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Abstract

Automated predictions require explanations to
be interpretable by humans. One type of ex-
planation is a rationale, i.e., a selection of in-
put features such as relevant text snippets from
which the model computes the outcome. How-
ever, a single overall selection does not pro-
vide a complete explanation, e.g., weighing
several aspects for decisions. To this end, we
present a novel self-interpretable model called
ConRAT. Inspired by how human explanations
for high-level decisions are often based on key
concepts, ConRAT extracts a set of text snip-
pets as concepts and infers which ones are de-
scribed in the document. Then, it explains the
outcome with a linear aggregation of concepts.
Two regularizers drive ConRAT to build in-
terpretable concepts. In addition, we propose
two techniques to boost the rationale and pre-
dictive performance further. Experiments on
both single- and multi-aspect sentiment classi-
fication tasks show that ConRAT is the first to
generate concepts that align with human ratio-
nalization while using only the overall label.
Further, it outperforms state-of-the-art meth-
ods trained on each aspect label independently.

1 Introduction

Neural models have become the standard for many
tasks, owing to their large performance gains.
However, their adoption in decision-critical fields
is more limited because of their lack of inter-
pretability, particularly with textual data.

One of the simplest means of explaining predic-
tions of complex models is by selecting relevant
input features. Attention mechanisms (Bahdanau
et al., 2015) model the selection using a condi-
tional importance distribution over the inputs, but
the resulting explanations are noisy (Jain and Wal-
lace, 2019; Pruthi et al., 2020). Multi-head at-
tention (Vaswani et al., 2017) extends attention
mechanisms to attend information from different

Document Overall Aspect Label: Positive

ConRAT

The pour is a hazy straw color with
an initially fluffy white head that […].
An amazingly funky and tart aroma is
present immediately. Lots of […]. The
tartness is bright and green, lots of
lemons and apples. The body is
somewhat light and crisp, with a
great level of effervescence and slight
dryness. This is an absolutely
fantastic beer. I would drink this […]
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Concept 3: Appearance

Concept 4: Taste

Concept 5: Overall
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Explanation

The pour is a hazy straw color with an initially fluffy

white head that […]. An amazingly funky and tart

aroma is present immediately. Lots of […]. The

tartness is bright and green, lots of lemons and

apples. The body is somewhat light and crisp, with a

great level of effervescence and slight dryness. This

is an absolutely fantastic beer. I would drink this […]

Figure 1: An illustration of ConRAT. Given a beer re-
view, ConRAT identifies five excerpts that relate to par-
ticular concepts of beers (i.e., the explanation), de-
picted in color, from which it computes the outcome.

perspectives jointly. However, no explicit mecha-
nisms guarantee a logical connection between dif-
ferent views (Voita et al., 2019; Kovaleva et al.,
2019). Another line of research includes rationale
generation methods (Lei et al., 2016; Chang et al.,
2020; Antognini et al., 2021b). If the selected text
input features are short and concise – called a ra-
tionale – and suffice on their own to yield the
prediction, it can potentially be understood and
verified against domain knowledge (Chang et al.,
2019).

The key motivation for this work arises from the
limitations of rationales. Rationalization models
strive for one overall selection to explain the out-
come by maximizing the mutual information be-
tween the rationale and the label. However, useful
rationales can be multi-faceted, where each facet
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relates to a particular “concept” (see Figure 1). For
example, users typically justify their opinions of a
product by weighing explanations: one for each
aspect they care about (Musat and Faltings, 2015).

Inspired by how human reasoning comprises
concept-based thinking (Armstrong et al., 1983;
Tenenbaum, 1999), we aim to discover, in an un-
supervised manner, a set of concepts to explain
the outcome with a weighted average, similar to
multi-head attention. In this work, we relate con-
cepts to semantically meaningful and consistent
excerpts across multiple texts. Unlike topic mod-
eling, where documents are described by a set of
latent topics comprising word distributions, our la-
tent concepts relate to text snippets that are rele-
vant for the prediction.

Another motivation for this study is to gener-
ate interpretable concepts. The explanation of an
outcome should rely on concepts that satisfy
the desiderata introduced in Alvarez-Melis and
Jaakkola (2018). They should 1. preserve relevant
information, 2. not overlap with each other and be
diverse, and 3. be human-understandable. Figure 1
shows an example of concepts in the beer domain.

In this work, we present a novel self-explaining
neural model: the concept-based rationalizer
(ConRAT) (see Figure 1 and 2). Our new rational-
ization scheme first identifies a set of concepts in
a document and then decides which ones are cur-
rently described (binary selection). ConRAT ex-
plains the prediction with a linear aggregation of
concepts. The model is trained end-to-end, and the
concepts are learned in an unsupervised manner.
In addition, we design two regularizers that guide
ConRAT to induce interpretable concepts and pro-
pose two optional techniques, knowledge distilla-
tion and concept pruning, in order to boost the per-
formance further.

We evaluate ConRAT on both single- and multi-
aspect sentiment classification with up to five tar-
get labels. Upon training ConRAT only on the
overall aspect, the results show that ConRAT gen-
erates concepts that are relevant, diverse, and non-
overlapping, and they also recover human-defined
concepts. Furthermore, our model significantly
outperforms strong supervised baseline models in
terms of predictive and explanation performance.

2 Related Work

Developing interpretable models is of consider-
able interest to the broader research community.

Researchers have investigated many approaches to
improve the interpretability of neural networks.

2.1 Interpretability.
The first line of research aims at providing post-
hoc explanations of an already trained model. For
example, gradient and perturbation-based meth-
ods attribute the decision to important input fea-
tures (Ribeiro et al., 2016; Sundararajan et al.,
2017; Lundberg and Lee, 2017; Shrikumar et al.,
2017). Other studies identified the causal relation-
ships between input-output pairs (Alvarez-Melis
and Jaakkola, 2017; Goyal et al., 2019). In con-
trast, our model is inherently interpretable as it di-
rectly produces the prediction with an explanation.

Another line of research has developed inter-
pretable models. Quint et al. (2018) extended a
variational auto-encoder with a differentiable de-
cision tree. Alaniz and Akata (2019) proposed an
explainable observer-classifier framework whose
predictions can be exposed as a binary tree. How-
ever, these methods have been designed for images
only, while our work focuses on text input.

The works most relevant to ours relate to inter-
pretable models from the rationalization field (Lei
et al., 2016; Bastings et al., 2019; Yu et al., 2019;
Chang et al., 2020; Jain et al., 2020; Paranjape
et al., 2020). These methods justify their predic-
tions by selecting rationales (i.e., relevant tokens
in the input text). However, they are limited to
explain only the prediction with mostly one text
span and rely on the assumption that the data have
low internal correlations (Antognini et al., 2021b).
Chang et al. (2019) extended previous methods to
extract an additional rationale in order to counter
the prediction. In our work, ConRAT produces
multi-faceted rationales and explains the predic-
tion through a linear aggregation of the extracted
concepts. However, if we set the number of con-
cepts to one, ConRAT reduces to a special case of
a rationale model.

2.2 Explanations through Concepts.
Researchers have proposed multiple approaches
for concept-based explanations. Kim et al. (2018)
designed a post-hoc technique to learn concept ac-
tivation vectors by relying on human annotations
that characterize concepts of interest. Similarly,
Bau et al. (2017); Zhou et al. (2018) generated vi-
sual explanations for a classifier. Our concepts are
learned in an unsupervised manner and not defined
a priori.
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Few studies have learned concepts on images in
an unsupervised fashion. Li et al. (2018) explained
predictions based on the similarity of the input
to “prototypes” learned during training. Alvarez-
Melis and Jaakkola (2018) used an auto-encoder
to extract relevant concepts and explain the predic-
tion. Ghorbani et al. (2019) designed an unsuper-
vised concept discovery method to explain trained
models. Koh et al. (2020) employed the discov-
ered concepts to predict the target label. Our
work’s key difference is that we focus on text data,
while all these methods treat only image inputs.

To the best of our knowledge, Bouchacourt and
Denoyer (2019) is the only study that has proposed
a self-interpretable concept-based model for text
data using reinforcement learning. It computes the
predictions and provides an explanation in terms
of the presence or absence of concepts in the input
(i.e., text excerpts of variable lengths). However,
their method achieves poor overall performance.
In addition, it is unclear whether the discovered
concepts are interpretable. Conversely, ConRAT
is differentiable, clearly outperforms strong mod-
els in terms of predictive and explanation per-
formance, and it infers relevant, diverse, non-
overlapping, and human-understandable concepts.

2.3 Topic Modeling.

Topic models, such as latent Dirichlet allocation
(Blei et al., 2003), describe documents with a mix-
ture of latent topics. Each topic represents a word
distribution. Some studies combined topic mod-
els with recurrent neural models (Dieng et al.,
2017; Zaheer et al., 2017). However, the goal
of these generative models and the topics remains
different than this work’s. We aim to build a self-
interpretable model that predicts and explains the
outcome with latent concepts.

3 Concept-based Rationalizer (ConRAT)

Figure 2 depicts the architecture of our proposed
self-explaining model: the Concept-based Ratio-
nalizer (ConRAT). Let X be a random variable
representing a document composed of T words
(x1, x2, . . . , xT ), y the ground-truth label, and K
the desired numbers of concepts.1 Given a docu-
ment X and a label y, our goal is to explain the
prediction ŷ by finding a set of K concepts C1,
. . . , CK that are masked versions of X . ConRAT

1Our method is easily adapted for regression problems.
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Figure 2: The proposed self-explaining model Con-
RAT. The model predicts and explains ŷ. Given a doc-
ument X , the concept generator produces one binary
mask per concept. The concept selector decides which
concepts are present in the input. The predictor aggre-
gates each selected concept’s prediction to compute ŷ.

learns concepts by maximizing the mutual infor-
mation between C and y. We guide ConRAT to
create separable and consistent concepts via two
regularizers to make them human-understandable.

3.1 Model Overview
ConRAT is divided into three submodels: a
Concept Generator gθ(·), which finds the con-
cepts C1, . . . , CK ; a Concept Selector sθ(·),
which detects whether a concept Ck is present or
absent (i.e., sk ∈ {1, 0}) in the input X; and a Pre-
dictor fθ(·), which predicts the outcome ŷ based
on the concepts C and their presence scores S.

3.1.1 Concept Generation
Inspired by the selective rationalization field (Lei
et al., 2016), we define “concept” as a sequence
of consecutive words in the input text. Previous
studies extracted only one concept C1 that is suffi-
cient to explain the target variable y. In our work,
a major difference is that we aim to find K con-
cepts C1, · · · , CK that represent different topics
or aspects and altogether explain the target vari-
able y. We interpret the model as being linear in
the concepts rather than depending on one over-
all selection of word. More formally, we define a
concept as follows:

Ck = Mk ⊙X, (1)

where Mk ∈ S denotes a binary mask, S is a subset
of ZT

2 with some constraints (introduced in Sec-
tion 3.2), and ⊙ is the element-wise multiplication
of two vectors.

We parametrize the binary masks M ∈ ZK×T
2

with the concept generator model gθ(·), based on a
bi-directional recurrent neural network. Follow-
ing previous rationalization research (Yu et al.,
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2019; Chang et al., 2020), we force gθ(·) to se-
lect one chunk of text per concept with a pre-
specified length ℓ ∈ [1, T ].2 Instead of predicting
the mask Mk directly, gθ(·) produces a score for
each position t. Then, it samples the start posi-
tion t∗k of the chunk for each Ck using the straight-
through Gumbel-Softmax (Maddison et al., 2017;
Jang et al., 2017). Finally, we compute Mk as fol-
lows:

T ∗ ∼ Gumbel(gθ(X)),

Mk,t = [t ∈ [t∗k,min(t∗k + ℓ− 1, T )]],
(2)

where denotes the indicator function. Although
the equation is not differentiable, we can em-
ploy the straight-through technique (Bengio et al.,
2013) and approximate it with the gradient of a
causal convolution and a convolution kernel of an
all-one vector of length ℓ.

3.1.2 Concept Selection
A key objective of ConRAT is to produce seman-
tically consistent and separable concepts. So far,
the generator gθ(·) generates K concepts for any
input document. However, some documents might
mention only a subset of those. Thus, the goal of
the concept selector model sθ(·) is to enable Con-
RAT to ignore absent concepts.

Specifically, for each concept Ck, the model
first computes a concept representation HCk

using
a standard attention mechanism (Bahdanau et al.,
2015) (the tokens whose Mk,t = 0 are masked
out). Then, we take the dot product of HCk

with
a weight vector, followed by a sigmoid activation
function to induce the log-probabilities of a re-
laxed Bernoulli distribution (Jang et al., 2017). Fi-
nally, we sample the presence score sk ∈ {0, 1} of
each concept independently:

S ∼ RelaxedBernoulli(sθ(X,M)). (3)

3.1.3 Prediction
As inputs, the predictor fθ(·) takes the docu-
ment X , the masks M , and the presence scores S
for all concepts. First, we extract the concepts,
which are masked versions of X . Differently than
in Equation 1, the concepts are ignored if sk = 0:

Ck = (Mk ∗ sk)⊙X. (4)
2In early experiments, we relaxed the length constraint

and generated instead K differentiable masks with continuity
regularizers. However, this variant produced majorly inferior
results. We hypothesize that there are too many constraints to
optimize with only the target label as a strong signal.

Second, the model produces the hidden represen-
tation h′Ck

with another recurrent neural network,
followed by a LeakyReLU activation function (Xu
et al., 2015). Then, it computes the logits of y by
applying a linear projection for each concept:

Pk = Wh′Ck
+ b, (5)

where W and b are the projection parameters. Fi-
nally, fθ computes the final outcome as follows:

p(y|C,M , X) = softmax(

K!

k=1

αkPksk), (6)

where αk are model parameters that can be inter-
preted as the degree to which a particular concept
contributes to the final prediction.

3.2 Unsupervised Discovery of Concepts

The above formulations integrate the explanation
into the outcome computation. However, Mk is by
definition faithful to the model’s inner workings
but not comprehensible for the end-user. Follow-
ing Alvarez-Melis and Jaakkola (2018), we aim
the concepts to follow three desiderata:1. Fidelity:
they should preserve relevant information, 2. Di-
versity: they should be non-overlapping and di-
verse, and 3. Grounding: they should have an im-
mediate human-understandable interpretations.

The hard constraint in Equation 2 naturally en-
forces the grounding by forcing the concept to be a
sequence of ℓ words. For the fidelity, it is partly in-
tegrated in ConRAT by the prediction loss, which
is the cross-entropy between the ground-truth la-
bel y and the prediction ŷ: Lpred = CE(ŷ, y).
Recall that the concepts are substitutes of the input
that are sufficient for the prediction. We empha-
size the word “partly” because nothing prevents
ConRAT from picking up spurious correlations.

We propose two regularizers to encourage Con-
RAT in finding non-overlapping, relevant, and dis-
similar concepts. The first favors the orthogonality
of concepts by penalizing redundant rows in M :

Loverlap = ||MMT − ℓ · ||2F , (7)

where || · ||F stands for the Frobenius norm of a
matrix, denotes the identity matrix, and ℓ the
pre-specified concept length. However, Loverlap

alone does not prevent ConRAT from learning lit-
tle relevant concepts. Therefore, we propose a sec-
ond regularizer to encourage fidelity and diversity
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by minimizing the cosine similarity between the
concept representations HCk

(see Section 3.1.2):

Ldiv =
1

K

1

K − 1

K!

k1,k2=1
k1 ∕=k2

cos(HCk1
, HCk2

). (8)

In both regularizers, we do not consider the
presence scores S because a model could always
select only one concept; this strategy is not opti-
mal and reduces to a special case of rationale mod-
els (i.e., S would become a one-hot vector).

To summarize, the concepts are learned in an
unsupervised manner and align with the three
desiderata mentioned above: diversity is achieved
with Loverlap and Ldiv; fidelity is enforced by
Lpred and Ldiv, and the hard constraint in Equa-
tion 2 ensures the grounding. Finally, we train
ConRAT end-to-end and minimize the loss jointly
L = Lpred + λOLoverlap + λDLdiv, where λO

and λD control the impact of each regularizer.

3.3 Improving Overall Performance Further

The purpose of self-explaining models is to com-
pute outcomes while being more interpretable.
However, one key point is to achieve predic-
tive performance comparable to that of black-box
models. We propose two techniques to further im-
prove both interpretability and performance; how-
ever, ConRAT does not require these techniques to
outperform other methods, as we will see later.

Knowledge Distillation. We can train ConRAT
not only via the information provided by the true
labels but also by observing how a teacher model
behaves (Hinton et al., 2015). In that case, we in-
troduce the teacher model Tθ(·), which is a sim-
ple recurrent neural network similar to the predic-
tor fθ. It is trained one the same data, but it uses
the whole input X instead of subsets selected by
each Ck. The overall training loss becomes L =
Lpred + λOLoverlap + λDLdiv + λT (ŷTθ

− ŷfθ)
2.

Pruning Concepts. Depending on the number
of concepts and the pre-specified length, the total
number of selected words can be close to or higher
than the document length.3 In practice, it is hard
to extract meaningful concepts in such settings. To
alleviate this problem, we propose to prune con-
cepts at inference and select the top-k concepts

3e.g., if a document contains 200 tokens and we aim to ex-
tract 10 concepts of 20 tokens, all words should be selected.

Dataset Amazon Beer
# Reviews 24, 000 60, 000
Split Train/Val/Test 20k/2k/2k 50k/5k/5k
# Annotations 471 994
# Human Aspects 1 5
# Words per review 224± 125 184± 58

Table 1: Statistics of the review datasets.

that overlap the least with the others. More specif-
ically, we compute the overlap as follows: for each
sample in the validation set, we measure the aver-
age overlap ratio between Mk1 and Mk2 for each
concept-pair (Ck1 , Ck2), k1 ∕= k2. Then, we select
the top-k concepts whose scores are the lowest. Fi-
nally, to compute the new prediction ŷ, we update
sk = 1 if Ck is in the top-k or sk = 0 otherwise.

4 Experiments

4.1 Datasets
We evaluate the quantitative performance of Con-
RAT using two binary classification datasets. The
first one is the single-aspect Amazon Electronics
dataset (Ni et al., 2019). We followed the filter-
ing process in Chang et al. (2019) to keep only
the reviews that contain evidence for both positive
and negative sentiments. Specifically, we consid-
ered the first 50 tokens after the words “pros:” and
“cons:” as the rationale annotations for the pos-
itive and negative labels, respectively. We ran-
domly picked 24,000 balanced samples with rat-
ings of four and above or two and below.

The second dataset comprises the multi-aspect
beer reviews (McAuley et al., 2012) used in
the field of rationalization (Lei et al., 2016; Yu
et al., 2019). Each review describes various
beer aspects: Appearance, Aroma, Palate, Taste,
and Overall; users also provided a five-star rat-
ing for each aspect. However, we only use the
overall rating for ConRAT. The dataset includes
994 beer reviews with sentence-level aspect anno-
tations. Following the evaluation protocol in Bao
et al. (2018); Chang et al. (2020), we binarized the
ratings ≤ 2 as negative and ≥ 3 as positive. We
sampled 60,000 balanced examples. Our setting
is more challenging than those in previous stud-
ies because we assess the performance on all as-
pects (instead of three) and consider all examples
for the sampling (instead of de-correlated subsets),
reflecting the real data distribution. Table 1 shows
the data statistics.
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4.2 Baselines

We consider the following baselines. RNP is a
generator-predictor framework proposed by Lei
et al. (2016) for rationalizing neural prediction.
The generator selects text spans as rationales,
which are then fed to the classifier for the final
prediction. Yu et al. (2019) introduced RNP-3P,
which extends RNP to include the complement
predictor as the third player. It maximizes the
predictive accuracy from unselected words. The
training consists of an adversarial game with the
three players. Intro-3P (Yu et al., 2019) improves
RNP-3P by conditioning the generator on the pre-
dicted outcome of a teacher model. InvRAT is
a game-theoretic method that competitively rules
out spurious words with strong correlations to the
output. The game-theoretic approach CAR aims
to infer a rationale and a counterfactual rationale
that counters the true label. We follow Chang et al.
(2020) and consider for all methods their hard con-
straint variant (i.e., selecting one chunk of text)
with different lengths for generating rationales.

RNP-3P and Intro-3P are trained with the pol-
icy gradient (Williams, 1992). The others estimate
the gradients of the rationale selections using the
straight-through technique (Bengio et al., 2013).

All rationalization methods, except CAR, strive
for a single overall selection (K = 1) to explain
the outcome. For the multi-aspect dataset, we train
and tune each baseline independently for each as-
pect. The key difference with ConRAT is that the
model is only trained on the overall aspect label
and infers one rationale of K concepts; the base-
lines are trained K times to infer one rationale of
one concept.

4.3 Experimental Details

To seek fair comparisons, we try to keep a similar
number of parameters across all models, and we
employ the same architecture for each player (gen-
erators, predictors, and discriminators/teachers) in
all models: bi-directional gated recurrent units
(Chung et al., 2014) with a hidden dimension 256.
We use the 100-dimensional GloVe word embed-
dings (Pennington et al., 2014), Adam (Kingma
and Ba, 2015) as optimization method with a
learning rate of 0.001. We set the convolutional
neural network in the concept selector similarly to
(Kim et al., 2015) with 3-, 5-, and 7-width filters
and 50 feature maps per filter. For ConRAT, we
set the regularizer factors as follow: λO = 0.05,

Table 2: Accuracy and objective performance of ratio-
nales in automatic evaluation for the Amazon dataset.

Factual Counter Fact.

Model Acc. P R F P R F
RNP 75.5 32.6 18.8 23.8 −
RNP-3P 70.0 49.4 28.4 36.0 −
Intro-3P 75.2 22.1 12.8 16.2 −
InvRAT 71.5 44.3 25.5 32.4 −
ConRAT-175.5 56.432.541.3 −
CAR 73.6 33.0 19.1 24.2 44.125.4 32.2
ConRAT-675.4 50.028.836.6 32.3 18.6 23.6
ConRAT-4 75.3 46.4 26.7 33.9 29.6 17.1 21.6
ConRAT-2 75.3 33.7 19.4 24.6 8.9 5.1 6.5

λD = 0.05, and λT = 0.5. We use the open-
source implementation for all models, and we tune
them by maximizing the prediction accuracy on
the dev set with 16 random searches. For repro-
ducibility purposes, we include additional details
in Appendix A.

4.4 RQ 1: Can ConRAT find evidence for
factual and counterfactual rationales?

We aim to validate whether ConRAT can identify
the two evidences for positive and negative senti-
ments. We set the concept length ℓ = 30, we com-
pare the generated rationales with the annotations,
and we report the precision, recall, and F1 score.
In this experiment, no teacher is used in ConRAT.

Table 2 contains the results. The top rows con-
tain the results when only the factual rationales are
considered for the evaluation, and ConRAT-1 uses
only one concept. We see that ConRAT surpasses
the baselines in finding rationales that align with
human annotations, and it also matches the test ac-
curacy with the baselines. Interestingly, we note
that the baselines achieving the highest accuracy
underperform in finding the correct rationales.

For the factual and counterfactual rationales,
CAR finds one rationale to support the outcome
and another one to counter it, in an adversarial
game. However, the concepts inferred by ConRAT
are not guaranteed to align with the rationales as
there is no explicit signal to infer counterfactual
concepts. Thus, we increase the number of con-
cepts up to six and prune ConRAT to consider only
the two most dissimilar concepts (see Section 3.3).

The bottom of Table 2 show the results. With
only two concepts, ConRAT-2 outperforms CAR
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Table 3: Objective performance of rationales for the multi-aspect beer reviews. ConRAT only uses the overall label
and ignores the other aspect labels. All baselines are trained separately on each aspect rating. Bold and underline
denote the best and second-best results, respectively.

Average Appearance Aroma Palate Taste Overall

Model Acc. P R F P R F P R F P R F P R F P R F

ℓ
=

2
0

RNP 81.1 30.7 22.1 24.9 30.8 23.2 26.5 22.1 21.0 21.5 17.7 24.1 20.4 28.1 16.7 20.9 54.9 25.8 35.1
RNP-3P 80.5 29.1 22.5 25.0 30.4 25.6 27.8 19.3 20.4 19.8 10.3 12.0 11.1 43.9 28.4 34.5 41.6 26.0 32.0
Intro-3P 85.6 24.2 19.6 21.3 28.7 24.8 26.6 14.3 14.4 14.3 16.6 19.3 17.9 24.2 13.6 17.4 37.0 25.9 30.5
InvRAT 82.9 41.8 31.1 34.8 54.5 45.5 49.6 26.1 27.6 26.9 22.6 25.9 24.1 46.6 27.4 34.5 59.0 29.3 39.2
ConRAT*91.4 50.0 42.0 44.9 57.8 53.0 55.3 31.9 35.5 33.6 29.0 36.3 32.3 56.5 33.9 42.4 74.9 51.0 60.7

ℓ
=

1
0

RNP 84.4 41.3 16.6 23.2 40.1 12.0 18.5 33.3 18.7 24.0 25.1 17.4 20.6 32.3 9.8 15.07 76.0 25.1 37.8
RNP-3P 83.1 31.1 13.5 18.6 41.8 19.2 26.3 22.2 12.4 15.9 16.5 10.4 12.7 33.2 10.6 16.1 41.9 14.7 21.8
Intro-3P 80.9 21.8 10.8 14.3 51.0 26.0 34.4 18.8 9.7 12.8 16.5 10.6 12.9 9.7 2.6 4.1 13.1 5.2 7.4
InvRAT 81.9 47.1 17.8 25.5 59.4 26.1 36.3 31.3 15.5 20.8 16.4 9.6 12.1 39.1 11.6 17.9 89.1 26.4 40.7
ConRAT*91.3 48.1 20.1 28.0 51.7 26.2 34.8 32.6 17.4 22.7 23.0 13.8 17.3 45.3 13.1 20.3 88.0 30.1 44.9

* The model is only trained on the overall label and does not have access to the other ground-truth labels.

in terms of test accuracy and matches the perfor-
mance for the factual rationales, but it poorly iden-
tifies counterfactual rationales. However, there is a
major improvement when we increase the number
of concepts and use pruning. Indeed, the word dis-
tribution of the factual and counterfactual ratio-
nales are different, hence captured with pruning.
ConRAT’s factual rationales are better than those
of all models. The counterfactual ones get closer
to those produced by CAR. We show later in Sec-
tion 4.6 that pruning helps in achieving better cor-
relation with human judgments but is not required.

4.5 RQ 2: Are concepts inferred by ConRAT
consistent with human rationalization?

We investigate whether ConRAT can recover all
beer aspects by using only the overall ratings. Be-
cause beer reviews are smaller in length than Ama-
zon ones, we set the concept length ℓ to 10 and 20.
We fix the number of concepts to ten and prune
ConRAT to keep five. We manually map them to
the closest aspect for comparison. We trained the
teacher model, used in Intro-3P and ConRAT, and
obtained 91.4% accuracy. More results and illus-
trations are available in Appendix B and C.

Objective Evaluation. Similar to Section 4.4,
we compare the generated rationales with the hu-
man annotations on the five aspects and the av-
erage performance. The main results are shown
in Table 3. On average, ConRAT achieves the
best performance while trained only on the overall
ratings. This shows that the generated concepts,
learned in an unsupervised manner, are separable,
consistent, and correlated with human judgments
to a certain extent. For the concept length ℓ = 20,

ConRAT produces significant superior results for
all aspects, whereas the difference with InvRAT is
less pronounced for ℓ = 10. Finally, ConRAT’s
concepts lead to the highest accuracy and respect
the grounding desideratum, thanks to the teacher.

We hypothesize that the baselines underperform
due to the high correlations among the aspect rat-
ings. Thus, they are more prone to pick up spuri-
ous correlations between the input features and the
output. By considering multiple concepts simul-
taneously, ConRAT reduces the impact of spuri-
ous correlations. Regarding Intro-3P and RNP-3P,
both suffer from instability issues due to the policy
gradient (Chang et al., 2020; Yu et al., 2019).

We visualize an example in Figure 3. We ob-
serve that ConRAT induces interpretable concepts,
while the best baselines suffer from spurious cor-
relations. By reading our concepts alone, humans
will easily predict the aspect label and its polarity.

Subjective Evaluation. We conduct a human
evaluation using Amazon’s Mechanical Turk (de-
tails in Appendix B.2) to judge the understandabil-
ity of the concepts. Following Chang et al. (2019),
we sampled 100 balanced reviews from the hold-
out set for each aspect, model, and concept length,
resulting in 5,000 samples. We showed the exam-
ples in random order. An evaluator is presented
with the concept generated by one of the five meth-
ods (unselected words are not visible). We credit a
success when the evaluator guesses the true aspect
label and its sentiment. We report the success rate
as the performance metric. A random guess has a
10% success rate.

Figure 4 shows the main results. Similar to
the objective evaluation, ConRAT reaches the
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ConRAT (Ours) InvRAT (Chang et al., 2020) RNP (Lei et al., 2016)
appearance : pours a slightly murky ice tea brown color
with a frothy head and some lacing smell : malted milk
chocolate and hazelnuts ; rather bready taste : starts
with a very clean malty base which turns a bit earthy
and coarse in the aftertaste mouthfeel : very smooth
but a tad below medium bodied ; moderate carbon-
ation drinkability : a very pleasant scottish that is
marked down a bit for its mediocre finish

appearance : pours a slightly murky ice tea brown
color with a frothy head and some lacing smell : malted
milk chocolate and hazelnuts ; rather bready taste :
starts with a very clean malty base which turns a bit
earthy and coarse in the aftertaste mouthfeel : very
smooth but a tad below medium bodied ; moderate
carbonation drinkability : a very pleasant scottish that
is marked down a bit for its mediocre finish

appearance : pours a slightly murky ice tea brown
color with a frothy head and some lacing smell :
malted milk chocolate and hazelnuts ; rather bready
taste : starts with a very clean malty base which turns

a bit earthy and coarse in the aftertaste mouthfeel :

very smooth but a tad below medium bodied ; moder-
ate carbonation drinkability : a very pleasant scottish
that is marked down a bit for its mediocre finish

Figure 3: Concepts generated (with ℓ=10) for a beer review. Underline highlights ambiguities. The color depicts
the aspects: Appearance, Aroma, Palate, Taste, and Overall . ConRAT is trained only on the overall label.
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Figure 4: Subjective performance of rationales for the
multi-aspect beer reviews. Evaluators need to guess
both the sentiment and what aspect the concept is
about, which makes random guess only 10%.

best performance, followed by InvRAT. Moreover,
ConRAT only requires a single training on the
overall aspect. It emphasizes that the discovered
concepts satisfy the fidelity and diversity desider-
ata and better correlate with human judgments
compared with supervised baselines.

4.6 RQ 3: How does the number of concepts
K in ConRAT affect the performance?

We study the impact of the number of concepts K
in ConRAT on the performance, as discussed in
Section 4.5. We set the number of concepts to the
number of aspects (K=5) and then increase it to
K=10 and K=20. We prune ConRAT to keep only
the five most dissimilar concepts (see Section 3.3).

Results are shown in Table 4. First, we observe
that the performance is already better than the
baselines in Table 3 with K=5. Second, when in-
creasing K and pruning ConRAT, the performance
is boosted further. However, we remark that the in-
terpretability of the concepts follows a bell curve

Table 4: Impact of the number of concepts in ConRAT
on the objective performance for the beer reviews.

Average

#Concepts Acc. P R F

ℓ
=

20 K = 5 90.95 48.96 37.59 41.37
K = 10 91.35 50.02 41.96 44.86
K = 20 90.24 37.78 31.19 32.84

ℓ
=

1
0 K = 5 89.64 47.60 19.23 26.90

K = 10 91.25 48.12 20.11 27.97
K = 20 91.05 35.71 14.84 20.71

and significantly decreases when K=20. One po-
tential reason is that we expect overlaps between
the discriminative concepts that relate to beer as-
pects.4 Thus, the five most dissimilar concepts
might align less with human-defined concepts.

4.7 RQ 4: How does each module of ConRAT
contribute to the overall performance?

Finally, we analyze the importance of each mod-
ule in an ablation study. To avoid any bias from
pruning, we set the number of concepts to five.5

Table 5 shows the results. When ConRAT ig-
nores the overlapping or the diversity regularizer,
we observe a large drop in the rationale perfor-
mance. This is expected as the diversity desider-
atum is not encouraged anymore. However, we
remark that the sentiment prediction accuracy in-
creases, which is certainly caused by spurious cor-
relation with the ground-truth label. When all
concepts are considered (sk = 1 ∀k), we note
that the sentiment accuracy stays similar. How-
ever, the objective performance decreases by 10%
for the precision and more than 20% for the re-
call and F1 score. These results align with prior
work: users write opinions about the topics they
care about (Musat and Faltings, 2015; Antognini

4As shown in Table 1, the mean length of beer reviews is
184 words. With ℓ=20 and C=20, 400 words are highlighted.

5We obtain similar results with K=10 and K=20.
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Table 5: Ablation study of ConRAT with five concepts.

Average

Model Acc. P R F
ConRAT 89.64 47.60 19.23 26.90
- No Loverlap 91.05 31.50 13.16 18.37
- No Ldiv 90.85 34.49 11.69 16.95
- No sθ(·) :sk = 1∀k 89.74 43.13 14.95 21.42
- No Teacher 86.52 45.31 19.65 26.99

et al., 2021a). ConRAT reduces the noise at train-
ing by selecting concepts described in the current
document. Finally, the teacher model helps Con-
RAT to boost the sentiment accuracy by more than
3% absolute score, without affecting the rationale
quality.

5 Conclusion

Providing explanations for automated predictions
carries much more impact, increases transparency,
and might even be vital. Previous works have pro-
posed using rationale methods to explain the pre-
diction of a target variable. However, they do not
properly capture the multi-faceted nature of useful
rationales. We proposed ConRAT, a novel self-
explaining model that extracts a set of concepts
and explains the outcome with a linear aggrega-
tion of concepts, similar to how humans reason.

Our second contribution is two novel regular-
izers that guide ConRAT to generate interpretable
concepts. Experiments on both single- and multi-
aspect sentiment classification datasets show that
ConRAT, by using only the overall label, is the first
to provide superior rationale and predictive perfor-
mance compared with supervised state-of-the-art
methods trained for each aspect label. Moreover,
ConRAT produces concepts considered superior in
interpretability when evaluated by humans.
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A Additional Training Details

We tune all models on the dev set. We truncate
all reviews to 320 tokens for the beer dataset and
400 tokens for Amazon reviews. We have oper-
ated a random search over 16 trials. All baselines,
except CAR, are tuned for each aspect (80 trials
in total for the five aspects). We chose the models
achieving the lowest validation accuracy. Most of
the time, all models converged under 30 epochs.
The range of hyperparameters are the following
for ConRAT (similar for other models):

• Learning rate: [0.0005, 0.00075, 0.001];

• Batch size: [128];

• Hidden size: [256];

• λD: [0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0];

• λO: [0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1.0];

• λT : [0.5, 0.6];

• Dropout: [0.0, 0.1];

• Weight decay: [0.0, 10−8, 10−10];

• Gumbel temperature in fθ(·): [1.0; 1.5];

• Gumbel temperature in sθ(·): [1.0; 1.5];

A.1 Hardware / Software

• CPU: 2x Intel Xeon E5-2680 v3, 2x 12 cores,
24 threads, 2.5 GHz, 30 MB cache;

• RAM: 16x16GB DDR4-2133;

• GPU: 2x Nvidia Titan X Maxwell;

• OS: Ubuntu 18.04;

• Software: Python 3, PyTorch 1.3, CUDA 10.

B Complementary Results RQ 2

B.1 Objective Evaluation

The results for the concept length ℓ = 5 is shown
in Table 6.

Moreover, we report in Table 7 the performance
for the unsupervised sentiment prediction task for
the aspects whose labels are not available to Con-
RAT: Appearance, Aroma, Palate, and Taste. As
we can see, ConRAT achieves competitive results
compared to supervised baselines.

B.2 Human Evaluation Details
We use Amazon’s Mechanical Turk crowdsourc-
ing platform to recruit human annotators to eval-
uate the quality of extracted justifications and the
generated justifications produced by each model.
To ensure high-quality of the collected data, we
restricted the pool to native English speakers from
the U.S., U.K., Canada, or Australia. Additionally,
we set the worker requirements at a 98% approval
rate and more than 1,000 HITS.

The user interface used to judge the quality of
the justifications extracted from different methods,
in Section 4.5, is shown in Figure 5.

B.3 Subjective Evaluation
All results (for the joint, the aspect, and the polar-
ity accuracy) are shown in Figure 6. In total, we
used 7,500 samples (100× 5× 5× 3).

We also studied the error rates on each aspect.
The Aroma and Palate aspects cause the highest
error for all models. One possible reason is that
users confuse these with the aspect Taste, hence
their high correlations in rating scores (Antognini
et al., 2021b).

C Extra Visualizations

Additional samples of generated rationales are
shown in Figure 7, 8, 9, and 10. We can observe
that baselines suffer from spurious correlations:
the rationale for the aspect Aroma, Palate, and
Taste are often exchanged, or several rationales
pick the same text snippets. On the other hand,
ConRAT finds better concepts while only trained
on the overall aspect label. As it has been shown
in prior work (Lei et al., 2016; Chang et al., 2020;
Antognini et al., 2021b) rationale methods suffer
from the high correlation between rating scores
because each model is trained independently for
each aspect. Therefore, they rely on the assump-
tion that the data have low internal correlations,
which does not reflect the real data distribution.
By contrast, ConRAT alleviates this problem be
finding all concepts in one training.
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Table 6: Objective performance of rationales for the multi-aspect beer reviews with the concept length set to five.
ConRAT only uses the overall rating and does not have access to the other aspect labels. All baselines are trained
separately on each aspect label. Bold and underline denote the best and second-best results, respectively.

Average Appearance Aroma Palate Taste Overall

Model Acc. P R F P R F P R F P R F P R F P R F

ℓ
=

5

RNP 80.8 41.3 10.4 16.4 50.9 13.3 21.1 43.2 12.7 19.7 27.1 10.0 14.5 5.5 0.59 1.07 80.0 15.3 25.7
RNP-3P 81.5 32.9 6.9 11.2 35.1 7.3 12.1 25.6 7.2 11.3 17.0 5.2 8.0 28.6 4.0 7.1 58.2 10.5 17.8
Intro-3P 84.6 29.8 7.0 11.3 47.3 12.4 19.7 35.4 9.9 15.5 9.7 2.8 4.3 24.3 3.8 6.6 32.4 6.3 10.6
InvRAT 83.6 46.4 11.4 18.1 51.0 13.1 20.8 40.6 11.9 18.4 32.0 11.8 17.2 36.1 5.6 9.6 72.5 14.7 24.4
ConRAT†90.4 46.6 10.9 17.5 47.2 12.4 19.6 26.9 7.1 11.3 26.6 9.2 13.7 39.2 6.2 10.8 93.1 19.5 32.21

* The model is only trained on the overall label and does not have access to the other ground-truth labels.

Figure 5: Annotation platform for judging the quality of the concepts in the subjective evaluation on beer reviews.

Table 7: Performance on the overall sentiment and the
aspects whose labels are not available to ConRAT. Bold
and underline denote the best and second-best results.

Model Ap.* Ar.* P* T* O

ℓ
=

5

RNP 95.98 89.74 92.55 79.78 80.78
RNP-3P 92.97 87.11 88.09 73.93 81.54
Intro-3P 93.07 88.38 86.33 77.05 84.57
InvRAT 95.98 90.44 92.66 88.63 83.60
ConRAT 91.75* 91.85*94.37*92.35*90.44

ℓ
=

1
0

RNP 95.17 92.15 90.74 82.80 84.41
RNP-3P 93.55 88.48 90.43 77.15 83.11
Intro-3P 93.55 87.01 87.21 83.20 80.86
InvRAT 95.77 90.54 89.03 85.01 81.89
ConRAT 92.25* 91.05* 83.80* 91.85*91.25

ℓ
=

2
0

RNP 96.08 92.15 94.37 87.02 81.09
RNP-3P 92.48 87.70 89.16 81.74 80.47
Intro-3P 93.46 87.11 88.96 86.82 85.64
InvRAT 95.88 91.05 89.44 85.11 82.90
ConRAT 67.71* 74.85* 77.16* 80.58* 91.35

* ConRAT predicts the sentiment of the aspect in an unsu-
pervised fashion.
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(a) Concept length ℓ = 10.
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(b) Concept length ℓ = 20.
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(c) Concept length ℓ = 5.

Figure 6: Subjective performance per aspect of rationales for the multi-aspect beer reviews.
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Appearance Aroma Palate Taste Overall

ConRAT (Ours) InvRAT (Chang et al., 2020) RNP (Lei et al., 2016)
on-tap at lagunitas a : the pour is a hazy
straw color with an initially fluffy white
head that slowly dies down to a thin layer
. s : an amazingly funky and tart aroma is
present immediately . lots of sour apples
, lemons , and maybe some green grapes
along with a subtle wood character and a
bit of grass . t : the tartness is bright and
green , lots of lemons and apples . the oak ,
grass , wet straw , and mild earthiness give
this beer a great funky balance to the sour-
ness . m : the body is somewhat light and
crisp , with a great level of effervescence and
slight dryness . d : this is an absolutely fan-
tastic beer . i would drink this like nobody
’s business if it was more readily available
and/or lagunitas was n’t such a drive .

on-tap at lagunitas a : the pour is a hazy
straw color with an initially fluffy white
head that slowly dies down to a thin layer
. s : an amazingly funky and tart aroma is
present immediately . lots of sour apples ,
lemons , and maybe some green grapes along
with a subtle wood character and a bit of
grass . t : the tartness is bright and green
, lots of lemons and apples . the oak , grass
, wet straw , and mild earthiness give this
beer a great funky balance to the sourness .
m : the body is somewhat light and crisp ,
with a great level of effervescence and slight
dryness . d : this is an absolutely fantas-
tic beer . i would drink this like nobody
’s business if it was more readily available
and/or lagunitas was n’t such a drive .

on-tap at lagunitas a : the pour is a hazy
straw color with an initially fluffy white
head that slowly dies down to a thin layer
. s : an amazingly funky and tart aroma
is present immediately . lots of sour apples
, lemons , and maybe some green grapes
along with a subtle wood character and a
bit of grass . t : the tartness is bright and
green , lots of lemons and apples . the oak ,
grass , wet straw , and mild earthiness give
this beer a great funky balance to the sour-
ness . m : the body is somewhat light and
crisp , with a great level of effervescence and
slight dryness . d : this is an absolutely fan-
tastic beer . i would drink this like nobody
’s business if it was more readily available
and/or lagunitas was n’t such a drive .

Figure 7: Examples of generated rationales with ℓ = 10 for a beer review. Underline highlights ambiguities.

ConRAT (Ours) InvRAT (Chang et al., 2020) RNP (Lei et al., 2016)
pours out in a opaque dark yellow colour ,
topped with a large , thick white foam . very
cotton-like but fruity and strong aroma of of
oranges , peaches and banana with under-
tones of coriander . it also has some weak
vinous accents thick and wheaty flavour of
cloves , banana , apricots and oranges . thick
, full and round mouthfeel . quite tart in
the back of the throat bananas in the long
velvetly soft finish with hoppy note from
orange-peels . a wonderfull winter wheat
, too bad it was only 5000 bottles made

pours out in a opaque dark yellow colour ,
topped with a large , thick white foam . very
cotton-like but fruity and strong aroma of
of oranges , peaches and banana with under-
tones of coriander . it also has some weak
vinous accents thick and wheaty flavour of
cloves , banana , apricots and oranges .
thick , full and round mouthfeel . quite tart
in the back of the throat bananas in the long
velvetly soft finish with hoppy note from or-
ange-peels . a wonderfull winter wheat , too
bad it was only 5000 bottles made

pours out in a opaque dark yellow colour ,
topped with a large , thick white foam . very
cotton-like but fruity and strong aroma of of
oranges , peaches and banana with under-
tones of coriander . it also has some weak
vinous accents thick and wheaty flavour of
cloves , banana , apricots and oranges . thick
, full and round mouthfeel . quite tart in
the back of the throat bananas in the long
velvetly soft finish with hoppy note from
orange-peels . a wonderfull winter wheat
, too bad it was only 5000 bottles made

Figure 8: Examples of generated rationales with ℓ = 10 for a beer review. Underline highlights ambiguities.

ConRAT (Ours) InvRAT (Chang et al., 2020) RNP (Lei et al., 2016)
a : pours a clear dark amber colour . with
a thick two finger creamy off white head .
settles to a small cap . leaves quite a bit
of lacing . s : caramel malt with a grainy
smell . also a bit of a fruity smell closer to
dark fruits t : caramel malt up front with
a grainy taste . then it finishes with a more
sweet dark fruity taste . finishes dry . m :
medium carbonation with a medium body
d : it ’s a decent beer . nothing great but it
gets the job done if you enjoy this style .

a : pours a clear dark amber colour . with
a thick two finger creamy off white head .
settles to a small cap . leaves quite a bit
of lacing . s : caramel malt with a grainy
smell . also a bit of a fruity smell closer to
dark fruits t : caramel malt up front with
a grainy taste . then it finishes with a more
sweet dark fruity taste . finishes dry . m :
medium carbonation with a medium body
d : it ’s a decent beer . nothing great but
it gets the job done if you enjoy this style .

a : pours a clear dark amber colour . with
a thick two finger creamy off white head .
settles to a small cap . leaves quite a bit
of lacing . s : caramel malt with a grainy
smell . also a bit of a fruity smell closer to
dark fruits t : caramel malt up front with a
grainy taste . then it finishes with a more
sweet dark fruity taste . finishes dry . m :
medium carbonation with a medium body
d : it ’s a decent beer . nothing great but
it gets the job done if you enjoy this style .

Figure 9: Examples of generated rationales with ℓ = 20 for a beer review. Underline highlights ambiguities.

ConRAT (Ours) InvRAT (Chang et al., 2020) RNP (Lei et al., 2016)
beer review 100 a - pours a light some-
what hazy gold color into my pint glass with
about one finger of head moderate retention
and very nice lacing . s - strong aroma of
hops , pine and grapefruit citrus notes as
well as sweet malts . t - to me , this is a
great tasting ipa . sweet malts , followed
by a very nice pine and citrus hop fusion
that finishes with just the right amount of
bitterness m - medium in body , crisp and
refreshing . d - this drinks great as an ipa ,
and all you hopheads out there like myself
remember this is an ipa , not a double or
imperial , and for the category it ’s in it is
an awesome beer

beer review 100 a - pours a light some-
what hazy gold color into my pint glass with
about one finger of head moderate retention
and very nice lacing . s - strong aroma of
hops , pine and grapefruit citrus notes as
well as sweet malts . t - to me , this is
a great tasting ipa . sweet malts , followed
by a very nice pine and citrus hop fusion
that finishes with just the right amount of
bitterness m - medium in body , crisp and
refreshing . d - this drinks great as an ipa ,
and all you hopheads out there like myself
remember this is an ipa , not a double or
imperial , and for the category it ’s in it is
an awesome beer

beer review 100 a - pours a light somewhat
hazy gold color into my pint glass with
about one finger of head moderate reten-
tion and very nice lacing . s - strong aroma
of hops , pine and grapefruit citrus notes as
well as sweet malts . t - to me , this is a
great tasting ipa . sweet malts , followed
by a very nice pine and citrus hop fusion
that finishes with just the right amount of
bitterness m - medium in body , crisp and
refreshing . d - this drinks great as an ipa
, and all you hopheads out there like myself
remember this is an ipa , not a double or
imperial , and for the category it ’s in it is
an awesome beer

Figure 10: Examples of generated rationales with ℓ = 20 for a beer review. Underline highlights ambiguities.


