Diagnosing Transformers in Task-Oriented Semantic Parsing

Shrey Desai

Ahmed Aly

Facebook
{shreyd, ahhegazy}@fb.com

Abstract

Modern task-oriented semantic parsing ap-
proaches typically use seq2seq transformers
to map textual utterances to semantic frames
comprised of intents and slots. While these
models are empirically strong, their specific
strengths and weaknesses have largely re-
mained unexplored. In this work, we study
BART (Lewis et al., 2020) and XLM-R (Con-
neau et al., 2020), two state-of-the-art parsers,
across both monolingual and multilingual set-
tings. Our experiments yield several key re-
sults: transformer-based parsers struggle not
only with disambiguating intents/slots, but sur-
prisingly also with producing syntactically-
valid frames. Though pre-training imbues
transformers with syntactic inductive biases,
we find the ambiguity of copying utterance
spans into frames often leads to tree invalid-
ity, indicating span extraction is a major bot-
tleneck for current parsers. However, as a sil-
ver lining, we show transformer-based parsers
give sufficient indicators for whether a frame is
likely to be correct or incorrect, making them
easier to deploy in production settings.

1 Introduction

Task-oriented semantic parsing—mapping textual
utterances to semantic frames—is a critical compo-
nent of modern conversational Al systems (Gupta
et al., 2018; Aghajanyan et al., 2020). Recent
methodology casts parsing as transduction, using
seq2seq pre-trained transformers to produce lin-
earized parse trees (Aghajanyan et al., 2020; Chen
et al., 2020; Li et al., 2021); here, each frame token
is either copied from the utterance or generated
from an ontology. Compared to explicit grammar-
based approaches (Gupta et al., 2018), this plug-
and-play of transformers simplifies the learning
objective and scales to multilingual settings, but
the lack of provenance makes it challenging to un-
derstand model behavior “under the hood.”

In this work, we investigate the strengths and
weaknesses of transformer-based semantic parsers

57
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Figure 1: Example decoupled semantic frame represen-
tation (Aghajanyan et al., 2020) for the utterance Direc-
tions to the Warriors game.

and provide modeling directions based on data-
driven insights. Specifically, we study BART
(Lewis et al., 2020) and XLM-R (Conneau et al.,
2020), two state-of-the-art conversational semantic
parsers, on both monolingual (TOP/TOPv2; (Gupta
et al., 2018; Chen et al., 2020)) and multilingual
(MTOP; (Li et al., 2021)) datasets. The compo-
sitionality of utterances in these datasets provide
a strong testbed for resolving both complex syn-
tactic structure and semantic ambiguity, mirroring
the types of challenges our parsers are likely to
encounter in practice.

We design our experiments around three main
questions. First, broadly speaking, what types of
errors do transformer-based parsers make? We be-
gin by annotating 500+ predicted frames across 6
languages and categorize them with fine-grained
types. We find transformer-based parsers struggle
not only with classification (i.e., disambiguating
intents/slots) but also planning (i.e., switching be-
tween copying/generating). Planning errors are
more egregious: misplacing close brackets, for ex-
ample, can violate tree constraints, rendering the
entire frame unusable.

Next, we investigate transformer-based parsers’
abilities to generate syntactically-valid trees.
Specifically, are planning mistakes caused by gen-
eral uncertainty, or worse, a pathology of seq2seq
learning? To address this, we devise an oracle set-
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split TOP TOPv2 MTOP
train 31,279 124,579 73,956
dev 4,462 17,160 10,852
test 9,042 38,785 30,541

Table 1: Dataset splits for TOP, TOPv2, and MTOP.

N dmodel
6

di h di dy
1024 4096 16 64 64

Table 2: Dimensions of transformer decoder added to
XLM-R for MTOP fine-tuning. Notation is borrowed
from Vaswani et al. (2017).

ting where a model conditions on partially gold in-
formation (either utterance spans or syntactic struc-
ture) and predicts the remaining parts of the frame.
Surprisingly, we find conditioning on gold spans—
not gold structures—results in near-perfect trees at
most depths, pointing towards span extraction as a
major bottleneck for current parsers.

Finally, though transformer-based parsers are
susceptible to error, ideally, we should be able to
proactively diagnose mistakes. Using features from
model generations (e.g., confidence), can we in-
trinsically judge if a sequence is correct or incor-
rect? Encouragingly, we show that a confidence
estimation system combining a transformer-based
parser and feature-based classifier can detect cor-
rect frames with 90%+ F1, indicating usability in
production settings.

2 Experimental Setup

We conduct experiments on the following task-
oriented semantic parsing datasets: (1) TOP: par-
allel corpus consisting of English utterances and
corresponding semantic frames (Gupta et al., 2018);
(2) TOPv2: monolingual extension of TOP to 6
domains (Chen et al., 2020); (3) MTOP: multilin-
gual extension of TOP spanning English, Spanish,
French, German, Hindi, and Thai (Li et al., 2021).
Table 1 shows train, dev, and test splits for the
datasets.

Each dataset sample consists of a textual utter-
ance x and (linearized) semantic frame y. Here,
frames are in decoupled form (Aghajanyan et al.,
2020), as each token is derived either from copy-
ing from the utterance or generating from the on-
tology (see Figure 1). Following prior work, we
fine-tune seq2seq transformers to maximize the log
likelihood of the gold frame token at each timestep:

() 2108 Pyely<i, z;0).
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split TOP TOPv2 MTOP
dev 8541 87.53 76.00
test 8574 8752 77.20

Table 3: Exact match (EM) of BART and XLM-R on
TOP/TOPv2 and MTOP, respectively.

setting TOP TOPv2 MTOP
model BART BART XLM-R
dropout 8.68e-2 1.82e-1 0
batch size 16 16 16
epochs 50 50 50
optimizer Lamb Lamb  Lamb
Ir 3.72e-4 4.88¢-4 69le-4
weight decay 6.25e-7 6.26e-7 6.25e-7
swa lr 2.08e-4 1.86e-4 3.96e-4
swa start 8945 18876 19450
swa freq 219 233 185
scheduler exp exp exp
warmup 5000 5000 5000
gamma 0.95 0.95 0.95

Table 4: Hyperparameters for fine-tuning models on
TOP, TOPv2, and MTOP.

On TOP/TOPv2, we fine-tune BART (Lewis
et al., 2020), a seq2seq transformer pre-trained
with a denoising autoencoder objective on monolin-
gual corpora, and on MTOP, we fine-tune XLM-R
(Conneau et al., 2020) (equipped with a randomly-
initialized decoder), a transformer encoder pre-
trained with a masked language modeling objective
on multilingual corpora. For XLM-R, specifically,
we attach a randomly-initialized decoder (see Ta-
ble 2). Table 3 shows model performance as judged
by exact match. Hyperparameters for all models
are listed in Table 4.

3 Error Analysis

In this section, we seek to better understand the
types of errors transformer-based parsers make
across both monolingual and multilingual settings.

3.1 Error Types

To standardize our analysis, we categorize model
errors under the following types: intent (incorrect
intent prediction), slot (incorrect slot prediction),
out-of-domain (incorrect out-of-domain intent pre-
diction), mode (confusion between copying an ut-
terance token or generating an ontology token), and
leaf (incorrect span in a frame leaf slot). In addi-
tion, we report the syntactic validity of parse trees
separately, though we note mode errors typically
result in invalid constructions.



Exact Match Tree Validity
d TOP TOPv2 MTOP TOP TOPv2 MTOP
1 7803 8658 8475 98.65 9457 91.23
2 9230 90.67 8573 9697 96.82 93.80
3  90.94 88,50 7456 97.10 96.35 90.85
4 8824 8632 6453 9593 9547 85.73
5 8339 83.63 9429 9485 69.55
6 83.06 84.54 94.00 94.45 | 62.50
Table 5: Benchmarks of BART and XLM-R on

TOP/TOPv2 and MTOP, respectively, according to ex-
act match and tree validity at increasing tree depths (d).

One complicating factor is that a predicted se-
quence may potentially contain several errors, and
because decoding is conducted autoregressively, a
given error may be influenced by earlier errors (if
any such exist). Therefore, to reduce the number
of confounding variables, we only consider set-
tings where an incorrect prediction has gold history
argmax,, P(y:|yZ:, ¥) # y;; put another way, we
only count the first error in a sequence.

Using the framework discussed above, we an-
notate 700 errors across BART and XLM-R on
TOP and MTOP, respectively; 100 errors are from
TOP and 6x100 errors are from MTOP (100 per
language).

3.2 Results

Table 5 benchmarks overall model performance
and Figure 2 categorizes errors with fine-grained
types; from these results, we draw the following
conclusions:

Transformer-based parsers typically struggle
with both classification and planning. In the
seq2seq formulation, models must jointly classify
(i.e., provide intent and slot labels) and plan (i.e.,
switch between copying and generating) when pro-
ducing a semantic frame. Our results show in-
tent/slot and mode errors, which generally fall un-
der the theme of classification and planning, re-
spectively, account for nearly 70-80% of errors. A
key observation, however, is that classification and
planning error statistics are relatively consistent
across languages, suggesting our models may not
need language-specific fine-tuning to address these
particular errors.

Nearly 40% of incorrectly predicted frames are
syntactically invalid. Surprisingly, a large per-
centage of incorrectly predicted frames violate tree
constraints; for linearized frames, this implies the
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Figure 2: Distribution of errors across TOP and MTOP
categorized by intent (in), slot (sl), out-of-domain (od),
mode (md), and leaf (If). Dashed lines indicate the per-
centage of trees which are syntactically valid.

number of open brackets ([in or [s1) do not match
the number of close brackets (1). Though well-
formedness is correlated with depth, we see tree
validity (1) is not substantially improved by increas-
ing the number of monolingual samples (TOP —
TOPv2) and (2) drops off quite rapidly for multilin-
gual samples (TOP/TOPv2 — MTOP).

Span extraction is more challenging in mul-
tilingual settings. Leaf errors in English
(TOP|MTOP)-en are typically twice as lower
compared to those in non-English languages
MTOP-(es|fr|de|hi]|th). Upon closer in-
spection, we find most leaf errors in English
are relatively benign; the model may drop a
preposition when copying a span (e.g., Monday as
opposed to on Monday). However, for languages
beyond English, extracted spans in leaf slots
typically consist of hallucinated or duplicated
subwords, which are much more serious in nature.
Finally, though languages with non-projective



structures (e.g., German) can populate leaf slots
with non-contiguous spans, we noticed errors on
these types of samples were infrequent.

Out-of-domain detection is also a significant
source of error. TOP, in particular, mixes the
canonical semantic parsing task with out-of-
domain detection by assigning such utterances
the frame [in:unsupported 1.! Though well-
motivated, roughly 20% of errors are related to in-
correct out-of-domain predictions, suggesting our
models have not precisely learned the boundary be-
tween in-domain and out-of-domain utterances. If
high detection accuracy is preferred, multi-tasking
parsers in this fashion may not be an effective use of
parameters (assuming more data is not available);
instead, out-of-domain detection can be conducted
independently with alternate methodology (Gangal
etal., 2019).

4 Syntactic Structure

Our case study above demonstrates transformer-
based parsers can produce syntactically-invalid
frames at a high rate. These structural errors are
more serious than disambiguation errors since they
render the frame unusable, potentially causing cas-
cading failures in a task-oriented dialog system.
Therefore, in this section, we dive deeper into why
tree constraints are not satisfied and question the
possibility of achieving perfect tree validity.

While transduction models do not explicitly im-
pose tree constraints, there is precedent that strong
neural representations do implicitly model tree
structures; recent studies demonstrate large-scale
pre-training, in particular, imbues strong notions of
syntax (Goldberg, 2019; Jawahar et al., 2019; Ten-
ney et al., 2019). Taking these results together, we
hypothesize that transformer representations may
be “good enough”, but instead there exist ambigu-
ous aspects of our task-oriented semantic parsing
task which cause tree invalidity.

Previously, we saw transformer-based semantic
parsers largely struggled with classification- and
planning-related errors. Therefore, the question
we pose is: if we resolve these ambiguities by
creating oracle models, can we achieve perfect
tree validity? This setup also enables us to gain a
deeper understand of the upper-bound performance
of transformer-based semantic parsers, even as their
representations get stronger.

!There also exist more fine-grained out-of-domain cate-
gories, such as [in:unsupported-event 1J.
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Figure 3: Exact match (EM) and tree validity (TV) er-
ror (%) of the regular, span oracle, and structure oracle
models on TOPv2 and MTOP. Dots from left — right
indicate increasing frame compositionality (the graph
depths of 1 — 6).

Oracle Models. Because classification and plan-
ning target inherently different phenomena, cre-
ating an oracle that simultaneously makes both
less ambiguous is challenging. Instead, we ex-
periment with two separate oracles—span ora-
cle and structure oracle models for classification
and planning, respectively—which map an utter-
ance x along with a “partially gold” snippet z
to generate the frame y, inducing the objective
Z(x,y,z) > i log P(yily<t, x, 23 0).

For example, given an utterance x Where can 1
see fireworks tonight? and frame y [in [sl fire-
works [s] tonight 1 1, the span oracle model de-
fines z as [span1] fireworks [span2] tonight and
the structure oracle model defines z as [in [sl
[span1] [sl [span2] 1 1.2 Here, providing z
as input helps the model learn y \ z; span oracle
models optimize for correct structure and structure
oracle models optimize for correct spans. Table 6
shows example source and target pairs for the regu-
lar, span oracle, and structure oracle models.

Results. Figure 3 shows the oracle model results;
we measure both exact match and tree validity er-
ror. A key phenomenon we observe is that con-
ditioning on gold spans results in near-zero tree
validity error at most depths. Surprisingly, we
see conditioning on gold structures (to stress, the
exact syntactic structure) never consistently results
in well-formed trees, especially as the depth in-

*Fine-grained intent/slot labels are omitted for visual clar-
ity, but are included during model training.



model type  utterance x (+ snippet z)

frame y

regular
span oracle
struct oracle

Where can [ see fireworks tonight?
+ [span1] fireworks [span2] tonight
+ [in [sl [span1] [sl [span2] ] 1]

[in [sl fireworks [s1 tonight ] ]

Table 6: Example source and target pairs for oracle experiments. The span oracle specifies the gold spans while
the struct oracle specifies the gold structure. Note that [in and [s1 are used for brevity.

creases. Structure oracle models still suffer from
mode errors during generation: augmenting a leaf
span with an extra word instead of placing a close
bracket, for example, is a typical mistake. Further-
more, we see this problem is magnified in MTOP,
which connects to the notion that span extraction
tends to be difficult in multilingual settings.

Our experiments suggest seq2seq transformer-
based parsers can achieve near-perfect tree
validity—even at large depths—provided that span
extraction is precise. Currently, however, this is
a major source of ambiguity our parsers are not
well-equipped to handle, especially when scaling
to languages beyond English.

5 Confidence Estimation

Despite the criticism we have presented of state-of-
the-art, transformer-based conversational semantic
parsers, these models do demonstrate strong perfor-
mance over prior baselines, and correctly parse a
vast majority of samples. A property that can make
these models easier to deploy in practice is if they
“know what they don’t know” (Desai and Durrett,
2020); besides interpretability, this is particularly
useful for identifying and correcting errors in tail
scenarios via active learning (Dredze and Crammer,
2008; Duong et al., 2018; Sen and Yilmaz, 2020).
We frame this problem as confidence estimation
(Blatz et al., 2004): given an utterance z, predicted
frame 3/, and gold frame y, we seek to learn a bi-
nary classifier which uses target-side features f(y’)
to estimate P(y’ = y) = sigmoid(w " f(y/)).

To make our approach as generalizable as possi-
ble, we constrain f(y’) to be as model-agnostic
and recall-oriented as possible. We select the
following features: (1) length: |y/[; (2) valid-
ity: max(0,5, 1y € V] - 1y} € V)
where V' and V~ are the set of open and
close brackets, respectively; and (3) confidence:
ﬁ > P(yily.;, x). Using our best transformer-
based parsers, we obtain predictions on a held-out
set Dyey and test set Dier. Then, we train and test
a SVM on Dyey and Dy, respectively, using the
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TOPv2 MTOP
P R Fl P R Fl
SVM 97.2 857 912 950 852 89.8
—length 97.7 848 90.8 95.1 84.7 89.6
—validity 97.0 82.6 89.2 949 80.5 87.1
—confidence 91.6 98.8 95.1 853 95.8 90.2

Table 7: Precision (P), recall (R), and F1 of the SVM-
based confidence estimator. —z indicates an ablation of
feature x (i.e., it is omitted during learning).

features defined above.

In addition to the standard hinge loss, we also
add a class imbalance penalty as positive exam-
ples are typically 5-8x as prevalent depending on
the dataset. We chiefly evaluate the binary clas-
sifier’s ability to identify semantic frames which
are correct (i.e., the positive class). From an ac-
tive learning standpoint, getting positive samples
wrong is more serious than getting negative sam-
ples wrong; annotation resources are best directed
towards boundary or incorrect predictions.

Table 7 shows the performance and ablations of
our confidence estimator. In both monolingual
and multilingual settings, using transformer-
based features, we can detect correct semantic
frames with 90%+ F1. In particular, we see
length and validity largely capture the space of
correct frames (recall) and confidence effectively
distinguishes between correct and incorrect frames
(precision). Practitioners may select an SVM vari-
ant depending on whether precision or recall is
preferred.

6 Conclusion

In this work, we assess the strengths and weak-
nesses of seq2seq transformers for task-oriented
semantic parsing. These models “know what they
don’t know”, making them easier to depoy in prac-
tice, but cannot perfectly model compositional ut-
terances, as indicated by the challenges of span
extraction. We believe that modeling efforts in this
direction—as opposed to simply annotating more
data—can improve parsers substantially.
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