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Abstract

Out-of-domain (OOD) input detection is vital
in a task-oriented dialogue system since the ac-
ceptance of unsupported inputs could lead to
an incorrect response of the system. This paper
proposes OutFlip, a method to generate out-
of-domain samples using only in-domain train-
ing dataset automatically. A white-box natu-
ral language attack method HotFlip is revised
to generate out-of-domain samples instead of
adversarial examples. Our evaluation results
showed that integrating OutFlip-generated out-
of-domain samples into the training dataset
could significantly improve an intent classifi-
cation model’s out-of-domain detection perfor-
mance1.

1 Introduction

Intent classification is crucial for task-oriented dia-
logue systems such as Google DialogFlow or Ama-
zon Lex. It is vital for an intent classifier not only
to map an input utterance into the correct label but
also to detect out-of-domain (OOD) inputs. An
accepted OOD input will lead the dialogue system
to give erroneous responses.

Approaches for OOD detection in text classifica-
tion could be classified into two major categories.
Outlier detection approaches (Fei and Liu, 2016;
Hendrycks and Gimpel, 2017; Shu et al., 2017; Lin
and Xu, 2019; Yan et al., 2020; Xu et al., 2020)
try to find out the boundaries of known classes in
feature space. They need no labeled OOD dataset,
but it is hard for them to deal with boundary cases.
(n + 1)-way classification approaches (Kim and
Kim, 2018; Larson et al., 2019; Ryu et al., 2018;
Zheng et al., 2020) train classifiers for OOD detec-
tion using (pseudo-)labeled OOD samples. In prac-
tice, it is difficult and expensive to collect a large

1The source code is available at https://github.com/
kakaoenterprise/OutFlip

number of labeled OOD samples with an open-
world environment.

This paper proposes OutFlip, a method to gener-
ate OOD samples from in-domain training dataset
automatically. For a given training dataset T and
a reference intent classification model M which is
trained with T , the OutFlip generates a set of OOD
samples O. The generated OOD samples O could
be used to train M iteratively to improve its OOD
detection performance. Since the OutFlip does not
require any modifications to the model architec-
ture, it could be used with other OOD detection
approaches to further improve the OOD detection
performance.

The generated OOD samples should satisfy two
conditions. First, they should be “hard-enough”;
if the generated examples are too easy to distin-
guish from in-domain intents, they will be useless
in training the OOD detector. Second, they should
not belong to any in-domain intents. With a given
reference model M and a set of in-domain labels
I , this could be considered as finding a sentence
xo with truth label y 6∈ I and model classification
y′ ∈ I . In this point of view, the OOD sample
generation task could be considered as a variant of
natural language attack on model M ; the goal of
natural language attack on M is to find a xa with
truth label y ∈ I and model classification y′ 6= y.
We revised HotFlip (Ebrahimi et al., 2018), a natu-
ral language attack method, to generate such OOD
samples.

Our evaluation results showed that the generated
OOD samples could significantly improve the OOD
detection performances of the reference models.
We also showed that applying OutFlip with other
OOD detection approaches could further improve
the model’s OOD detection performance. The eval-
uation results also suggest that the generated OOD
samples could train the models other than the refer-
ence model to improve their OOD detection perfor-
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mances.
Our contributions are summarized as follows:

• We proposed OutFlip, a simple and efficient
OOD sample generation method using only
in-domain training samples.

• We experimentally showed the effectiveness
of our proposed approach using the intent clas-
sification benchmarks.

• We showed that the generated OOD samples
could also improve the OOD detection per-
formances of models other than the reference
model.

2 Related Work

Previous OOD detection works could be classi-
fied into two major categories. Outlier detection
approaches find boundaries of known classes in fea-
ture space. Fei and Liu (2016) computes a center
for each class and transforms each document into a
vector of similarities to the center. A binary clas-
sifier is built using the transformed data for each
class. For deep learning-based systems, Hendrycks
and Gimpel (2017) proposed the baseline of using
softmax score as a threshold. Shu et al. (2017)
trained the intent classifier using the sigmoid func-
tion and used the standard distribution to set each
class’s score threshold. Lin and Xu (2019) first
trained the classifier using Large Margin Cosine
Loss (LMCL) (Nalisnick et al., 2018), and applied
Local Outlier Factor (Breunig et al., 2000) to de-
tect the OOD inputs. Yan et al. (2020) proposed
a semantic-enhanced Gaussian mixture model to
gather vectors of the same classes closely. Xu et al.
(2020) calculated the mean and covariance of train-
ing samples for each class and used Mahalanobis
distance as a distance function.
(n+ 1)-way classification approaches train the

intent classifier with one additional class, where
(n+ 1)-th class represents the unseen intent. Kim
and Kim (2018) proposed joint learning for in-
domain and out-of-domain speeches. Larson et al.
(2019) manually collected OOD samples to train
intent classifiers. Ryu et al. (2018) generated OOD
feature vectors using generative adversarial net-
work (Goodfellow et al., 2014) to train an OOD
detector. Since the approach proposed in Ryu
et al. (2018) only works on continuous feature
space, it highly depends on the feature encoder,
which transforms inputs into feature vectors. Zheng

et al. (2020) also generated OOD feature vectors,
but they also used unlabeled examples to enhance
classification performance further. Although the
(n+ 1)-way classification approaches are easy to
adopt without modification in the classification
model, it is incredibly costly and time-consuming
to collect the appropriate OOD samples.

The proposed OutFlip automatically generates
OOD samples using the only in-domain training
set, significantly reducing the cost of manually col-
lecting OOD samples. Also, the OutFlip does not
depend on the feature encoder.

The goal of adversarial attack in text classifica-
tion is to fool a given text classification model M ,
by generating an adversarial example xa with truth
label y and model classification y′ 6= y. Many suc-
cessful attacks first take a correctly classified exam-
ple x and replace its important words or characters
to get an adversarial sample xa. In a white-box sce-
nario, the attacker has access to the target model’s
structure; thus, the important word or characters
could be easily selected by inspecting the gradient
of model M . HotFlip (Ebrahimi et al., 2018) esti-
mates the best change of characters by maximizing
the first-order approximation of the change in the
loss.

In a black-box scenario, the attacker is not aware
of the model or training data; the attacker is only
capable of querying the target model with supplied
inputs and obtaining the output predictions and
their confidence scores. Alzantot et al. (2018) ran-
domly selects a word from sentence x and selects
a suitable replacement word that has a similar se-
mantic meaning. Jin et al. (2020) proposed a word
importance score, which is used to find the word to
be replaced. Li et al. (2020) applied BERT (Devlin
et al., 2018) pre-trained language model to find a
replacement word.

The proposed OutFlip first extracts important
words using the algorithm proposed in Jin et al.
(2020), and applies a variant of HotFlip (Ebrahimi
et al., 2018) to generate OOD samples which are
hard to distinguish from the in-domain intents by
the given reference model.

3 Proposed Approach

In this section, the proposed OOD sample genera-
tion approach OutFlip is described in more detail.
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3.1 HotFlip
We first introduce the white-box adversarial exam-
ple generation method HotFlip (Ebrahimi et al.,
2018). Let M be a text classification model, V
be the word vocabulary set, x = {x1; ...;xn} be
a sentence with n words where xi ∈ {0, 1}|V | de-
notes one-hot vector representing the i-th word,
and LM (x,y) be the loss of M on input x with
true output y. For a given sentence x, a flip of
the i-th word from wa to wb is represented by the
following vector:

~vib = (~0; ..; (0, ..,−1, .., 1, 0, .., 0)i; ..;~0) (1)

where -1 and 1 are in the corresponding posi-
tions for words wa and wb in the word vocabulary,
respectively. A first-order approximation of the
change in loss LM (x,y) can be obtained from a
directional derivative along this vector:

∇~vibLM (x,y) = ∇xLM (x,y)T · ~vib (2)

Then, the HotFlip chooses the vector with the
biggest increase in loss:

max∇xLM (x, y)T · ~vib = max
ib

∂L
(b)
M

∂xi
−

∂L
(a)
M

∂xi
subject to sim(wa, wb) ≥ Tsim

and POS(wa) = POS(wb)
(3)

where Tsim is a similarity threshold between
two words, and POS(wa) is the Part-of-Speech
tagging of wa. The two constraints are added to
ensure that xa is semantically similar to the orig-
inal input x. With equation 3, the HotFlip could
determine the flip position i and the replacement
word wb.

3.2 OutFlip
For a given reference model M and an in-domain
sample x with true output y, the main idea of Out-
Flip is to flip the most important word of x, wM (x),
to a semantically different word, while minimizing
the change of loss LM (x,y). By doing so, the Out-
Flip expects to get a sample xo whose truth label is
different from the truth label of x, while the model
classifications of xo and x are the same.

The word importance score proposed in Jin et al.
(2020) is defined as follows:

Ixi(M,x) = oy(M,x)− oy(M,x\xi
) (4)

Algorithm 1 OutFlip
Input In-domain training corpus T = {x1, ..., xt},

in-domain labels Y , vocabulary V , reference
model M , similarity threshold Tsim

Output A set of OOD samples O
1: for y ∈ Y do
2: for x with truth label y do
3: Calculate wM (x)
4: end for
5: CT (y)← Top 5 most frequent wM (x)
6: end for
7:

8: for x ∈ T do
9: y ← truth label of x

10: if wM (x) ∈ CT (y) then
11: i← the position of wM (x)

12: Sort V in ascending order of ∂L
(b)
M

∂xi

13: Candidate← Top 1% of V
14: Remain only words whose similarity

with wM (x) is less than Tsim

15: Randomly select wb among candidates
16: Replace wM (x) with wb to get xo

17: if M classifies xo to y then
18: Add xo to O
19: end if
20: end if
21: end for

where y is the truth label of x, oy(M,x) is the
logit output of the target model M for label y, and
x\xi

is the sentence after masking xi. The most
important word wM (x) is defined as the word with
the largest importance score in x.

For each in-domain label y of the training dataset
T , we define Core Class Token (CCT) CT (y) as
the top 5 most frequent wM (x) among the training
samples with truth label y. Since the importance
score is calculated based on the reference model
M , the OutFlip could select a wrong token as the
most important token due to the model error. If
the OutFlip flips such a word, the generated sen-
tence’s truth label will remain unchanged, leading
to an erroneous OOD sample. To prevent such
case, the OutFlip simply disregards x during OOD
generation process if wM (x) 6∈ CT (y).

In summary, the OutFlip chooses the replace-
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Figure 1: Applying the OutFlip to iteratively train the
reference model M with newly generated OOD sam-
ples.

ment word wb using the following equation:

min∇xLM (x,y)T · ~vib = min
ib

∂L
(b)
M

∂xi
−

∂L
(a)
M

∂xi
subject to sim(wa, wb) ≤ Tsim

and wa = wM (x)

and wa ∈ CT (y)
(5)

Since we do not need the generated OOD sam-
ples to be fluent, the part-of-speech condition is re-
moved. The OutFlip randomly chooses wb among
the top 1% of the vocabulary in the ascending order
of the loss change to generate more diverse sam-
ples. We used cosine similarity as the similarity
measure.

The truth label of the generated sample xo could
be an in-domain label different from y by chance.
The OutFlip checks the model classification result
of xo to see if it remains the same as x. If the clas-
sification result changes, the OutFlip disregards xo.
Algorithm 1 shows the pseudocode of the proposed
OutFlip.

3.3 Iteratively Populating OOD samples

The reference model M could be iteratively trained
with the generated OOD samples to improve its
OOD detection performance. Figure 1 shows the
overall framework. For each iteration, the set of
generated OOD samples O is randomly split into
training and dev set and used for the next train
iteration.

Since the OutFlip does not require any change in
model architecture, the OutFlip could be applied in-
dependently with other OOD detection algorithms

Dataset ATIS SNIPS Kakao
Language English English Korean
Vocab Size 938 12,054 22,831
Avg. Length 11.21 9.36 8.88
# Train 4,478 13,784 90,692
# Dev 500 700 11,310
# Test 893 - 12,711
# of Classes 18 7 48
Is Balanced X O O

Table 1: Dataset statistics.

that require modifications on model architecture or
loss function, such as Shu et al. (2017) or Lin and
Xu (2019). In such cases, those OOD detection
algorithms are applied to the examples classified
as in-domain to filter out the OOD samples further.

4 Experiments

In this section, experimental settings and evaluation
results are shown.

4.1 Datasets
Experiments are conducted on 3 real task-oriented
dialogue datasets, SNIPS (Coucke et al., 2018),
ATIS (Hemphill et al., 1990) and Kakao dialogue
corpus2 (Choi et al., 2020). SNIPS and ATIS are
well-known English benchmarks. Kakao dialogue
corpus is a Korean intent classification benchmark.
We evaluated the proposed OutFlip with the Kakao
dataset to see if it could be applied to different
languages. Table 1 summarizes the statistics of the
datasets. The ATIS dataset is highly imbalanced;
more than 70% samples belong to one class, while
three classes have less than 10 samples. The SNIPS
and Kakao datasets are relatively balanced.

Since the SNIPS dataset does not have a test set,
we randomly selected 30% of the training set and
used them as the test set.

4.2 Baselines
We implemented two sentence encoders to show
the generality of the proposed approach. LSTM
(Hochreiter and Schmidhuber, 1997)-based en-
coder applies one-layer BiLSTM with output di-
mension 128 on the word embeddings of the given
input; a self-attention layer with attention dimen-
sion 10 is followed to get the feature vector. CNN-
based model applies the algorithm proposed in Kim

2Since the Kakao dataset is not publicly available, we
contacted the authors to get the Kakao dataset and Korean
GloVe vectors.
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Dataset ATIS SNIPS Kakao
% of known intents 25% 50% 75% 25% 50% 75% 25% 50% 75%
MSPcnn 64.61 71.07 62.00 34.24 63.26 73.14 66.23 82.32 89.60
MSPlstm 65.82 71.52 61.18 34.12 63.30 73.28 64.23 81.37 88.28
DOCcnn 61.99 57.82 38.46 49.66 70.76 77.16 71.61 84.72 90.55
DOClstm 62.76 58.15 38.35 49.77 71.11 77.37 63.36 78.86 85.22
LMCLcnn 71.67 74.89 68.73 61.51 84.37 88.31 80.27 87.15 90.60
LMCLlstm 72.25 77.90 73.18 69.52 83.32 87.53 76.31 85.79 89.39
OutFlipcnn 74.18 79.23 69.37 79.20 84.25 88.99 81.78 85.45 86.85
OutFliplstm 73.85 74.50 68.30 79.26 84.00 88.67 81.96 84.64 86.42

Table 2: Comparisons of the OutFlip and previous OOD detection works. The top 2 results for each metric are
marked in bold. Tsim is set to 0.3, and the OutFlip is applied for three iterations.

(2014). More precisely, one-dimensional convolu-
tions with kernel sizes 2, 3, 4, 5 and filter size 32
are applied on top of the word embeddings. The
results are max-pooled to get the feature vector.
For both encoders, a dense layer is applied to the
feature vector to get the logit of each class.

We also implemented three baseline OOD detec-
tion systems, as follows:

1. Maximum Softmax Probability (MSP)
(Hendrycks and Gimpel, 2017) considers the
maximum softmax probability of a sample as
the rejection score. If the probability is below
a certain threshold, the sample is classified
as OOD. We used the threshold of 0.5, as the
authors suggested.

2. Deep Open Classification (DOC) (Shu et al.,
2017) replaces softmax with sigmoid activa-
tion as the final layer to calculate the score
for each class separately. It also calculates the
threshold for each class through a statistical
approach.

3. Large Margin Cosine Loss (LMCL) (Lin
and Xu, 2019) replaces the softmax loss with
large margin cosine loss (Nalisnick et al.,
2018), to force the model to maximize inter-
class variance and minimize intra-class vari-
ance. After training, it applies Local Outlier
Factor (LOF) (Breunig et al., 2000) on train-
ing features vectors to detect outliers as OOD.
We set the scaling factor s = 30 and cosign
margin m = 0.35, following the authors.

By combining two feature encoders and three
baseline OOD detection systems, we implemented
eight baseline reference models, six with an OOD
detection system and two without.

Pre-trained Embeddings Accuracy
GloVe (Pennington et al., 2014) 83.17 %
Korean GloVe (Choi et al., 2020) 51.33 %

Table 3: Evaluation results of GloVe embeddings on
the language-independent set of word analogy corpus.

4.3 Experimental Setup

Word embeddings are initialized with GloVe (Pen-
nington et al., 2014) pre-trained word vectors. We
downloaded the pre-trained embeddings containing
1.9M words trained on 42B tokens from the au-
thor’s homepage. For Korean, Korean pre-trained
GloVe embedding vectors proposed in Choi et al.
(2020) are used. The dimensions of both pre-
trained embeddings are 300.

We removed some classes from the train/dev set
during training and integrated them back during
testing, following the evaluation settings of Fei and
Liu (2016); Shu et al. (2017); Lin and Xu (2019).
We varied the number of known intents in the train-
ing dataset as 25%, 50%, and 75% of the intents,
and used all intents for testing. We randomly se-
lect known intents by weighted random sampling
without replacement in the training set. Note that
the samples belonging to the unknown intents are
removed during training and validation.

Following Fei and Liu (2016); Shu et al. (2017);
Lin and Xu (2019), macro F1 score is used to
evaluate the models. For each known intent se-
lection, the F1 score for each class is calculated
separately. Then the results are macro-averaged
across all classes. We reported the average of 10
random known intent selections for each evalua-
tion.

For each OutFlip iteration, 90% of the generated
OOD samples are added to the training set, and
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Dataset ATIS SNIPS Kakao
% of known intents 25% 50% 75% 25% 50% 75% 25% 50% 75%

MSPcnn
77.04 74.66 62.44 78.02 84.48 89.66 82.65 85.74 87.26
(+12.43) (+3.59) (+0.44) (+43.78) (+21.22) (+16.52) (+16.42) (+3.42) (-2.34)

MSPlstm
71.37 76.17 61.97 79.88 83.98 88.92 82.22 85.21 86.25
(+5.55) (+4.65) (+0.79) (+45.76) (+20.68) (+15.64) (+17.99) (+3.84) (-2.03)

DOCcnn
73.45 59.03 41.24 80.72 85.05 89.42 82.20 85.45 86.44
(+11.46) (+1.21) (+2.78) (+31.06) (+14.29) (+12.26) (+10.59) (+0.73) (-4.11)

DOClstm
70.20 59.69 41.09 81.99 85.08 89.69 80.14 81.28 80.78
(+7.44) (+1.54) (+2.74) (+32.22) (+13.97) (+12.32) (+16.78) (+2.42) (-4.44)

LMCLcnn
74.13 76.35 68.82 81.04 85.90 90.10 81.81 84.75 85.74
(+2.46) (+1.46) (+0.09) (+19.53) (+1.53) (+1.79 ) (+1.54) (-2.40) (-4.86)

LMCLlstm
75.44 76.37 71.34 80.86 84.56 88.76 82.24 84.19 85.35
(+3.19) (-1.53) (-1.84) (+11.34) (+1.24) (+1.23) (+5.93) (-1.60) (-4.04)

Table 4: Evaluation results of the baselines with the OutFlip applied. Tsim is set to 0.3, and the OutFlip is applied
for three iterations. Small numbers below the macro F1 score represents the performance improvement compared
to the same baseline without applying the OutFlip.

the remaining 10% are added to the dev set. The
populated train/dev sets are used for the next train
iteration.

Adam optimizer (Kingma and Ba, 2015) with
an initial learning rate of 0.001 is used to train
the model. The training batch size is set to 128.
Exponential learning rate decay with a decay rate of
0.8 is applied for every two epochs. On each epoch,
the trained classifier is evaluated against the dev
set, and the training stops when the dev accuracy is
not improved for five consequent epochs.

4.4 Evaluation Results

Table 2 shows the evaluation results of the pro-
posed OutFlip and other baseline systems. As can
be observed from the table, the proposed OutFlip
outperforms other baselines when the number of
known intents is small. The small number of known
intents is the most similar case to real-world appli-
cations, since in the open-world environment, the
number of unknown intents is much larger than the
number of known intents. The OutFlip also gives
comparable results for ATIS and SNIPS corpus
with the larger number of known intents.

For the Kakao corpus, the OutFlip performance
is lower compared to the other baselines. To fig-
ure out the reason, the qualities of English GloVe
embeddings and Korean GloVe embeddings are
compared. We used 4 out of 14 categories in the
word analogy corpus (Mikolov et al., 2013) for fair
comparison; capital-common-countries,
capital-world, currency and a subset of

family. We removed all the syntactic questions
since they cannot be translated into Korean words
one-to-one. Part of family category is removed
for the same reason. We also removed categories
that give an advantage on English pre-trained em-
beddings; for example, the city-in-state cat-
egory is removed because it contains relationships
between US cities and US states. The remaining
6,168 questions are manually translated into Ko-
rean.

Table 3 shows the evaluation results of the En-
glish and Korean GloVe vectors on our subset of
the word analogy corpus. As can be observed, the
accuracy of Korean GloVe is much lower compared
to the English GloVe vectors. Since the OutFlip
relies on the cosine similarities between pre-trained
embedding vectors to generate the OOD samples,
the quality of embedding vectors is critical to the
OOD generation performance.

Next, we applied the proposed OutFlip to other
OOD detection baselines to see if the OutFlip could
further improve their performance. Table 4 shows
the evaluation results. In most cases applying
the OutFlip to other OOD detection approaches
resulted in performance improvement. The per-
formance improvement was significant when the
dataset is balanced, and the number of known in-
tents is small.

We conducted a set of experiments to find out
the best OutFlip iteration number and Tsim value.
Figure 2 and Figure 3 shows the OutFlip perfor-
mances on the benchmark datasets with changing
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Figure 2: Evaluation results of OutFlipcnn with changing Tsim. We fixed the number of OutFlip iteration to 2.
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Figure 3: Evaluation results of OutFlipcnn with changing OutFlip iteration number. We fixed Tsim to 0.3.

Tsim values and OutFlip iteration numbers, respec-
tively. Increasing Tsim value would cause the Out-
Flip to generate more challenging examples, but the
chance of developing wrong OOD samples would
also increase.

Figure 2 suggests that the balanced dataset like
SNIPS could easily recover the errors introduced
from large Tsim values. In contrast, the ATIS
dataset’s macro F1 score decreases with the in-
creased Tsim values when many intents are known.
Since 3 out of 18 ATIS intents have less than ten
sentences, one or two erroneous OOD samples
could lead to a performance drop. The macro F1
score of the balanced Kakao dataset does not in-
crease with the Tsim values larger than 0.3. Since
the quality of Korean GloVe is relatively low, large
Tsim values introduce more errors compared to the
English datasets.

As can be observed from Figure 3, in most cases,
the macro F1 score converges with two to three
OutFlip iterations. Additional OutFlip iterations
give small or no performance improvements for
balanced datasets and decrease macro F1 score
for unbalanced dataset ATIS by introducing more
errors.

One advantage of the OutFlip is that the gen-
erated OOD samples could be used to train and
improve the OOD detection performance of the
models other than the reference model without ap-
plying additional OutFlip iterations. We trained the
BERT-base and BERT-large models (Devlin et al.,

2018) with the ATIS and SNIPS benchmarks. As
the same as previous experiments, the unknown
intents are removed during training and integrated
back during testing. Besides, we added OOD sam-
ples generated using reference models OutFlipcnn

and OutFliplstm with three OutFlip iterations and
Tsim value 0.3, while training the BERT models.

Table 5 shows the evaluation results of the BERT
models trained with the OutFlip-generated OOD
samples. As can be observed from the table, the
OutFlip-generated OOD samples significantly im-
proved the OOD detection performances of BERT
models, regardless of the reference models used to
generate the OOD samples.

4.5 Error Analysis
We randomly selected 200 samples from the OOD
examples generated by OutFlipcnn with three iter-
ations and Tsim = 0.3 for the ATIS dataset, when
75% of the intents are known. The number of
newly generated OOD samples for each iteration
is shown in Table 6. We manually analyzed the
selected examples for errors.

Among the 200 examples, 186 of them were
correctly generated OOD sentences. Out of 14 er-
ror cases, 12 were due to the wrongfully extracted
Core Class Tokens. Some ATIS intents have too
few examples to extract Core Class Tokens; for ex-
ample, intent atis restriction has only six
samples. Also, an entity which shows up too fre-
quently could also lead to wrong Core Class Token
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Model
Reference model ATIS SNIPS
for OutFlip 25% 50% 75% 25% 50% 75%

BERT-base
None 62.14 74.73 72.61 34.66 60.76 70.49
OutFlipcnn 70.60 76.08 72.45 74.51 81.09 86.92
OutFliplstm 71.58 78.22 72.68 73.02 81.04 86.50

BERT-large
None 62.17 74.01 73.32 34.56 61.07 70.51
OutFlipcnn 76.02 80.68 79.54 70.95 80.53 87.06
OutFliplstm 74.55 81.46 75.38 73.15 80.31 86.60

Table 5: Results of applying OutFlip-generated samples to train models other than the reference model. Reference
model None means no OutFlip-generated OOD samples are added during training.

Iteration 1 2 3 4
ATIS 2003 1648.5 755.5 336.6
SNIPS 4923.5 4644.2 3221.5 1956.2

Table 6: The number of generated OOD sam-
ples for each OutFlip iteration with reference model
OutFlipcnn, Tsim = 0.3. 75% of the intents are known.
Numbers are the average of 10 known intent selections.

extraction result. For intent atis flight, 797
out of 4,334 samples contain the entity “Denver”.

For one case, the OutFlip-generated sentence ac-
cidentally belongs to the other in-domain intent.
However, due to the reference model’s error, the
OutFlip fails to remove the generated sentence. A
training instance “Can you list the cheapest round
trip fare from Orlando to Kansas City” (truth label
atis airfare ) is converted to a sentence “Can
you list the cheapest round trip airplane from Or-
lando to Kansas City” (truth label atis flight),
but the reference model classifies the converted sen-
tence to atis airfare. Since the classification
result remains the same, the OutFlip considers the
generated sentence as “hard-enough” OOD sample.

The ATIS dataset allows an instance to have mul-
tiple labels; two or more labels are assigned to
23 ATIS training instances. The OutFlip failed to
properly handle those instances. The remaining
one error case is generated from a training instance
with two assigned labels.

5 Conclusion

In this paper, we proposed OutFlip, a method to
generate OOD samples using only in-domain train-
ing dataset. Our evaluation results showed that
the proposed OutFlip could significantly improve
the OOD detection performance of an intent clas-
sification model by iteratively generating difficult
OOD samples. Since OutFlip does not require any

modifications to model architecture, it could be
used with other OOD detection approaches to im-
prove OOD detection performance further. We also
showed that the generated OOD samples could be
used to train and improve the OOD detection per-
formance of models other than the reference model,
without applying additional OutFlip iterations.

Currently, we only focused on generating diffi-
cult OOD samples, which can fool the reference
model. However, generating meaningful OOD sam-
ples could also be beneficial, since then the dia-
logue engine developer could check the generated
OOD samples to find new intents. As our future
work, we will focus on generating meaningful, flu-
ent OOD samples.
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