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Abstract
Emotion cause analysis (ECA) has been an
emerging topic in natural language processing,
which aims to identify the reasons behind a
certain emotion expressed in the text. Most
ECA methods intend to identify the clause
which contains the cause of a given emotion,
but such clause-level ECA (CECA) can be am-
biguous and imprecise. In this paper, we aim
at span-level ECA (SECA) by detecting the
precise boundaries of text spans conveying ac-
curate emotion causes from the given context.
We formulate this task as sequence labeling
and position identification problems and de-
sign two neural methods to solve them. Exper-
iments on two benchmark ECA datasets show
that the proposed methods substantially outper-
form the existing ECA models 1.

1 Introduction

The task of emotion cause analysis (ECA) (Lee
et al., 2010a), which is to extract the causes of
an emotion expression from a given context, has
gained increasing attention recently.

Most existing studies (Gui et al., 2016, 2017; Li
et al., 2018, 2019; Xia et al., 2019) formulate ECA
as a clause-level task (dubbed as CECA), which
tries to extract the clauses that contain the emotion
cause content. In CECA, a clause is typically a
text segment separated by punctuation marks (e.g.,
‘,’, ‘.’, ‘?’, ‘!’, etc.) in the given context. In the
following example, the clause [x3] will be extracted
as it contains the reason “the risk of infringement”
that stimulates the emotion afraid.
Example 1. 2 [x1] The claim for damages caused
by infringement has legal basis, [x2] and it is logi-
cal and reasonable. [x3] We can’t give up the good

1The code and datasets can be found at
https://github.com/xxxyyy2020/boundary-master

2Bold: Gold emotion cause span; Underline: emotion
expression. [xi] represents the i-th clause. The original report
is in Chinese and translated into English.

character of friendship and mutual assistance just
because we are afraid of the risk of infringement.
[x4] Give up food for being afraid of being choked.
[x5] We should adhere to the traffic rules.

However, determining the clause containing the
stimulus is sub-optimal and inaccurate for ECA.
In Example 1, while among the 5 clauses [x3]
is the best, its main content “We can’t give up
. . . assistance” is not the cause of afraid. Such gap
motivates a strong need of pinpointing more pre-
cise or finer-grained cause expressions which can
convey the specific reasons of an emotion.

Some studies (Gao et al., 2015a,b;
Neviarouskaya and Aono, 2013) try to ex-
tract emotion cause triples (a triple like (noun,
verb, noun)) or emotion cause phrases. The
extracted triples or phrases are usually not a
complete emotion cause expression since the
words in these triples or phrases are typically
not continuous. Bi et al. (2020) proposed a
new task for emotion and emotion cause span
pair and classification task. Lee et al. (2010a)
summarized seven groups of linguistic cues which
could serve as indicators of cause events. Ghazi
et al.. (2015) built a Conditional Random Fields
(CRF) learner to extract emotion cause spans with
a set of manually engineered features. These two
approaches are labor-intensive and prone to the
sub-optimal design of features.

We study the Span-level ECA (SECA) based
on state-of-the-art neural approach by focusing on
detecting the boundaries of cause spans. We ap-
proach to the boundary detection in two different
ways via sequence tagging and start/end position
identification both in an end-to-end fashion. The
emotion cause span is usually a sequence of con-
secutive tokens which convey exact reasons of the
emotion and need to be inferred from the whole
context. More specifically, we obtain the emotion
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cause span by 1) mapping each token in the input
context to a label indicating the ranges of spans; 2)
pointing to the start and end positions of the span di-
rectly in the given context. The main contributions
of our work are three-fold:

• We formulate SECA task as sequence tag-
ging and position identification problems for
boundary detection of emotion cause spans,
and propose neural models to tackle this task.

• Different from previous ECA approaches, a
pointer network is introduced to identify the
start and end positions of emotion cause in
our work. This is the first time to introduce
the pointer network to ECA task.

• Experiments on two benchmark datasets show
that our models substantially outperform the
state-of-the-art ECA approaches at both span
and clause levels.

2 Related Work

Lee et al. (2010b) first proposed a task on ECA and
constructed a small-scale Chinese emotion cause
corpus. Based on this corpus, Chen et al. (2010)
proposed a rule based method for this task. Gui
et al. (Gui et al., 2014) extended the rule-based
method to Chinese microblog text. Gao et al. (Gao
et al., 2015b,a) treated the emotion cause as a list
of triples (a triple like (noun, verb, noun)). They
structured a microblog post as a set of triples to de-
termine which triple is the emotion cause. Shuntaro
et al.(Yada et al., 2017) defined emotion cause as
the nearest clause describing events of the cause of
the emotion. Gui et al. (2016) constructed a public
ECA dataset based on news corpus and proposed
a multi-kernel-based method for CECA. All these
methods rely on either manual rules or feature en-
gineering.

Gui et al. (2017) first proposed a deep neural
model for CECA. Following that, many CECA
methods were developed with deep learning (Gui
et al., 2017; Li et al., 2018; Yu et al., 2019; Ding
et al., 2019; Li et al., 2019; Xia et al., 2019; Fan
et al., 2019). Li et al. (2019; 2018) improved the
performance of CECA by considering the contex-
tual information of the emotion. Xia et al. (2019)
proposed a hierarchical network for CECA based
on Transformer encoder to capture different types
of features. Fan et al. (2019) utilized the discourse
information and clause position for the task. Xia

et al. (2019) and Chen et al. (2020a) proposed two
variant tasks of ECA for extracting emotion and
cause clause pairs. And then, many deep learning
models (Wu et al., 2020; Chen et al., 2020b,c; Wei
et al., 2020; Singh et al., 2021) were designed to
tackle emotion cause pair extraction task.

Little work has been done for SECA. Lee et
al. (Lee et al., 2010a) summarized the general-
ized rules for detecting the emotion causes of the
emotion in Chinese. Based on manually crafted lin-
guistic cues, Ghazi et al. (2015) built a CRF learner
to identify emotion cause spans. However, these
models are oversimplified and reliant on the ad-hoc
features designed, thus are not generalized well.

3 Methodology

In this section, we first introduce two types defi-
nition of SECA. Then we describe our designed
models.

3.1 Problem Formulation

Given a context S, which includes a sequence of n
tokens S = [w1, w2, . . . , wn], the emotion expres-
sion E = [e1, e2, . . . , em] and at least one emotion
cause span, SECA task aims to detect the bound-
aries of emotion cause spans from S which stimu-
late the emotion expression.

Firstly, this task can be formulated as sequence
labeling problem, of which the goal is to obtain the
correct sequence of labels:

L = [l1, l2, . . . , ln] (1)

where li ∈ {B, I,O}, and B, I and O denote
the beginning, inside of and outside of cause span,
respectively, indicating the ranges of spans.

Secondly, this task also can be formulated as a
position identification problem, where the goal is
to get a list of correct start-end positions of emotion
cause spans:

B = [(s1, t1), (s2, t2), . . . ] (2)

where si and ti are the start and end token indices
of the i-th cause span in the context, respectively.

3.2 Model Description

We use BERT (Devlin et al., 2019) as the backbone
of our models due to it has strong contextual-
ized representation ability. The context S and
the emotion E are concatenated by forming a
combined sequence as the input fed into BERT:
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[SEP]…
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Figure 1: The architectures of the proposed boundary detection models for SECA.

[CLS], w1, . . . , wn, [SEP], e1, . . . em, [SEP],
where [CLS] and [SEP] are special tokens. Then,
BERT receives the sequence and outputs the
representation of each token in the combined
sequence. The contextualized representations of
each token wi ∈ S and the token [CLS] can be
given as:

hi = BERT(wi), h0 = BERT([CLS]) (3)

where h0 and hi ∈ Rdb and db is the vector di-
mension of the last layer of BERT. Based on the
BERT encoding, we introduce the two types of
span boundary detection models for SECA. An
overview of our models are shown in Figure 1.

3.2.1 Sequence Labeling Models
We use three common ways to predict the labels of
an input sequence. The first is the softmax function
direct tag prediction which is straightforward to
compute. The second is CRF, a well-known sta-
tistical graphical model which has demonstrated
state-of-the-art accuracy on many sequence label-
ing tasks (Liu et al., 2014; Jin and Yu, 2021). The
third is a variant of RNN (Goller and Kuchler,
1996) (e.g. GRU, LSTM) which generates tags
sequentially by predicting the next label consider-
ing its previously predicted labels.

Softmax. Based on the token representation ob-
tained in Equation (3), the probability distribution
over the label set can be computed as:

p(li) = softmax(W1hi + b1) (4)

where W1 ∈ Rdb×dl and b1 ∈ Rdl are learnable
parameters, p(li) ∈ Rdl is the label probability
distribution of the i-th word and dl is the size of
label set.

CRF. CRF obtains the probability of a whole
sequence:

p(L|S) = exp(score(S,L))∑
L′∈L exp(score(S,L′))

(5)

where L is the set of all candidate label sequences
of the context. Here, we omit the detail of this clas-
sical prediction model (see Lafferty et al. (2001)).

GRU. The GRU version of RNN is effective and
easy to train (Ma et al., 2019). At each predicting
step, we update the hidden state hi of token wi

using:

h̃i = GRU(h̃i−1, `(li−1)⊕ hi) (6)

where h̃i ∈ Rdg and dg is the number of the GRU
units, `(li−1) ∈ Rd` is the embedding vector of
previous label li−1 and d` is the size of label em-
bedding. Then, the probability distribution of li
can be obtained by:

p(li) = softmax(W2h̃i + b2) (7)

where W2 ∈ Rdg×dl , b2 ∈ Rdl are training param-
eters.

3.2.2 Position Identification Model
Point network was first proposed by Vinyals et
al. (2015), which is suitable for our positions iden-
tification task thanks to the fact that it is able to
select positions from the input. Here we adopt it to
generate the start and end positions of spans in turn.
Because the number of cause spans is not fixed, we
set a parameter C to control how many spans to
generate, and allow the two end points in (si, ti) to
take an integer value in [0, n]. For the k-th span
(sk, tk), we first get its start index sk. An attention
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mechanism is used to obtain the attention weight
αkj of the j-th token (for all j ∈ [0, n]) as follows:

akj =
exp (qkj)∑n

j′=0 exp (qkj′)

qkj = v> tanh (hjW3 + rkW4)

(8)

where W3 ∈ Rdb×dv , W4 ∈ Rdr×dv and v ∈ Rdv

are learnable parameters (dv is the size of v), rk is
the hidden vector obtained by GRU:

rk = GRU(htk−1
, r′k−1) (9)

where tk−1 is the index of end position of the (k-
1)-th span and r′k−1 ∈ Rdr (dr is the number of
GRU units) is hidden vector obtained by GRU for
predicting tk−1 (see below). Then, we set sk as
the highest attention weight from attention vector
ak = [ak0, . . . , akn].

To predict the end index tk of the k-th span,
the same attention mechanism is used to get the
attention weight a′kj :

a′kj =
exp (q̂kj)∑n

j′=0 exp (q̂kj′)

q̂kj = v> tanh (hjW3 + r′kW4)

r′k = GRU(hsk , rk)

(10)

whereW3,W4 and v are learnable parameters. Sim-
ilarly, the end index tk can be identified by taking
the maximum value in a′k.

4 Experiments and Results

We evaluate the proposed methods on the Chinese
ECA (CHI) dataset (Gui et al., 2016) and English
ECA (ENG) dataset (Ghazi et al., 2015). On both
datasets, cause spans are manually annotated and
each context contains an emotion expression (or
emotion category) and at least one cause span. The
CHI dataset contains 2,105 instances and 2,147
cause spans. The ENG dataset contains 820 in-
stances, and each contains one span only.

We use pre-trained BERT-Base Chinese and
BERT-Base Uncased to encode the CHI and ENG
datasets, respectively. We also choose the pre-
trained span-level SpanBERT-Base-cased (n/a for
Chinese) as the encoder on ENG dataset. We follow
the default settings of BERT (Devlin et al., 2019)
for fine-tuning. Adam (Kingma and Ba, 2015) op-
timizer is used with learning rate 1e-5. The epoch

Model P s Rs F s
1

CHI
Lee et al. (2010a) 0.197 0.161 0.177
Gui et al. (2017) 0.187 0.181 0.184
BERTbase+Softmax 0.483 0.574 0.525
BERTbase+GRU 0.481 0.567 0.520
BERTbase+CRF 0.564 0.570 0.566
BERTbase+Pointer 0.570 0.526 0.547

ENG
Ghazi et al. (2015) 0.666 0.593 0.628
BERTbase+Softmax 0.838 0.876 0.856
BERTbase+GRU 0.883 0.868 0.875
BERTbase+CRF 0.866 0.890 0.878
BERTbase+Pointer 0.910 0.891 0.901
BERTspan+Softmax 0.830 0.891 0.859
BERTspan+GRU 0.893 0.879 0.886
BERTspan+CRF 0.858 0.883 0.870
BERTspan+Pointer 0.904 0.890 0.897

Table 1: SECA results based on span-level metrics.

is set to 10. The size of label embedding is 50. C3

is set to 3 on CHI and 1 on ENG which are the
maximum number of cause spans in the respective
training set. We follow the settings of previous
works to split the datasets for train/dev/test (Ghazi
et al., 2015; Gui et al., 2017). Hyper-parameters
are tuned on the dev set.

We have BERT (BERTbase) and SpanBERT
(BERTspan) as pre-trained models, and Softmax,
CRF, GRU and pointer network (Pointer) as pre-
diction models.

4.1 SECA Result

On CHI dataset, we compare our model with the
rule based model (Lee et al., 2010a) and the word
ECA model that outputs cause words (Gui et al.,
2017), which is somewhat similar to our work. On
ENG dataset, the CRF-based model in (Ghazi et al.,
2015) is the only span-level baseline. For evalua-
tion, we use span precision (P s), recall (Rs) and
F1 score (F s

1 ) which are defined as

P s =
# of correct cause spans

# of predicted cause spans

Rs =
# of correct cause spans
# of gold cause spans

F s
1 =

2× P s ×Rs

P s +Rs

(11)

3If the number of emotion cause span(s) is less than C,
(0, 0) is used for padding the correct list B.
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Table 1 shows that all our models strongly
outperform the baselines, indicating our method
is effective. More specifically, on CHI dataset
our models BERTbase+Softmax, BERTbase+GRU,
BERTbase+CRF and BERTbase+Pointer outper-
form the strong baseline model in Gui et al. (2017)
by relative F s

1 improvements of 34.1%, 33.6%,
38.2% and 36.3%, respectively. The improvement
is very significant with p-value less than 0.001 in t-
test. With BERT encoder, Pointer performs the best
on ENG and the second best on CHI, suggesting
that pointer network is basically effective. Pointer
is relatively worse than CRF on CHI because the
number of spans it outputs is fixed as three while
an instance on CHI may have less than three spans,
rendering a small disadvantage. But generally, us-
ing pointer network for span boundary detection
provides a strong alternative to classic CRF. It is a
bit surprising that BERTspan does not show advan-
tage over BERTbase here. We conjecture that given
the small ENG dataset we cannot perform strong
fine-tuning to make a big difference. In addition,
the performance on ENG is much higher than on
CHI because the context is generally much shorter
making the task easier.

4.2 CECA Result
We can directly output clauses containing the pre-
dicted cause spans to compare with the rule based
SECA model (2010a) and some strong CECA mod-
els (Gui et al., 2017; Li et al., 2018; Ding et al.,
2019; Li et al., 2019; Xia et al., 2019; Fan et al.,
2019; Hu et al., 2021). We only use CHI here since
no clause labels are available and no previous work
for CECA was done on English data for us to com-
pare with. Following previous works (Gui et al.,
2017; Xia et al., 2019), we use clause precision
(P c), recall (Rc), and F1 score (F c

1 ) as evaluation
metrics:

P c =
# of correct cause clauses

# of predicted cause clauses

Rc =
# of correct cause clauses
# of gold cause clauses

F c
1 =

2× P c ×Rc

P c +Rc

(12)

Table 2 shows that our proposed models out-
perform all the state-of-the-art CECA baselines.
We attribute this to the fact that the BERT’s con-
textualized representation capacity and our SECA
models are supervised by the finer-grained span-
level annotations directly, which can effectively

Model P c Rc F c
1

Lee et al. (2010a) 0.675 0.429 0.524
Gui et al. (2017) 0.708 0.684 0.700
Li et al. (2018) 0.772 0.689 0.727
Ding et al. (2019) 0.762 0.691 0.742
Li et al. (2019) 0.784 0.759 0.771
Xia et al. (2019) 0.770 0.766 0.768
Fan et al. (2019) 0.811 0.773 0.791
Hu et al. (2021) 0.786 0.757 0.771
BERTbase+Softmax 0.828 0.908 0.866
BERTbase+GRU 0.825 0.903 0.862
BERTbase+CRF 0.864 0.873 0.867
BERTbase+Pointer 0.834 0.844 0.838

Table 2: CECA results on CHI benchmark dataset.

guide model to learn more precise cause-related
information. This advantage cannot be taken eas-
ily by the baseline approaches due to the nature of
their clause-level supervision. Moreover, simply
mapping the predicted spans to clauses for out-
put makes Softmax become comparable with CRF
and puts Pointer the last in terms of CECA per-
formance. This is not surprising because an in-
accurate span might still result in the right clause
which just contains the predicted span. We also
notice that rule based model performs worse than
all the feature-learning models because that the
manual rules hardly adopt to different datasets and
feature-learning model can learn effective features
according to the different datasets.

5 Conclusion

In this paper, we aim at span-level emotion cause
analysis and propose neural sequence labeling and
position identification models to detect the bound-
aries of emotion cause spans. The experiments
conducted on two benchmark datasets of different
languages demonstrate the effectiveness of the pro-
posed approach, which achieves a new state-of-the-
art performance on both span-level and clause-level
ECA tasks.
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