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Abstract

We present a novel method for relation extrac-
tion (RE) from a single sentence, mapping the
sentence and two given entities to a canon-
ical fact in a knowledge graph (KG). Espe-
cially in this presumed sentential RE setting,
the context of a single sentence is often sparse.
This paper introduces the KGPool method to
address this sparsity, dynamically expanding
the context with additional facts from the KG.
It learns the representation of these facts (en-
tity alias, entity descriptions, etc.) using neu-
ral methods, supplementing the sentential con-
text. Unlike existing methods that statically
use all expanded facts, KGPool conditions this
expansion on the sentence. We study the ef-
ficacy of KGPool by evaluating it with dif-
ferent neural models and KGs (Wikidata and
NYT Freebase). Our experimental evaluation
on standard datasets shows that by feeding the
KGPool representation into a Graph Neural
Network, the overall method is significantly
more accurate than state-of-the-art methods.

1 Introduction

Knowledge graphs (KGs) are the foundation for
many downstream applications and are growing
ever larger. However, due to the sheer volume of
knowledge and the world’s dynamic nature where
new entities emerge and unknown facts about
them are learned, KGs need to be continuously
updated. Distantly supervised Relation Extraction
(RE) is an important KG completion task aiming
at finding a semantic relationship between two en-
tities annotated on the unstructured text with re-
spect to an underlying knowledge graph (Ye and
Ling, 2019). In the literature, researchers mainly
studied two variants in the RE: 1) multi-instance
RE and 2) sentential RE. The multi-instance RE
assumes that in a given bag of sentences, if two
entities participate in a relation, there exists at
least one sentence with these two entities, which
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Figure 1: Illustration of Knowledge Graph Context as-
sociated with the annotated entities in a sentence. Here,
entity aliases do not play any role in the understanding
of the sentence for finding the KG relation. a

asentence taken from (Sorokin and Gurevych, 2017)

may contain the target relation (Riedel et al., 2010;
Vashishth et al., 2018). In this setting, researchers
aim to incorporate contextual signals from the pre-
vious occurrences of an entity pair into the neu-
ral models to support relation extraction (Ye and
Ling, 2019; Xu and Barbosa, 2019; Wu et al.,
2019). In contrast, sentential RE restricts the
scope of document context only to the input sen-
tence (disregards other occurrences of entity pairs)
while predicting the KG relation (Sorokin and
Gurevych, 2017). Hence, sentential RE makes
the multi-instance setting more difficult by limit-
ing the available context.

Recent approaches for RE not only base KGs
for relation inventory but also consider it for ex-
tending contextual knowledge for further improve-
ment of RE task (Vashishth et al., 2018; Bastos
et al., 2021). A few multi-instance RE methods
rely on entity attributes (properties) such as de-
scriptions, aliases, and types (as additional con-
text) along with entity pair occurrences from pre-
vious sentences to improve the overall extraction
quality (Ji et al., 2017; Vashishth et al., 2018). For
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the sentential RE, the RECON approach (Bastos
et al., 2021) aims to effectively encode KG context
derived from the entity attributes and entity neigh-
borhood triples. RECON employs a Graph Neural
Network (GNN) as a context aggregator for com-
bining sentential context (annotated entities and
sentence) and structured KG representation. Al-
though the additional KG context has a positive
effect on the overall relation extraction in multi-
instance and sentential RE settings, not all KG
context forms are necessary for every input sen-
tence. Consider Figure 1, where the task is to infer
a semantic relation ‘occupation’ between two enti-
ties wd:Q568631 (Marc Davis)1 and wd:Q266569
(animator). Wikidata (Vrandecic, 2012) KG pro-
vides semantic information such as description,
instance-of, and aliases about entities. Here, the
entity alias (Marc Fraser Davis, Fraser Davis for
wd:Q568631; and cartoonist for wd:Q266569) has
no impact on understanding the sentence because
the entities are explicitly mentioned in the sen-
tence. Furthermore, there is empirical evidence in
the literature that for several sentences, statically
adding all KG context offered minimal or negative
impact (Bastos et al., 2021). Hence, there are open
research questions as to how an RE approach can
dynamically utilize the sufficient context from KG
and whether or not the selected KG context posi-
tively impacts the overall performance?

This paper studies these concerning questions
proposing the KGPool approach. KGPool utilizes
a self-attention mechanism in a Graph Convolu-
tion Network (GCN) (Kipf and Welling, 2017)
for selecting a sub-graph from the KG to extend
the sentential context. The concept of dynami-
cally mapping the structural representation of a
KG to a latent representation of a sentence has
not been widely studied in prior literature. In RE,
KGPool is the initial attempt. The existing ap-
proaches (Bastos et al., 2021; Xu and Barbosa,
2019; Wu et al., 2019; Vashishth et al., 2018) feed
all the available context (either derived from a
bag of sentences or a KG or both) into a neural
model and relied on the model to figure out the
consequences, resulting in limited performance in
many cases (Bastos et al., 2021). Conversely,
we study the efficacy of KGPool in dynamically
choosing KG context for the sentential RE task us-
ing two standard community datasets (NYT Free-
base (Riedel et al., 2010), and Wikidata (Sorokin

1wd: binds to https://www.wikidata.org/wiki/

and Gurevych, 2017)). Our work makes the fol-
lowing key contributions:

• The KGPool approach dynamically selects
structural knowledge and transform it into
a representation suitable to supplement the
latent representation of sentential context
learned using a neural model. We deduce
that KGPool is the first approach that works
independently of the underlying context ag-
gregators used in the literature (Graph Neural
Network (Zhu et al., 2019) or LSTM-based
(Sorokin and Gurevych, 2017)).

• We are the first to map the task of KG Con-
text Selection to a Graph Pooling Problem.
Therefore, our proposed approach legitimizes
the application of graph pooling algorithms
for choosing the relevant context.

• KGPool, paired with a GNN as context ag-
gregator, significantly outperforms the exist-
ing baselines on both datasets, in one exper-
iment increasing the precision by 12 points
over to baseline (P@30 on NYT Freebase).
Furthermore, our empirical results (cf., Ta-
ble 3) conclude that an LSTM model paired
with KGPool is able to notably outperform a
GNN-based approach (Zhu et al., 2019) and
nearly all multi-instance baselines (Ye and
Ling, 2019; Wu et al., 2019; Vashishth et al.,
2018) published in the recent years.

This paper is structured as follows: Section 2 re-
views the related work. Section 3 formalizes the
problem and the proposed approach is described
in Section 4. Section 5 describes the experimental
setup. The results are in Section 6. We conclude
in Section 7.

2 Related Work

Multi-instance RE: a few multi-instance RE
approaches use convolution neural network (dos
Santos et al., 2015), attention CNN (Wang et al.,
2016) and attention-based recurrent neural models
for relation extraction (Zhou et al., 2016). Other
approaches such as (Ji et al., 2017; Vashishth
et al., 2018) incorporate entity descriptions, entity
and relation aliases from KG to supplement
context from the previous sentences. Work in
(Vashishth et al., 2018) employs a graph con-
volution network to encode entity and relation
aliases derived from Wikidata. HRERE (Xu and
Barbosa, 2019) proposes an approach for jointly

https://www.wikidata.org/wiki/
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learning sentence and KG representation using
cross-entropy loss function. To effectively capture
the available entity context in the documents, Ye
and Ling (2019) suggest an approach incorpo-
rating intra-bag and inter-bag attentions. For a
detailed survey, we point readers to (Smirnova
and Cudré-Mauroux, 2018).
Sentential RE: researchers (Sorokin and
Gurevych, 2017) utilized additional relations
present in the sentence to assist the process of ex-
tracting the target relation using an LSTM-based
model. GP-GNN (Zhu et al., 2019) generates
parameters of GNN based on the input sentence,
which enables GNNs to process-relational reason-
ing on unstructured text inputs. RECON (Bastos
et al., 2021) is an approach that uses the entity
attributes (aliases, labels, descriptions, instance-
of) and KG triples to signal an underlying GNN
model for sentential RE. Authors conclude that
the multi-instance requirement can be relaxed
provided a good representation of KG context
to enrich the sentential RE model. However,
RECON and multi-instance approaches (Xu and
Barbosa, 2019; Vashishth et al., 2018) utilize
statically derived context from the KG, i.e., KG
context does not vary depending the sentence.

Graph Pooling and Dynamic Context Selec-
tion: researchers proposed several models for
the graph classification aka. graph pooling task
(Cangea et al., 2018; Ying et al., 2018; Gao and Ji,
2019). These models employ various approaches
such as graph topology-based (Rhee et al., 2018),
and by learning the hierarchical graph-structure
(Ying et al., 2018). Another graph pooling model
relies on node features and topological informa-
tion using self-attention (Lee et al., 2019) in which
a specific number of nodes are always eliminated.
In KGPool, the elimination of nodes depends on a
context coefficient and node importance (Section
4). For context selection, a recent work focuses on
dynamically selecting the KG context to optimize
a Pre-Trained Language Model (PLM) for entity
typing and relation classification (Su et al., 2020).
KGPool has the following fundamental differences
compared to (Su et al., 2020): KGPool inspires its
self-attention mechanism from (Lee et al., 2019;
Vaswani et al., 2017) to learn a representation
of the KG context. Hence, KGPool works ag-
nostic of the underlying model used for the con-
text aggregation (unlike Su et al. (2020), which is
tightly coupled with PLM). Approaches such as

(Liu et al., 2017; Zhang et al., 2018; Kang et al.,
2020) also perform dynamic context selection for
respective tasks. However, these approaches are
not focused on knowledge graph context selection.

3 Problem Statement

We define the KG as a tuple given by KG =
(E ,R, T +) where E denotes the set of all ver-
tices in the graph representing entities, R is the
set of edges representing relations, and T + ⊆
E × R × E is a set of all KG triples. The
RE Task predicts the target relation rc ∈ R be-
tween a given pair of entities 〈ei, ej〉 from the
sentence W = (w1, w2, ..., wl). If no relation is
inferred, it returns ’NA’ label. We aim for the
sentential RE task which put a constraint that the
sentence within which a given pair of entities oc-
curs is the only visible sentence from the bag of
sentences. We view RE as a classification task
similar to (Sorokin and Gurevych, 2017). In a
KG triple τ = (eh, r, et) ∈ T +, the relation
r ∈ R, eh is the head entity (relation origin) while
et is the tail entity. For each entity, associated
semantic properties such as entity label, descrip-
tion, instance-of, and aliases are known as entity
attribute (Ate) (cf., graph construction step of Fig-
ure 2). We aim to model KG contextual informa-
tion to improve the classification. This is achieved
by learning the effective representations of the sets
Ate, eh, et, andW (cf. section 4).

4 KGPool Approach

KGPool consists of three components illustrated
in Figure 2: 1) Graph Construction aggregates
the sentence, entities and its attributes as a Het-
erogeneous Information Graph (HIG) for input
representation. 2) Context Pooling step utilizes a
self-attention mechanism in a graph convolution to
calculate attention scores for entity attributes us-
ing node features and graph topology. The pool-
ing process allows KGPool to construct a Context
Graph (CG), which is a contextualized represen-
tation of HIG with lesser number of nodes. 3)
Context Aggregator takes as input the sentence,
entities, contextual representations of HIG, and
classifies the target relation between the entities.
We detail the approach in the following.

4.1 Graph Construction

As first step, we extract entity attributes (Ate)
from public dumps of Freebase (Bollacker et al.,
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Figure 2: KGPool approach has three components to supplement sentential context with necessary KG context.

2007) and Wikidata (Vrandecic, 2012) KGs de-
pending on the dataset. For the KG context, we
rely on the most commonly available properties of
the entities as suggested by (Bastos et al., 2021):
aliases, description, instance-of, and label. An ex-
ample of various entity attributes is given in Figure
2 at the Graph Construction step. Then, the sen-
tence W is transformed to another representation
using Bi-LSTM (Schuster and Paliwal, 1997) by
concatenating its word and character embeddings:

~W = BiLSTM(W) (1)

Similar representation is created for each entity ei
where i = (h, t):

~ei = BiLSTM(ei) (2)

For entity ei, its KG contexts (entity attributes)
Ate

i

j (where j = [0...N ]) are independently con-
verted into associated embedding representations:

~Atj
ei

= BiLSTM(Ate
i

j ) (3)

For a knowledge representation of the KG con-
text concerning the sentential context (sentence
and annotated entities), we introduce the special
graph HIG = (A,F ), a Heterogeneous Informa-

tion Graph, represented in the adjacency matrix
A ∈ {0, 1}n×n, where n is the maximum num-
ber of neighboring nodes for an entity ei. Here,
F ∈ Rn×f is the node feature matrix assuming
each node has f features learned from the Bi-
LSTM in the equations 1, 2, and 3. In these equa-
tions, BERT (Devlin et al., 2019), or any other re-
cent Transformer-based model can be used. Due
to hardware limitations, we are bound to Bi-LSTM
using Glove embeddings (Pennington et al., 2014).

4.2 Context Pooling
Context pooling is built upon three layers of Graph
Convolutional Networks (GCN) and a readout
layer associated with each of them. Moreover,
the last layer of GCN is coupled with a pooling
layer (cf., ablation studies for architectural design
choice experiments).

4.2.1 Graph Convolution
Since KGPool is expected to select the sufficient
context, the Context Graph CG is a reduction of
HIG using the mapping Ψ : HIG −→ CG. The
challenge here is the no natural notion of spatial
locality, i.e., it is not viable to pool together all
context nodes in an “m × m” patch on HIG be-
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cause the complex topological structure of graphs
prevents any straightforward, deterministic defini-
tion of a “patch”. Furthermore, entities nodes have
a varying number of neighboring nodes, making
the graph pooling challenging (similar to other
graph classification problems (Ying et al., 2018)).
In HIG, entity nodes do not contain informa-
tion of their neighbors. Hence, we aim to enrich
each entity node with the adjacent node’s contex-
tual information. Therefore, we employ a GNN
variant to utilize its message-passing architecture
to learn node embeddings from a message prop-
agation function. The message propagation func-
tion depends on the adjacency matrix A, trainable
parameters θ, and the node embeddings F (Ying
et al., 2018). We rely on a GCN model by Kipf
and Welling (2017). The GCN layer is defined as:

F (k) = ReLU
(
D̃−

1
2 ÃD̃−

1
2F (k−1)θ(k−1)

)
(4)

where Ã = A + I , D̃ =
∑

j Ãi,j and θ(k) is the
trainable matrix. The GCN module might run k
iteration and normally is in the range of two to
six (Ying et al., 2018). A few graph representa-
tion learning approaches propose to use readout
layer that aggregates node features to learn a fixed
size representation (Xu et al., 2018; Cangea et al.,
2018). We perform this summarizing after each
block of the network (Equation 4), and aggregate
all of the intermediate representation together by
taking their sum. We define readout layer R as:

R(k) =
1

N

N∑
i=1

F
(k)
i ‖

N
max
i=1

F
(k)
i (5)

where N is the number of nodes in the graph and
F is the node feature embedding.

4.2.2 KG Self-Attention Mask

Until Equation 5, KGPool focuses on learning
node features. Next, KGPool learns the impor-
tance of each entity attribute node using self-
attention. Please note, in HIG, pooling happens

only for entity attribute nodes ( ~Atj
ei

from Equa-
tion 3). The sentence ~W and entities ~eh, ~et re-
main intact. Hence, each entity representation ~eh
and ~et is enriched by the useful attribute context
(KG context). The entity attribute nodes which
do not provide relevant context are excluded from
the graph. To choose the relevant entity attribute
nodes, we use a self-attention score Z (Lee et al.,

2019) calculated as follows:

Z = tanh
(
D̃−

1
2 ÃD̃−

1
2F (k)Θatt

)
(6)

where Θatt ∈ RF×1 is the only parameter of the
pooling layer. For ranking, we take the attention
score and pass it through a softmax layer where
Zscore is the normalized self attention score.

Zscore = exp (Zi)/
∑
i

exp (Zi) (7)

After Equation 7, we compute the scores for
each entity attribute node. Next, we propose a
node selection method in which nodes are selected
on the basis of Context Coefficient α which is a
hyper parameter. The top nodes are selected as:

idx = max (Zscore)− α ∗ σ(Zscore) (8)

where σ(Zscore) is the standard deviation of
Zscore, idx represents the node selection result,
and Zmask is the corresponding attention mask.
Equation 8 acts as a soft constraint in selecting
the context nodes for each HIG which depends
on the value of α. Learning α during training may
cause over-fitting. Hence, we decided to consider
α as a trade-off parameter similar to λ in regular-
ization (Bühlmann and Van De Geer, 2011). Next,
the Context Graph (CG) is formed by pooling out
the less essential entity attribute nodes as:

F ′ = F
(k)
idx,:, Fout = F ′ � Zmask, Aout = Aidx,idx

(9)
In addition to the dynamically selected nodes, we
also inherit the intermediate node and graph rep-
resentations of k − 1 layers similar to ResNET
(He et al., 2016). The intermediate representations
(k−1 ) and the CG (kth layer) is given as follows:

~eh
′ = F (1)

eh
⊕ F (2)

eh
⊕ ....F (k)

eh

~et
′ = F (1)

et ⊕ F
(2)
et ⊕ ....F

(k)
et

~W ′ = F
(1)
W ⊕ F

(2)
W ⊕ ....F

(k)
W

~R′ = R(1) ⊕R(2) ⊕ ....R(k)

(10)

where in the ith layer: F (i)
el is the node embedding

of el, l = (h, t), F (i)
W is the node embedding of

sentence W , and R(i) is the readout. In the kth

layer, F (k) is the Fout from Equation 9. The ⊕ is
the concatenation among the vectors.

4.3 Context Aggregator

Finally, KGPool combines the latent representa-
tion (sentential context) with the structured repre-
sentation learned in Equation 10. As such, we em-
ploy a model M which learns latent relation vec-
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tor ~r′. In the state-of-the-art approaches that use
KG context, the representation of ~r′ is learned us-
ing sentential and all static KG context (Vashishth
et al., 2018; Bastos et al., 2021). However, in KG-
Pool, relation r is realized based on the senten-
tial context and dynamically chosen KG context.
Hence, we employ context aggregators similar to
the baselines (section 5.3) for jointly learning the
enriched KG context in the form of CG and sen-
tential context. The final relation is:

P (r | eh, et,W ) = softmax(

MLP(~r′ ⊕ ~eh
′ ⊕ ~et

′ ⊕ ~W ′ ⊕ ~R′)) (11)

5 Experimental Setup

5.1 Datasets
We consider two standard datasets (English ver-
sion): Wikidata dataset (Sorokin and Gurevych,
2017) and NYT Freebase (Riedel et al., 2010).
Both datasets were annotated using distant super-
vision (associated stats are in Table 1). Datasets
include ’NA’ as one of the target relations.

Dataset #Train
Sentences

#Test sen-
tences

#Relations

Wikidata 372,059 360,334 353

NYT 455,771 172,448 53

Table 1: Statistics of the Datasets

5.2 KGPool Configurations
KGPool is configured with two context aggregator
modules. We inherit context aggregators from
existing sentential RE baselines. Our experi-
mental aim is to assess as how KGPool performs
along with the state-of-the-art context aggregators
(comparative study). Our two settings are:
1. KGPool+lstm: KGPool is coupled with a
context aware LSTM model from (Sorokin and
Gurevych, 2017) as context aggregator.
2. KGPool+gnn: this implementation has KG-
Pool plugged-in with a variant of GNN module
used by (Zhu et al., 2019; Bastos et al., 2021).

5.3 Baseline Models
We consider the recent sentential RE approaches
for our empirical study:
RECON (Bastos et al., 2021): induces KG con-
text (entity attributes and 1&2 hop entity triples)
along with the sentence in a GNN.

RECON-EAC (Bastos et al., 2021): a variant of
RECON contains entity attributes as only KG con-
text (same context as KGPool).
GP-GNN (Zhu et al., 2019): performs multi-hop
reasoning using a GNN.
Context-LSTM (Sorokin and Gurevych, 2017):
uses context from other sentential relations.
Sorokin-LSTM (Sorokin and Gurevych, 2017):
the NYT dataset contains one relation per sen-
tence, but Context-LSTM requires at least two re-
lations in a sentence. Thus, the other setting is an
LSTM model without a sentential relation context,
is used as a baseline on the NYT dataset.
Multi-instance RE Approaches: Please note, the
Wikidata dataset does not have multiple instances
for an entity pair. Hence multi-instance baselines
do not have values on it. We inherit the recent
multi-instance baselines and all empirical values
from (Bastos et al., 2021): (i) HRERE (Xu and
Barbosa, 2019) (ii) Wu-2019 (Wu et al., 2019),
(iii) Yi-Ling-2019 (Ye and Ling, 2019), (iii) RE-
SIDE (Vashishth et al., 2018).

5.4 Metrics and Hyper-parameters

Graph Construction step (section 4.1) use a Bi-
LSTM with one hidden layer of size 50 (Bastos
et al., 2021). The word embedding dimension is
50 initialized by Glove embeddings (Pennington
et al., 2014). The context pooling parameters are
from (Lee et al., 2019). For modelM , we used the
default parameters provided by the authors (Zhu
et al., 2019; Sorokin and Gurevych, 2017). For
brevity, details are in the appendix.
Metric and Optimization: Our experiment set-
tings are borrowed from (Bastos et al., 2021).
Hence, on Wikidata dataset, we use (micro) pre-
cision (P), recall (R), and F-score (F1). On the
NYT Freebase dataset, (micro) P@10 and P@30
is reported. P@K here represents precision at K
percent recall. We also study the effect of Con-
text Coefficient (α) for both KGPool configura-
tions (trained end-to-end). We ignore the proba-
bility predicted for the NA relation during testing.
We employ the Adam optimizer (Kingma and Ba,
2015) with categorical cross entropy loss where
each model is run three times on the whole train-
ing set. For the P/R curves (with best α values of
KGPool variants), the result from the first run of
each model is selected. For ablation, we use the
McNemar’s test for statistical significance to find
if the reduction in error in the KGPool configura-
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(a) Micro P-R Curve on Wikidata Dataset (b) Micro P-R Curve on NYT-Freebase Dataset
Figure 3: KGPool’s best configuration (Tables: 2, 3) perform better than baselines over the entire recall range.

tions are significant. The differences in the models
is statistically significant if the p − value < 0.05
(Dietterich, 1998). We release all experiment code
and data on a public GitHub2.

6 Results

We conduct our experiments and analysis in re-
sponse to the question RQ: ”What is the efficacy
of KGPool in dynamically selecting the KG con-
text for the sentential RE task?” As such, we also
compare KGPool against approaches that do not
dynamically treat the context.

Model P R F1

Context-LSTM 72.09 72.06 72.07
GP-GNN 82.30 82.28 82.29
RECON-EAC 85.44 85.41 85.42
RECON 87.24 87.23 87.23

KGPool+lstm (α=1) 84.20 82.19 84.20
KGPool+lstm (α=2) 84.12 84.13 84.12
KGPool+lstm (α=3) 84.00 83.97 83.98
KGPool+lstm (α=4) 83.81 83.79 83.80

KGPool+gnn (α=1) 88.60 88.59 88.60
KGPool+gnn (α=2) 88.57 88.56 88.57
KGPool+gnn (α=3) 88.54 88.55 88.54
KGPool+gnn (α=4) 88.52 88.50 88.51

Table 2: Comparison of KGPool configurations with
sentential RE models on Wikidata dataset. Best score
in bold.

Performance on Wikidata Dataset: Table 2
summarizes the performance of KGPool variants
against the sentential RE models. Agnostic of
the underlying aggregator (LSTM or GNN), KG-
Pool effectively captures the KG context compli-
menting the sentential context. TheKGPool+gnn

(α=1) configuration outperforms other KGPool
variants along with all sentential RE baselines. We

2https://github.com/nadgeri14/KGPool

Model P@10 P@30

HRERE 86.1 76.6
Wu-2019 81.7 61.8
RESIDE 73.6 59.5
Ye-Ling-2019 78.9 62.4
Sorokin-LSTM 75.4 58.7
GP-GNN 81.3 63.1
RECON-EAC 83.5 73.4
RECON 87.5 74.1

KGPool+lstm (α=1) 83.7 72.7
KGPool+lstm (α=2) 83.5 71.6
KGPool+lstm (α=3) 84.1 70.6
KGPool+lstm (α=4) 83.1 72.1

KGPool+gnn (α=1) 90.1 86.7
KGPool+gnn (α=2) 91.0 85.0
KGPool+gnn (α=3) 92.3 85.4
KGPool+gnn (α=4) 90.6 84.4

Table 3: Comparison of KGPool with sentential and
multi-instance RE models on NYT Freebase dataset.
Best score in bold.

can observe that even when the available context is
limited to entity attributes, theKGPool+gnn vari-
ant surpasses RECON that also contains context
from 1&2 hop triples besides the entity attributes.
RECON-EAC and KGPool+gnn rely on entity
attributes as KG context with the same context
aggregator. When KGPool+gnn variants choose
KG context dynamically, they perform better than
RECON-EAC. It is interesting to notice that when
an LSTM model is fed with the dynamically cho-
sen context, the performance gain is more than
ten absolute points (KGPool+lstm Vs Context-
LSTM), even outperforming GP-GNN.
Performance on NYT Freebase Dataset: Sim-
ilar to the Wikidata dataset, the KGPool+gnn

variants significantly outperform all baselines (cf.
Table 3). The P@30 is comparatively high for
KGPool+gnn against baselines. The behavior
could be interpreted as follows: dynamically
adding context from the KG for the entity pairs

https://github.com/nadgeri14/KGPool


542

Compared Models Contingency table Statistic p-value Significance Dataset
KGPool+gnn (α=3) vs 160916 4702 298.18 8.18 ∗ 10−67 Statistically NYT-
RECON 3169 3613 Significant Freebase
KGPool+gnn (α=1) vs 617266 38652 1300.08 1.08 ∗ 10−284 Statistically Wikidata
RECON 29255 55593 Significant
Table 4: The McNemar’s test for statistical significance for KGPool’s best configuration Vs previous baseline.

keeps the precision higher over a more extended
recall range. For both datasets, KGPool configura-
tions (KGPool+gnn and KGPool+lstm) have the
best-reported performance varying as per the α.
This validates our choice to introduce a soft con-
straint in selecting the context nodes (cf., Equation
8). The P/R curves in Figure 3 show that KGPool
performs better than baselines over the entire re-
call range. We conclude that the effective dynamic
context selection by KGPool has a positive impact
on the sentential RE task (which successfully an-
swers our research question).

Models DEG
(HIG)

DEG
(CG)

Dataset

KGPool+gnn (α=1) 5.33 1.15 Wikidata
KGPool+gnn (α=2) 5.33 1.52
KGPool+gnn (α=3) 5.33 2.87
KGPool+gnn (α=4) 5.33 4.71
KGPool+gnn (α=1) 6.34 1.67 NYT
KGPool+gnn (α=2) 6.34 1.91 Freebase
KGPool+gnn (α=3) 6.34 2.73
KGPool+gnn (α=4) 6.34 5.16

Table 5: Effect of Context Pooling. ‘DEG’ denotes av-
erage degree of an entity node (ei). ‘DEG’ of entity
nodes in CG is drastically reduced wrt the HIG.

6.1 Ablation Studies

We conducted two ablation studies to understand
the behavior of KGPool configurations:
Significance of Dynamic Context Selection: we
perform McNemar’s test for the best KGPool con-
figuration against the previous sentential state-of-
the-art (i.e. RECON). The results in Table 4 are
statistically significant on both datasets, illustrat-
ing KGPool’s robustness. AlthoughKGPool+gnn

variants achieve statistically significant results
against RECON, there exist several sentences for
which our approach is unable to select supplemen-
tary KG context ((RW ) values in the contingency
table). It requires further investigation, and we
plan it for our future work.
Effect on the Degree of Nodes for Entities: for
studying the effect of context pooling (Section
4.2), we also conducted a study to understand the
impact of KGPool on the reduction of the average
degree of entity nodes (ei) in the HIG. Table 5

summarizes the effect of Context Coefficient on
the average degree of entity nodes. Irrespective of
α, KGPool notably reduces the degree of ei by re-
moving less relevant nodes.
Architectural Choice Experiment: In KGPool,
we chose to introduce pooling in the last layer of a
three-layered architecture (three blocks). To sup-
port our choice, we performed several additional
experiments by introducing pooling in various lay-
ers. We employ the Wikidata dataset for our exper-
iments. We use best configuration of our model (
KGPool+gnn (α=1)) and created several variants
of it. For instance, KGPool+gnn (P=all) com-
prises the configuration where we introduce pool-
ing in all three GCN blocks. The configuration
KGPool+gnn (¶=2&3) has no pooling in the first
layer but has a pooling layer in the remaining two
GCN blocks. KGPool+gnn is the best configura-
tion of KGPool where pooling is just in the final
layer. In Table 6, we observe that KGPool+gnn

with pooling only in the last GCN block has the
superior performance compared to other two vari-
ants. Here, the first two layers are used to learn
the node features, which are then employed with
self-attention for node selection. Our experiments
justify the architectural choice decision. However,
with a newer graph pooling technique, such deci-
sions will solely depend on the performance of the
approach, and we can not generalize the results of
these experiments.

Model F1
KGPool+gnn (¶=all) 84.19
KGPool+gnn (¶=2&3) 86.87
KGPool+gnn (¶=3) (best) 88.60

Table 6: When we introduce pooling in all three layers
or in two layers, the performance of KGPool’s variants
drop. Hence, it justify our choice to add pooling only
in the third layer that gives the best performance (val-
ues in bold). We use best configuration of our model
(KGPool+gnn (α=1)).

Case-Studies: To understand the KGPool’s per-
formance gain, we report a few top relations in
Table 7. It can be observed from this table that in
a few cases, with lesser context, KGPool can per-
form significantly better. In the next case study,
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to understand the KGPool’s performance while
adding additional context (more noise), we induce
extra context in the form of 1&2-hop triples along
with entity attributes. For the same, we consid-
ered KGPool’s best configurations on the Wikidata
dataset. The configurations KGPool+gnn (+T )
and KGPool+lstm (+T ) represent KGPool fed
with additional triple context. For both configu-
rations agnostic of underlying aggregator, we ob-
serve a slight increase in performance (Table 8).
There are several triples which are the irrelevant
source of information not needed for a given sen-
tence. KGPool can remove that information and
does not suffer the performance drop due to added
noise in the context. Details on error analysis,
performance for worst performing individual re-
lations, and on a human-annotated dataset are pro-
vided in the appendix.

Relation KGPool RECON GP-GNN
vocal specialization 1.00 0.00 0.00
list of works 1.00 0.00 0.00
track gauge 1.00 0.92 0.00
position played 0.99 0.99 0.92
sport 0.99 0.99 0.97
record label 0.95 0.90 0.64
list of episodes 0.95 0.00 0.49
wing configuration 0.94 0.57 0.00
numeric value 0.93 0.27 0.46
vessel class 0.87 0.00 0.00

Table 7: Micro F-score of Top performing Relations
for KGPoolgnn (α=1) (on Wikidata dataset). Dy-
namically chosen context significantly improves per-
formance for many relations.

Model F1
KGPool+gnn (+T ) 88.85
KGPool+lstm (+T ) 84.42
KGPool+gnn 88.60
KGPool+lstm 84.12

Table 8: To scale the sources of the contexts, we in-
duce additional triple context in the KGPool shown as
(+T ) configurations. We use best configurations of
our model (KGPool+gnn (α=1) and KGPool+lstm

(α=1)). We observe a slight jump in the performance,
however, KGPool is still able to pool irrelevant context.

7 Discussion and Conclusion

Although KGs are often employed for providing
background context in the RE tasks (cf. Section
2), yet there is limited research about defining rel-
evant context. In this work, we proposed KG-
Pool and provide a set of experiments proving:
1) Given the limited context that is in individual

sentences, dynamically bringing context from KG
significantly improves the RE performance. 2) We
introduced Context Coefficient (α), which acts as
a soft constraint in determining the relevant en-
tity context nodes. 3) Our approach KGPool is in-
variant of the context aggregator and enables us to
learn effective knowledge representation of the re-
quired KG context for a given sentential context.
Our evaluation concerns several key questions:

• Data quality impact on an effective knowl-
edge representation: in spite KGPool’s sig-
nificant performance, there exist several sen-
tences for which our model finds a limita-
tion compared to the baseline (cf. Table 4).
One potential interpretation could be about
the noise injected due to the data quality of
the KG context (Weichselbraun et al., 2018).
Hence, how does the quality of contextual
data impact the performance of context selec-
tion approaches is an open direction.

• Impact of additional sources of KG con-
text: In ablation, we provide a study by
adding 1 & 2-hop triples in addition to en-
tity attributes. There is no significant increase
in the performance, although KGPool is able
to remove irrelevant context for a given sen-
tence. Furthermore, we did not consider edge
features inHIG although KGPool can be ex-
tended to support edge features using tech-
niques such as (Simonovsky and Komodakis,
2017). Additional experiments are needed to
verify that our empirical observations hold in
this setting, and we leave it for future work.

Overall, KGPool provides an effective knowl-
edge representation for set-ups where sentence
context is sparse. It is interesting to observe that
effective knowledge representation learned using
KGPool paired with an LSTM model outperforms
GP-GNN (Zhu et al., 2019), and nearly all multi-
instance baselines. Our conclusive results open a
new research direction: is it possible to apply ef-
fective context selection techniques coupled with
deep learning models to other downstream NLP
tasks? For example, our results can encourage re-
searchers to extend KGPool or develop novel con-
text selection methods for the tasks where KGs
have been extensively used as additional back-
ground knowledge, such as in entity linking (Mu-
lang’ et al., 2020; Mulang et al., 2020), KG com-
pletion (Wang et al., 2020; Shi et al., 2017), and
recommendation system (Yang et al., 2020).
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8 Ethics/ Impact Statement:

In this work, we present significant progress in
solving sentential RE task. Harvesting knowl-
edge is an essential goal that human beings seek
along with the advancement of technology. This
research and many RE approaches rely on addi-
tional signals from the public KGs to design sys-
tems that extract structured knowledge from un-
structured contents. When it comes to who may be
disadvantaged from this research, we do not think
it is applicable since our study of addressing the
KG context capabilities is still at an early stage.
Having said so, we are fully supporting the devel-
opment of ethical and responsible AI. The poten-
tial bias in the standard public datasets that may
lead to wrong knowledge needs to be cleaned or
corrected with validation mechanisms.
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A Appendix

Due to page limit, we could not put several em-
pirical results in the main paper. This section de-
scribes the remaining empirical studies.

A.1 Error Analysis

To understand the failure cases of KGPool, we
conducted exhaustive error analysis. We calcu-
lated (micro) F1-Score of each relation in Sorokin
dataset (Sorokin and Gurevych, 2017). Table 10
illustrates performance of ten relations on which
KGPool performs the worst (ascending order of
Micro-F1 score). To put the study in the right
perspective, we also report all sentential RE base-
lines’ performance on these relations. While ana-
lyzing the errors, we observe three patterns. First,
all models fail in the relations for which number
of instances are sparse. For example, the rela-
tion mother has only 190 instances (occurances)
and the relation killed by has 48 instances. The
scarcity in training data has made all models to
fail on certain relations. Secondly, our model fails
in very closed relations. For example, instead of
predicting the relation drafted by3, our model pre-
dicts member of sport team4. Similarly, in case
of unmarried partner, our model predicts spouse.
We believe that introducing logical reasoning in
the model can help these borderline cases. The
third observed pattern for errors is the quality of

3https://www.wikidata.org/wiki/
Property:P647

4https://www.wikidata.org/wiki/
Property:P54

context. It is worthwhile to mention that in GP-
GNN and Context-LSTM, there is only a senten-
tial context. RECON and KGPool use KG con-
text. Still, performance is limited for many rela-
tions such as use and different from as reported in
the table 10. The lack of quality context in the KG
possibly a reason for limited performance for KG-
context-induced models in erroneous cases. De-
tailed exploration is needed to understand the im-
pact of data quality on KGPool performance, and
we leave it for the future work.

A.2 Effect of Context Pooling

Models DEG
(HIG)

DEG
(CG)

Dataset

KGPool+lstm (α=1) 5.33 1.06 Wikidata
KGPool+lstm (α=2) 5.33 2.12
KGPool+lstm (α=3) 5.33 4.32
KGPool+lstm (α=4) 5.33 4.81
KGPool+lstm (α=1) 6.34 1.23 NYT
KGPool+lstm (α=2) 6.34 1.74 Freebase
KGPool+lstm (α=3) 6.34 3.05
KGPool+lstm (α=4) 6.34 6.30

Table 9: Effect of Context Pooling. ‘DEG’ denotes av-
erage degree of an entity node (ei). We observe a re-
duction in the degree of entity nodes in CG compared
to the HIG.

In the main paper, we presented the effect of
context pooling on KGPool’s best configuration
(KGPool+gnn). Table 9 describes the reduction
in the average degree of nodes for KGPool+lstm

configuration for various context coefficient (α).
On both datasets, there is a significant reduction in
the degree of nodes. On Wikidata dataset (Sorokin
and Gurevych, 2017), KGPool+lstm with (α=1)
reports the highest value among its other configu-
rations. For the same, the average degree of nodes
is reduced from 5.33 to 1.06. Please note, the de-
gree of nodes in HIG remains the same. How-
ever, for CG, the degree of nodes differs based on
the context aggregator. We train the model end to
end, and due to back-propagation, context weights
adjust as per the context aggregator.

A.3 Results on a Human Annotated Dataset

The employed datasets Wikidata (Sorokin and
Gurevych, 2017) and NYT Freebase (Riedel et al.,
2010) are created using distant supervision tech-
niques. Considering distant supervision tech-
niques inherit a noise, to provide a comprehen-
sive ablation study, (Zhu et al., 2019) provided
a human evaluation setting. Following the same
setting, RECON provided human-annotated data
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Relation KGPool RECON GP-GNN Context-LSTM
has quality 0.00 0.00 0.00 0.00
enclave within 0.00 0.00 0.00 0.00
drafted by 0.01 0.08 0.00 0.02
different from 0.01 0.00 0.0 0.00
mother 0.03 0.05 0.02 0.00
unmarried partner 0.04 0.01 0.00 0.00
killed by 0.04 0.01 0.00 0.04
use 0.09 0.00 0.00 0.00
lyrics by 0.10 0.13 0.00 0.00
relative 0.12 0.10 0.00 0.00

Table 10: Micro F-score of 10-worst performing Relations for KGPoolgnn (α=1) on Wikidata dataset. We also
provide corresponding values of other sentential RE baselines. The main reason for limited performance across all
models is the scarcity of training data for these relation types.

from Wikidata dataset (Sorokin and Gurevych,
2017). This is to verify that the distantly super-
vised dataset is correct for every pair of entities.
Sentences accepted by all annotators are part of
the human-annotated dataset. There are 500 sen-
tences and 1846 triples in the test set. Table 11
reports KGPool’s performance against the sen-
tential baselines. KGPool+gnn continues to out-
perform the baselines, maintaining similar behav-
ior as seen on test sets of original datasets. The
results further re-assure the robustness of our pro-
posed approach.

Model P R F1
Context Aware LSTM 77.77 78.69 78.23
GP-GNN 81.99 82.31 82.15
RECON-EAC 86.10 86.58 86.33
RECON 87.34 87.55 87.44
KGPool+lstm (α=1) 86.34 86.07 86.20
KGPool+gnn (α=1) 89.36 89.31 89.33

Table 11: Sentential RE performance on Human An-
notation Dataset. KGPool again outperforms the base-
lines. We report Micro P,R, and F1 values. (Best score
in bold)

Hyperparameters Value
learning rate 0.001
batch size 50
hidden state size 128
context coefficient (α) 1,2,3,4
# of propagation layers 3

Table 12: Hyper-parameters for Context Pooling mod-
ule

A.4 Datasets and Hyper-parameters
We augmented two datasets Wikidata dataset and
Riedel Freebase dataset with our proposed KG
context. The Wikidata dataset has 353 unique
relations, 372,059 sentences in training, 123824
sentences in validation and 360,334 for testing.
The number of sentences in the training and test

Hyperparameters Value
learning rate 0.001
batch size 50
dropout ratio 0.5
hidden state size 256
non-linear activation relu
# of propagation layers 3
entity embedding size 8
adjacent matrices untied
optimizer adam
β1 0.9
β2 0.999
ε 1e-08
pretrained embeddings glove
word embedding dim 50

Table 13: Hyper-parameters for GNN-Aggregator
module

Hyperparameters Value
learning rate 0.001
batch size 50
dropout ratio 0.5
hidden state size 256
non-linear activation relu
# of layers 1
optimizer adam
pretrained embeddings glove
word embedding dim 50

Table 14: Hyper-parameters for ContextAware-
Aggregator module

Hyperparameters Value
learning rate 0.001
batch size 50
initial embedding size 50
final embedding size 50
pretrained embeddings glove
# of layers 1

Table 15: Hyper-parameters for Graph Construction
module

set are 455,771 and 172,448 respectively in the
Riedel dataset. No explicit validation set has been
provided for Riedel dataset. For augmenting en-
tity attribute context, we relied on public dumps
of Wikidata and Freebase. From these dumps,
we automatically extracted entities and its proper-
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ties: labels, aliases, instance of, descriptions. For
Wikidata, we used public API5 using a SPARQL
query and for Freebase, we took original depreci-
ated dump6.

We use the nltk english tokenizer for splitting
the sentence into its corresponding tokens in the
Riedel dataset. We do not do any further data
preprocessing. We used 1 GPU NVIDIA TITAN
X Pascal with 12GB of GPU storage to run our
experiments. We train the models upto a maxi-
mum of 14 epochs and select the best performing
model based on the micro F1 scores of the valida-
tion set. The tables 14, 15 and 12 detail the hyper-
parameter settings used in our experiments. We do
not do any further hyper-parameter tuning.

5https://query.wikidata.org/
6https://developers.google.com/

freebase

https://query.wikidata.org/
https://developers.google.com/freebase
https://developers.google.com/freebase

