.78 0.47 0.74 0.58 0.65
ROUGE-S 0.61 0.71 0.61 0.75 0.81 0.36 0.77 0.45 0.63 0.60 0.72 0.56 0.79 0.79 0.39 0.75 0.58 0.65
ROUGE-SU 0.61 0.71 0.61 0.74 0.81 0.31 0.77 0.43 0.62 0.59 0.72 0.56 0.79 0.79 0.45 0.75 0.58 0.66
ROUGE-W.12 0.61 0.67 0.61 0.74 0.79 0.32 0.76 0.47 0.62 0.55 0.68 0.55 0.78 0.78 0.48 0.74 0.58 0.64
METEOR 0.47 0.68 0.60 0.74 0.82 0.40 0.75 0.54 0.62 0.61 0.70 0.59 0.81 0.78 0.44 0.74 0.62 0.66
BLEU-4 0.50 0.59 0.62 0.67 0.76 0.05 0.77 0.51 0.56 0.49 0.61 0.58 0.62 0.72 -0.04 0.73 0.55 0.53

MoverScore

mono-BERT 0.58 0.65 0.66 0.81 0.79 0.38 0.85 0.55 0.66 0.59 0.61 0.60 0.81 0.77 0.30 0.83 0.59 0.64
mBERT (cased) 0.53 0.68 0.73 0.80 0.77 0.44 0.83 0.60 0.67 0.50 0.68 0.65 0.77 0.74 0.37 0.79 0.65 0.64
mBERT (uncased) 0.60 0.69 0.74 0.80 0.77 0.45 0.83 0.66 0.69 0.58 0.68 0.68 0.77 0.74 0.42 0.79 0.67 0.67
XLM (base) 0.51 0.63 0.64 0.78 0.70 0.11 0.78 0.53 0.59 0.55 0.62 0.58 0.73 0.65 0.01 0.75 0.59 0.56
XLM (large) 0.51 0.59 0.63 0.72 0.54 0.10 0.76 0.44 0.54 0.54 0.61 0.52 0.68 0.52 0.07 0.72 0.50 0.52

BERTScore

mono-BERT 0.58 0.70 0.67 0.77 0.81 0.34 0.84 0.60 0.66 0.64 0.73 0.70 0.86 0.78 0.57 0.83 0.70 0.73
mBERT (cased) 0.53 0.71 0.68 0.78 0.78 0.41 0.82 0.55 0.66 0.64 0.72 0.58 0.85 0.77 0.63 0.77 0.67 0.70
mBERT (uncased) 0.58 0.70 0.66 0.79 0.79 0.40 0.83 0.58 0.67 0.60 0.73 0.60 0.85 0.77 0.63 0.77 0.66 0.70
XLM (base) 0.56 0.65 0.61 0.78 0.78 0.04 0.78 0.49 0.59 0.62 0.71 0.58 0.84 0.70 0.55 0.76 0.64 0.67
XLM (large) 0.57 0.66 0.62 0.78 0.77 0.17 0.80 0.52 0.61 0.62 0.69 0.60 0.84 0.72 0.50 0.78 0.65 0.68

Table 8: Spearman correlation (ρ) between automatic metrics and human judgments (for Pointer Generator and
BERT models combined). We compute the precision and recall of ROUGE and BERTScore for focus and coverage,
respectively. BERTScore uses the optimized layer, and other metrics are computed by using default configuration
of the original implementation.


