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Abstract

Pre-trained Transformer-based neural lan-
guage models, such as BERT, have achieved
remarkable results on varieties of NLP tasks.
Recent works have shown that attention-based
models can benefit from more focused atten-
tion over local regions. Most of them restrict
the attention scope within a linear span, or
confine to certain tasks such as machine trans-
lation and question answering. In this pa-
per, we propose a syntax-aware local atten-
tion, where the attention scopes are restrained
based on the distances in the syntactic struc-
ture. The proposed syntax-aware local atten-
tion can be integrated with pretrained language
models, such as BERT, to render the model to
focus on syntactically relevant words. We con-
duct experiments1 on various single-sentence
benchmarks, including sentence classification
and sequence labeling tasks. Experimental re-
sults show consistent gains over BERT on all
benchmark datasets. The extensive studies ver-
ify that our model achieves better performance
owing to more focused attention over syntacti-
cally relevant words.

1 Introduction

Recently, Transformer (Vaswani et al., 2017) has
performed remarkably well, standing on the multi-
headed dot-product attention which fully takes
into account the global contextualized informa-
tion. Several studies find that self-attention can
be enhanced by local attention, where the atten-
tion scopes are restricted to important local regions.
Luong et al. (2015); Yang et al. (2018); Xu et al.
(2019); Nguyen et al. (2020) utilize dynamic or
fixed windows to perform local attention. Strubell
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Xiaowei.

†Corresponding author.
1The code is available at https://github.com/

Neutralzz/syntax_aware_local_attention

et al. (2018); Zhang et al. (2020); Bugliarello and
Okazaki (2020) explore to utilize syntax to restrain
attention for better performance, but each of them
confines to a certain task.

In this work, we propose a syntax-aware local
attention (SLA) which is adaptable to several tasks,
and integrate it with BERT (Devlin et al., 2019).
We first apply dependency parsing to the input text,
and calculate the distances of input words to con-
struct the self-attention masks. The local attention
scores are calculated by applying these masks to
the dot-product attention. Then we incorporate the
syntax-aware local attention with the Transformer
global attention. A gate unit is employed for each
token in each layer, which determines how much
attention is paid to syntactically relevant words.
We lift weights from existing pre-trained BERT,
and evaluate our models on several single-sentence
benchmarks, including sentence classification and
sequence labeling tasks. Experimental results show
that our method achieves consistent performance
gains over BERT and outperforms previous syntax-
based approaches on the average performance. Fur-
thermore, we compare our syntax-aware local at-
tention with the window-based local attention. We
find that the syntax-aware local attention is more
involved in the aggregation of local and global at-
tention. The attention visualization also validates
the syntactic information supports to capture im-
portant local regions.

To summarize, this paper makes the following
contributions: i) SLA can capture the information
of important local regions on the syntactic structure.
ii) SLA can be easily integrated to Transformer,
which allows initialization from pre-trained BERT
by increasing very few parameters. iii) Experi-
ments show the effectiveness of SLA on various
single-sentence benchmarks.

https://github.com/Neutralzz/syntax_aware_local_attention
https://github.com/Neutralzz/syntax_aware_local_attention
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Figure 1: An overview of our model.

2 Related Work

2.1 Transformer Attention

Transformer (Vaswani et al., 2017) use stacked
self-attentions to encode contextual information
for input tokens. The calculation of self-attention
depends on the three components of queries Q,
keys K and values V, which are projected from
the hidden vectors of the previous layer. Then the
attention output A of one head is computed as fol-
lows:

Mij =

{
0, allow to attend
−∞, prevent from attending

A = softmax(
QKT

√
d

+M)V

(1)

where d is the dimension of keys and the mask
matrix M controls whether two tokens can attend
each other. Within the standard self-attention layer,
global attention mechanism is employed that each
token provides information to other tokens in the
input sentence.

2.2 Local Attentions

Local attention involves limiting each token to at-
tend to a subset of the other tokens in the input.
Many works utilize a fixed or dynamic window
to derive the important local regions. Luong et al.
(2015) first propose a Gaussian-based local atten-
tion and increase BLEU scores for neural machine
translation. Yang et al. (2018) improve the method
of Luong et al. (2015) by predicting a central po-
sition and window size to model localness. Com-
pared with Yang et al. (2018), Nguyen et al. (2020)

attempt to derive the local window span by a soft-
masking method. However, Levy and Goldberg
(2014) suggest that more informative representa-
tions can be learned from the syntactic structure, in-
stead of a window of surrounding tokens. Strubell
et al. (2018) propose to train one attention head to
attend to each token’s syntactic parent for semantic
role labeling. Zhang et al. (2020) also leverage the
syntactic information to self-attention, but confine
to question answering. Thus, we explore to take
advantage of the syntactic structure to improve the
model performance on various benchmarks.

3 Approach

In this section, we first introduce the syntax-aware
local attention, and then integrate it with standard
Transformer attention. As shown in Figure 1, we
extend the Transformer layer with the syntax-aware
local attention. Syntax-based masking is applied to
the dot-product of queries and keys. The final at-
tention scores are computed by incorporating local
attention with standard global attention. We stack
new layers and initialize weights from pre-trained
BERT.

3.1 Syntax-aware Local Attention

We derive syntactic structure from dependency
parsing, and treat it as an undirected tree. Each
token xi is mapped to a tree node vi, and the dis-
tance of node vi and vj is denoted by dis(vi, vj).
However, the input may be an ungrammatical sen-
tence in some tasks, and the dependency parser is
not very accurate. Thus, we calculate the distance
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from neighboring tokens of xi to token xj as:

D(i, j) = min dis(vk, vj), k ∈ [i−1, i+1] (2)

The motivation is that many attention heads spe-
cialize in attending heavily on the next or previous
token (Clark et al., 2019). Then, in order to de-
termine whether token xj can attend to token xi,
a threshold m is applied to restrict the distance
D(i, j). For simplification, the mask matrix Mloc

calculation can be formulated as:

Mloc
ij =

{
0, D(i, j) ≤ m
−∞, otherwise

(3)

Given the query Q and key K projected from the
hidden vectors H, the syntax-aware local attention
scores Sloc are formally defined as:

Sloc = softmax(
QKT

√
d

+Mloc) (4)

where d is the dimension of keys. In this local
attention, two tokens can attend to each other only
if they are close enough in the dependency tree.

3.2 Attention Aggregation

As shown in Figure 1, the final attention is the
aggregation of syntax-aware local attention and
Transformer attention. We denote the Transformer
attention scores by Sglb. A gated unit is used to
combine the global and local attention scores. The
gate value gi for each token xi is calculated as
follows:

gi = σ(Wghi + bg), (5)

where hi is the hidden vector of token xi from the
previous layer, Wg is a learnable linear transfor-
mation and bg is the bias. Then the attention output
Âi is calculated as a weighted average over values
V, and the weights are derived from global and
local attention scores:

Âi = (giS
loc
i + (1− gi)Sglb

i )V. (6)

A larger gate value means more focused atten-
tion over syntactically relevant words. It can be
seen that, if all the outputs of gated units are equal
to 0, we could obtain the standard Transformer at-
tention. Compared with the original architecture,
our self-attention layer has one more input (Mloc)
and two more trainable parameters (Wg and bg).
Thus, we can easily lift weights from existing pre-
trained BERT models.

4 Experiments

4.1 Experimental Setup
Benchmarks We use two English single-
sentence classification datasets from the GLUE
benchmark (Wang et al., 2018). We test on the
CoLA and SST-2 datasets for acceptability and
sentiment classification. Besides, we evaluate
our method on two sequence labeling tasks:
named entity recognition (NER) and grammatical
error detection (GED). We use the CoNLL-2003
and FCE datasets for NER and GED, respec-
tively. The training procedures are introduced in
Appendix A.1.

Configuration All the training experiments are
based on BERT. We use the uncased version of
BERT for CoLA and SST-2, and the cased version
for CoNLL-2003 and FCE. We derive dependency
tree using Spacy2. More implementation details
are reported in Appendix A.2.

Baselines We apply the syntax-aware local at-
tention (SLA) to BERT. In addition to comparing
with BERT, we also investigate the following ap-
proaches:

SGNet Zhang et al. (2020) present a syntax-
guided self-attention layer, where each word is lim-
ited to interact with all of its syntactic ancestor
words. Then they stack this layer on the top of the
pre-trained BERT model3, instead of modifying the
Transformer architecture.

LISA Strubell et al. (2018) restrict each token
to attend to its syntactic parent in one attention
head4. We apply it to BERT and add the corre-
sponding supervision at the last attention head in
each Transformer layer.

Besides, we implement the window-based local
attention (WLA), which allows each token to at-
tend to the neighboring tokens within a window
size 2k + 1 (varying k in {3,4,5}). Then it is also
integrated with BERT as shown in Section 3.2.

4.2 Main Results
Experimental results are shown in Table 1. We
report results on the dev set of CoLA and SST-
2 and the test set of CoNLL-2003 and FCE. We
employ t-tests to see if the mean difference dif-
fered from 0 between the standard attention and
our proposed attention. It can be seen that our

2https://spacy.io/
3https://github.com/cooelf/SG-Net
4https://github.com/strubell/LISA

https://spacy.io/
https://github.com/cooelf/SG-Net
https://github.com/strubell/LISA
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CoLA SST-2 CoNLL-2003 FCE (M2)
Models Params Avg. MCC Acc P R F1 P R F0.5

State-of-the-art Models
ERNIE 2.0 (Sun et al., 2020) - - 65.4 96.0 - - - - - -
T5 (Raffel et al., 2019) - - 71.6 97.5 - - - - - -
BERT-MRC (Li et al., 2020) - - - - 92.3 94.6 93.0 - - -
BERT-GED (Bell et al., 2019) - - - - - - - 65.0 38.9 57.3

Base-size Models
BERT (Devlin et al., 2019) 110M - 58.9 92.7 - - 92.4 - - -
LISA (Strubell et al., 2018) 110M 74.8 59.8 92.0 90.7 92.2 91.4 63.4 38.6 56.1
SGNet (Zhang et al., 2020) 133M 74.8 59.2 93.1 90.9 92.6 91.7 60.9 40.7 55.4
BERT (Our reimplementation) 110M 74.6 58.7 93.1 91.0 92.3 91.6 60.5 40.0 54.9

+ WLA + 0.01M 75.0 59.6 92.8 91.3 92.9 92.1 60.4 41.3 55.3
+ SLA + 0.01M 75.3 60.0↑ 93.3 91.5↑ 92.9↑ 92.2↑ 61.0↑ 41.3↑ 55.7↑

Large-size Models
BERT (Devlin et al., 2019) 340M - 60.6∗ 93.2∗ - - 92.8 - - -
LISA (Strubell et al., 2018) 340M 76.2 62.2 92.7 91.3 92.6 92.0 63.4 43.2 57.9
SGNet (Zhang et al., 2020) 381M 76.6 63.3 93.6 91.5 92.8 92.1 63.1 42.5 57.5
BERT (Our reimplementation) 340M 76.9 63.9 94.0 91.7 93.1 92.4 62.7 42.6 57.3

+ WLA + 0.02M 76.6 62.7 93.9 91.5 93.1 92.3 61.9 44.5 57.4
+ SLA + 0.02M 77.4 64.5↑ 94.3↑ 92.3↑ 93.4 92.9 63.9↑ 42.3 58.0↑

Table 1: Results on single-sentence benchmarks. Results with “∗” are taken from Liu et al. (2019). “↑” means
statistically significant improvement over the BERT baseline with p-value < 0.05. Reported results are averaged
over 5 runs. “Params” is short for the number of model parameters. “MCC” is short for the Matthews correlation
coefficient.

method achieves consistent gains over BERT on
single-sentence classification and sequence label-
ing tasks. Specifically, our model exceeds the pub-
lished BERT results by 3.9% correlation coeffi-
cient on CoLA and 1.1% accuracy on SST-2. For
the NER task, even though our reimplementation
didn’t achieve the performance (92.8 F1) reported
by Devlin et al. (2019), our model still outperforms
it in large-size. More importantly, the syntax-aware
local attention yields state-of-the-art results with
0.7 absolute improvements on FCE.

Besides, the proposed local attention outper-
forms other approaches leveraging syntactic infor-
mation on the average performance. Compared
with BERT, the syntax-aware local attention im-
proves performances consistently but the window-
based local attention can’t. This suggest that BERT
can benefit from more attention over syntactically
relevant words on several datasets.

However, there are still some gaps between our
model and the state-of-the-art models on these
datasets. We argue that our method just modifies
the standard Transformer attention without chang-
ing its main architecture, but those models are
trained by using more advanced pre-training meth-
ods (Sun et al., 2020), larger-scale datasets (Raf-
fel et al., 2019), or learning framework (Li et al.,
2020).
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Figure 2: Gate values in different layers on SST-2 and
FCE datasets. The blue polyline means that we incor-
porate the window-based local attention with global at-
tention, and the red polyline corresponds to the syntax-
aware local attention.

4.3 Analysis

Gated Unit in Each Layer It can be seen from
Equation (6) that a larger gate value means a more
important role of local attention in the attention
aggregation. We analyze the gate values in different
layers on SST-2 and FCE datasets. The gated unit
outputs are collected from the best-trained base-
size models, and are averaged over all input tokens
in each layer.

As shown in Figure 2, on the SST-2 dataset, the
syntax-aware local attention has higher values than
the window-based local attention in most layers.
Even if the sentences of the FCE dataset are un-
grammatical, our attention plays a more impor-
tant role in 8 of 12 layers. It indicates that our
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Input: In a way, the film feels like a breath of fresh air, but only to those that allow it in.

Figure 3: Visualization of attention scores averaged over all heads and all layers. This case is selected from the
SST-2 dev set. The red rectangle indicates higher scores on the right side but lower scores on the left side.

QNLI RTE MRPC STS
Models Acc Acc Acc PCC

BERT 91.7 68.6 87.3 89.5
+SLA 91.4 67.8 88.5 89.9

Table 2: Experimental results on sentence-pair classi-
fication datasets. All models are base-size and results
are reported on their dev sets. “PCC” is short for the
Pearson correlation coefficient.

local attention is more important in the attention
score calculation process. Besides, Table 1 and
Figure 2 illustrate that our model achieves better
performances owing to more attention on syntacti-
cally relevant words.

Attention Visualization In order to compare the
syntax-aware attention with the window-based at-
tention, we plot their attention scores in Figure 3.
As formulated in Equation (6), the attention scores
are calculated from the aggregation of global and
local attention. We mainly focus on the interactions
of tokens, except for [CLS] and [SEP]. Then the
attention scores are averaged over all heads and
layers. This visualization validates the effective-
ness of incorporating syntactic information into
self-attention. As shown in Figure 3, we can see
that there are many informative tokens overlooked
by the window-based method (left) but captured by
our method (right). For instance, the syntax-aware
attention allows the tokens “fresh air” and “allow”
to strongly attend to the token “film”, but these to-
kens are paid less attention in the window-based
attention.

Testing on Sentence-Pair Classification We at-
tempt to evaluate our model on sentence-pair clas-
sification datasets. Given a single sentence, we
can easily apply dependency parsing and restrain
the attention scopes inside the sentence. But for
pairwise classification, one problem is how to limit
the scopes between a pair of sentences. So a naive
approach is adopted, that each token in a sentence
can attend to all tokens in another sentence. We
conduct experiments on four pairwise classifica-
tion datasets from GLUE benchmark (Wang et al.,
2018), which cover paraphrase, textual entailment
and text similarity.

Experimental results are shown in Table 2. The
syntax-aware local attention achieves better perfor-
mances on MRPC and STS, but doesn’t perform
well on RTE and QNLI. We suspect that it is be-
cause the cross-sentence interactions are more im-
portant for textual entailment task.

5 Conclusion

This work verifies that BERT can be further pro-
moted by incorporating syntactic knowledge to the
local attention mechanism. With more focused
attention over the syntactically relevant words,
our model achieves better performance on various
benchmarks. Additionally, the extensive experi-
ments demonstrate the universality of our syntax-
aware local attention.
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A Appendices

A.1 Training Procedure

We extend the Transformer encoder layer and lift
weights from BERT to our model. Following De-
vlin et al. (2019), we apply the fine-tuning proce-
dure for various NLP tasks. For classification tasks,
the final output of the first token [CLS] is taken
as the representation of the input. The probability
that the input sentence X is labeled as class c is
predicted by a linear transformation with softmax:

P (c |X) = softmax(Wch[CLS] + bc) (7)

where h[CLS] is the representation of the token
[CLS], Wc and bc are task-specific parameters.
For labeling tasks, we apply the BIO annota-
tion (Ratinov and Roth, 2009) to label outputs and
compute the probability that token xi belongs to
class c as:

P (c |xi) = softmax(Wthi + bt) (8)

where hi is the representation of the token xi, Wt

and bt are task-specific parameters. Finally, the
training objective for all tasks is to minimize the
cross-entropy loss.

A.2 Implementation Details

We apply the whitespace tokenization to the input
sentence, and obtain the dependency tree using
the Spacy parser5. However, the BERT inputs are
tokenized by WordPiece tokenizer, which means
one word may be split into several sub-words. To
address this issue, for each word in the dependency
tree, the sub-words split by WordPiece tokenizer
share the same masking value in the calculation of
syntax-aware local attention.

An important detail is that BERT represents the
input by adding a [CLS] token at the beginning as
the special classification embedding and separating
sentences with a [SEP] token. Clark et al. (2019)
find that these special tokens are attached with a
substantial amount of BERT’s attention. Thus, the
[CLS] and [SEP] tokens are guaranteed to be
present and are never masked out in our local atten-
tion.

We use the uncased version of BERT for CoLA
and SST-2, and the cased version for CoNLL-2003
and FCE. During the training, we empirically se-
lect the threshold m from {3,4}. The maximum

5https://spacy.io/

sequence length is set to 128 for all tasks. We use
Adam (Kingma and Ba, 2015) as our optimizer,
and perform grid search over the sets of the learn-
ing rate as {2e-5, 3e-5} and the number of epochs
as {3,5,10} for most tasks. In particular, we use
smaller learning rates {5e-6, 1e-5, 2e-5} and train
more epochs {30, 60} on CoNLL-2003, but the
average F1 of the best 5 runs still hasn’t reached
the results reported by Devlin et al. (2019). The
batch size is fixed to 32 to reduce the search space,
and we evaluate models every 500 training steps
for all datasets. Furthermore, we experiment with
the window-based attention on BERT, which allows
each token to pay more attention to the neighboring
tokens within a window size 2k+1. We vary the k
within {3,4,5}, and also incorporate the attention
scores with global attention scores.

A.3 Testing on Chinese Benchmarks
The ChnSentiCorp dataset is used for sentiment
classification task. We treat the ChnSentiCorp as
single-sentence datasets although there are some
examples including multiple sentences. The MSRA
NER and CGED datasets are selected for named
entity recognition and grammatical error detection
in Chinese. The accuracy (Acc) is used as the met-
ric of ChnSentiCorp, the precision, recall and F1

are used as metrics of MSRA NER and CGED. In
particular, for a fair comparison with the results
of iFLYTEK’s single model (Fu et al., 2018), we
construct the CGED test set from CGED 2016 and
2017 test sets. Then we report detection-level re-
sults computed by the official evaluation tool.

Table 3 shows the main results on Chinese
datasets. All results are reported on their test set.
The proposed syntax-aware local attention outper-
forms the window-based attention and the basic
BERT on all evaluated datasets. We attain 95.7
accuracy on ChnSentiCorp and 94.9 F1 on MSRA
NER. Besides, BERT+SLA outperforms the state-
of-the-art with a large margin on CGED.
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653

ChnSentiCorp MSRA NER CGED
Models Acc P R F1 P R F1

State-of-the-art Models
ERNIE 2.0 (Sun et al., 2020) 95.8 - - 95.0 - - -
BERT-MRC (Li et al., 2020) - 96.2 95.1 95.7 - - -
ePMI Matcher (Fu et al., 2018) - - - - 83.2 61.0 70.4

Base-size Models
BERT (Our reimplementation) 94.7 95.0 94.6 94.8 79.9 75.2 77.5

+ WLA 95.1 95.1 94.2 94.6 79.9 73.5 76.6
+ SLA 95.7 94.9 95.0 94.9 81.0 76.6 78.7

Table 3: Experimental results on Chinese single-sentence benchmarks. We only show the results of base-size
models because Google has not released the large-size model. Reported results are averaged over 5 runs.


