
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 753–760
August 1–6, 2021. ©2021 Association for Computational Linguistics

753

Can the Transformer Learn Nested Recursion with Symbol Masking?

Jean-Philippe Bernardy Adam Ek Vladislav Maraev
Centre for Linguistic Theory and Studies in Probability

Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg

firstname.lastname@gu.se

Abstract

We investigate if, given a simple symbol mask-
ing strategy, self-attention models are capable
of learning nested structures and generalise
over their depth. We do so in the simplest set-
ting possible, namely languages consisting of
nested parentheses of several kinds. We use
encoder-only models, which we train to pre-
dict randomly masked symbols, in a BERT-
like fashion. We find that the accuracy is well
above random baseline, with accuracy consis-
tently above 50% both when increasing nest-
ing depth and distances between training and
testing. However, we find that the predic-
tions made correspond to a simple parenthesis
counting strategy, rather than a push-down au-
tomaton. This suggests that self-attention mod-
els are not suitable for tasks which require gen-
eralisation to more complex instances of recur-
sive structures than those found in the training
set.

1 Introduction

Self-attention models (Vaswani et al., 2017) enjoy
broad use in NLP tasks. The best attention-based
models can tackle several tasks using a unified sen-
tence encoding (and perhaps decoding) module
(Raffel et al., 2020), with applications ranging from
classification to inference and generation. They
provide state of the art results for all such tasks,
displacing the already very successful recurrent
neural networks, in particular the LSTM and its
variants. The availability of large pretrained mod-
els (Devlin et al., 2019) is another strong point in
their favour.

However, the generalisation capabilities of self-
attention models are still not well understood, and
the present work is part of an ongoing effort to un-
derstand their capabilities. We study in particular
their ability to learn context-free languages, which
are characterised by the nested structures. For this

purpose, we control the inputs to the model to the
maximum, while focusing on the defining charac-
teristic of context-free languages, namely matching
opening and closing brackets. This corresponds
to learning generalised Dyck languages (see table
2). In particular, we investigate the following ques-
tions:

1. Can self-attention generalise to matching
open/close parenthesis at longer distances?

2. Can self-attention generalise to matching
open/close parenthesis at deeper nesting levels
distances?

There is a already a small body of work dealing
with this question (see sec. 5), but our contribu-
tion is specific in the following two respects: i)
We use the popular BERT-like training regime (pre-
dict a percentage of randomly masked tokens), ii)
We concentrate on generalising to (much) deeper
nesting.

Beyond theoretical considerations, matching
brackets have applications in the NLP-style treat-
ment of constructed languages (in particular) pro-
gramming languages, for example translating be-
tween programs and their natural language descrip-
tions.

2 Data Sets

We define the language Dn as the set of strings gen-
erated by the following context-free rules: E ::=
ε;E ::= EE;E ::= oEc, where (o, c) stands for
a pair of matching parenthesis pairs. The index n
stands for the number of possible pairs. In all of
our tests, we will use n = 5 (corresponding for
example to the pairs () , [], {}, <> and «»), and
thus we drop the subscript from now on.

We are interested in various characteristics of
the strings of D. First, we consider the dis-
tance between a closing parenthesis and the cor-



754

responding opening parenthesis. Given a string
s of length 2N (N is the number of matching
pairs), we will call δ(s) an array of length 2N
such that if si is a closing parenthesis, δ(s)i is
the distance between si and the closing parenthe-
sis. If si is an opening parenthesis, δ(s)i is 0.
For example, if s =“{()<[](«»)>}”, δ(s) =
[0, 0, 1, 0, 0, 1, 0, 0, 1, 3, 9, 11]. The second charac-
teristic that we consider is the amount of nesting
between closing and opening parentheses. We call
this characteristic η(s), and likewise we define it
for each closing parenthesis, and let it be zero for
opening parentheses.

For example, if s =“{()<[](«»)>}”, η(s) =
[0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 3, 4].

To generate a string with N matching pairs, we
perform a random walk between opposite corners
of a square grid of width and height N , such that
one is not allowed to cross the diagonal. When
not restricted by the boundary, a step can be taken
either along the x or y axis with equal probabil-
ity. A step along the x axis corresponds to open a
parenthesis, and one along the y axis corresponds
to closing one. The kind of parenthesis pair is
chosen randomly and uniformly. We call the distri-
bution of input strings sampled by this procedure
D. In all our experiments we set N = 10 (which is
enough to illlustrate our points) and we thus omit
the superscript in what follows.

We also want control the maximum distance be-
tween opening and closing parentheses (so that
we never train on too long distances). We do so
by discarding elements s of D such that δ(s)i >
d for some i, and call the resulting distribution
D[MaxDist = d].

Often we want to control the maximum depth
that our model is trained or tested on. For this pur-
pose, we generate strings s which exhibit at least
one index i such that η(s)i = d, but no index j such
that η(s)j > d. These paths can be generated by
constraining the path on the grid to touch a diagonal
at distance d to the origin diagonal, and we call the
corresponding distribution D[MaxDepth = d].

3 Model and masking strategy

We implement a variation of the transformer model
as introduced by (Vaswani et al., 2017). In the
model each input symbol is associated with a vector
embedding of size K. A sequence of opening and
closing brackets is represented by a matrix of size
(N,K).

Following Devlin et al. (2019), our model then
applies a series of multi-head self-attention layers
organised in a hierarchical structure, such that the
second layer operates on the representations gener-
ated in the first layer, and so on. We use a BERT-
like, non auto-regressive architecture: each layer
attends to every position in the input, including
itself. Then a softmax classifier is employed to pre-
dict the symbol at the current position. Hence, we
use a masking strategy to train and test the model
(otherwise it could simply use the current symbol
for prediction).

For training, we follow the masking strategy pre-
sented by Devlin et al. (2019). We mask 15% of
the closing parenthesis tokens at random, where in
80% of the cases we replace the token with a mask
token, in 10% of the cases with a random token,
and in the remaining 10% of the cases we replace
it with the same token.

For testing, after sampling a string s, we pick a
random position i such that si is a closing paren-
thesis. Then we mask all subsequent symbols, and
let the model predict si. There is a single possible
closing parenthesis type for si, corresponding to
the opening parenthesis found earlier in the string.
The prediction is considered successful if the model
predicts the right type of closing parenthesis.

4 Experiments & Results

Our experiments consists in training the language
model for a limited version of the Dyck family (for
example by limiting nesting depth (η) or maximum
distance (δ)), and testing what the performance is
in a more general case. Thus, because there are five
types of parenthesis pairs in all our experiments,
the random baseline is 1

5 = 20%.

4.1 Generalisation to Longer Distances

In the first experiment we investigate whether the
model is capable of predicting closing parenthe-
sis at long distance from the corresponding open-
ing parentheses, whereas it has only seen short-
distances in the training data. More precisely, we
train the model on strings from D[MaxDist = 9]
and test it on D[MaxDist = 19].

We present an overview of the results in table 1.
Our experiments show that the (2 layers, 8 heads)
model generalises the best. Using fewer heads
appears to be more detrimental to the model’s ac-
curacy than the number of layers. This is true even
though the (8,2) model has many more parameters



755

Table 1: Mean accuracy and standard deviation over
10 runs on generalisation to longer distances for each
model configuration.

Layers Heads Accuracy
4 4 0.814(± 0.013)
8 2 0.643(± 0.005)
2 8 0.844(± 0.008)

than the (2,8) model (see appendix).
The aggregated numbers however hide much of

the reality of the generalisation capabilities as a
function of distance. Therefore we further break
down the accuracy by distance to the correspond-
ing opening parenthesis in figure 1. The (8,2)
model fails to learn parenthesis matching at short
distances, but its accuracy is better for longer dis-
tances. In contrast the (4,4) and (2,8) models do
well for adjacent parentheses, but their accuracy
drops quickly until reaching a minimum at distance
13, dipping below 50% accuracy —however still
above chance. Perhaps surprisingly, all models do
very well at very long distances. These very long
distances correspond to matching parentheses at
the beginning of the input with parentheses at the
end (that is, when we mask the fewest number of
input symbols).

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19
Distance

(4,4)
(8,2)
(2,8)

Figure 1: Mean model accuracy for closing parenthe-
sis depending on a distance to corresponding opening
parenthesis, over 10 runs. Shaded areas correspond to
standard deviation.

4.2 Generalisation to Deeper Nesting

In the second experiment we test whether the model
can generalise to deeper nesting depths. That is, we
train the model on D[MaxDepth = 3] and test it
on D[MaxDepth = 9]

Table 2: Mean accuracy and standard deviation over 10
runs on generalisation to deeper nesting for each model
configuration.

Layers Heads Accuracy
4 4 0.654(± 0.012)
8 2 0.518(± 0.005)
2 8 0.672(± 0.008)

We present an overview of the results in table
2. Looking at the results we see a similar pattern
in terms of aggregated accuracy as in the previous
experiment: the (2,8) setup performs the best, fol-
lowed by (4,4) and finally (8,2). Breaking down
accuracy by nesting depth (figure 2) reveals that the
difference resides chiefly in the (8,2) model failing
to predict shallow nesting.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9
Nesting

(4,4)
(8,2)
(2,8)

Figure 2: Mean model accuracy for closing parenthe-
sis depending on a distance to corresponding opening
parenthesis over 10 runs. Shaded areas correspond to
standard deviation.

4.3 Analysis of attention heads
We have analysed attention heads by manual inspec-
tion of softmax score for attention heads for each
layer, on several sequence from our training set
(see Appendix for the corresponding heat maps).

Looking at the behaviour of the attention heads
we note that the first layer in the (2,8) and (4,4)
models focuses its attention on the previous sym-
bol. Then, in the final layer of the (2,8) model the
attention of the start of the sequence focuses on the
end, and vice-versa.

In the (4,4) model, the second layer appears to of-
ten focus on the non-masked symbols while in the
third layer the attention is distributed more evenly
between masked and non-masked symbols. A no-



756

table feature of the third layer is that a lot of self-
attention occurs on the masked symbols. In the
final layer, the attention of all symbols is put al-
most exclusively on the masked symbols.

The (8,2) model is the only model which does
not have a clear layer that looks at the preceding
token. It appears that in the (8,2) model, the earlier
layers focus their attention on the beginning of the
sequence, then it moves towards the latter part of
the sequence. The heat maps also show that the
(8,2) model focuses heavily on certain symbols,
which are the least frequent symbols used in the
sequence, for later layers. In earlier layers the
model appears to focus on the frequent symbols.
This analysis is compatible with the (8,2) model
using a symbol counting method.

In summary, the (4,4) model appears to first look
at the previous symbol in the sequence. There are
two steps of searching where first the model ignores
the masked symbols and distributes the attention
over the other symbols. In the second step, the
model again focuses all around the sequence, but
the masked symbols receive a lot of attention. For
the (2,8) model, the behaviour is more straightfor-
ward. First it looks at the previous symbol, then all
around the sequence. To the best of our knowledge,
the (8,2) model is counting symbols by distributing
its attention on frequent and less frequent symbols.

5 Related work

Studying the ability of language models to learn
Dyck languages is emerging as a standard way to
test the ability to generalise to deeper nesting lev-
els. Before self-attention, this test was applied to
RNNs. Bernardy (2018) proposed non-standard
stack-based RNN models, which can approach per-
fect accuracy for generalised Dyck-language, al-
though the accuracy of standard RNNs was higher
than random but far from perfect. Hewitt et al.
(2020) presented a theoretical proof that RNNs are
able to learn Dyck languages with maximum nest-
ing depth m using O(m) memory. Sennhauser and
Berwick (2018) present contrasting evidence, con-
cluding that LSTMs can learn very limited range
of rules.

A number of studies have considered self-
attention models, especially in the past year.
Ebrahimi et al. (2020) investigated self-attention
models using Dyck languages, and claimed that
self-attention models with a starting symbol are
able to generalise to longer sequences and deeper

structures without learning recursion, as compet-
itive LSTM models do. In contrast to us, they
studied models trained autoregressively only. Bhat-
tamishra et al. (2020) studies how autoregressive
Transformer architecture learns a subset of formal
languages, including Dyck language and its gener-
alisations. In contrast to our study, they examine
Shuffle-Dyck languages, which allows construc-
tions like “([)]” and provide theoretical and ex-
perimental evidence that the Transformer is capa-
ble of learning such a language. On the other hand,
Hahn (2020) points at the limitation of using self-
attention models. He indicates that in theory the
LSTM should perform better than the autoregres-
sive Transformer, because the transformer cannot
emulate a stack, general finite-state automata, or
use recursion.

6 Conclusion and future work

Our experiments show that, with a random mask-
ing strategy, the transformer is able to discover a
way to make good predictions when generalising to
longer distances and deeper nesting. However, this
strategy is not using the history of opening and clos-
ing parentheses in a way a push-down automaton
would.

Indeed, the analysis reveals that the best ac-
curacy is obtained when few symbols have been
masked. This can be explained by the model hav-
ing learned a counting strategy. When a single
symbol is masked, predicting the kind of missing
parenthesis can be done by subtracting the num-
ber of closing parentheses by the number of open-
ing parentheses for each type, and predict the type
which exhibits a discrepancy. For short distances
our (2,8) and (4,4) models were able to learn to
remember preceding symbols and act accordingly.
We suspect that for intermediate levels of nesting
and distance, the models act according to a mixture
of the above two strategies.

In consequence, we recommend not to use a
BERT-like masking strategy for applications where
generalising to longer distances or deeper nesting
is critical. Rather, auto-regressive models should
be used, such as auto-regressive attention or RNNs.

Acknowledgments

The research reported in this paper was supported
by grant 2014-39 from the Swedish Research Coun-
cil, which funds the Centre for Linguistic Theory
and Studies in Probability (CLASP) in the Depart-



757

ment of Philosophy, Linguistics, and Theory of
Science at the University of Gothenburg.

References
Bernardy, J.-P. (2018). Can recurrent neural networks

learn nested recursion? In Linguistic Issues in Lan-
guage Technology, Volume 16, 2018. CSLI Publica-
tions.

Bhattamishra, S., Ahuja, K., and Goyal, N. (2020). On
the Ability and Limitations of Transformers to Rec-
ognize Formal Languages. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 7096–7116,
Online. Association for Computational Linguistics.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Ebrahimi, J., Gelda, D., and Zhang, W. (2020). How
can self-attention networks recognize Dyck-n lan-
guages? In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4301–
4306, Online. Association for Computational Lin-
guistics.

Hahn, M. (2020). Theoretical limitations of self-
attention in neural sequence models. Transactions
of the Association for Computational Linguistics,
8:156–171.

Hewitt, J., Hahn, M., Ganguli, S., Liang, P., and Man-
ning, C. D. (2020). RNNs can generate bounded
hierarchical languages with optimal memory. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1978–2010, Online. Association for Computa-
tional Linguistics.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
(2020). Exploring the limits of transfer learning
with a unified text-to-text transformer. J. Mach.
Learn. Res., 21:140:1–140:67.

Sennhauser, L. and Berwick, R. (2018). Evaluating
the ability of LSTMs to learn context-free gram-
mars. In Proceedings of the 2018 EMNLP Work-
shop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 115–124, Brussels, Bel-
gium. Association for Computational Linguistics.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. (2017). Attention is all you need. In Guyon, I.,
von Luxburg, U., Bengio, S., Wallach, H. M., Fergus,

R., Vishwanathan, S. V. N., and Garnett, R., editors,
Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 5998–6008.

A Experimental setup and
reproducibility information

Our implementation is based on pytorch, with a
custom re-implementation of the transformer archi-
tecture, exactly following (Vaswani et al., 2017).
The runtime is under one day for the whole set of
experiments using a Titan X (Pascal) GPU.

The hyperparameters we use are listed in table
3.

Table 3: Hyperparameters used and the number of data
examples used.

Parameter Value
Optimiser Adam
Learning rate 0.0001
Epochs 10
Batch size 512
Training examples 102400
Validation examples 20480

In our experiments we consider three different
transformer architectures, corresponding to dif-
ferent values for the number of multi-head self-
attention layers, and the size of the heads. Specifi-
cally, we considers the setups presented in section
4

Table 4: Model configurations and the number of pa-
rameters in each configuration

Layers Heads Parameters
8 2 897 292
4 4 1 191 820
2 8 1 781 452

In each case, we have used 64-dimensional em-
beddings throughout the models.

B Attention heat-maps



758

Figure 3: Attention heatsmaps for the model with 4 heads and 4 layers on the input +-+<[+[([()])]-]>-.



759

Figure 4: Attention heatsmaps for the model with 2 heads and 8 layers on the input +-+<[+[([()])]-]>-.



760

Figure 5: Attention heatsmaps for the model with 8 heads and 2 layers on the input +-+<[+[([()])]-]>-.


