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Abstract

Defining a sophisticated action space for a dia-
log agent is essential for efficient training with
reinforcement learning (RL). Recent work in-
troduces discrete latent variables to use as an
action space; however, a limitation is that a
global vector can contain entangled informa-
tion such as dialog act, sentence structure, and
content. This sacrifices the flexibility of the
response generation. In this paper, we pro-
pose phrase-level action reinforcement learn-
ing (PHRASERL), which allows the model to
flexibly alter the sentence structure and con-
tent with the sequential action selection. Our
model first learns to generate useful phrases
during the supervised pre-training, and then
further trained to form a response by rearrang-
ing the phrases with reinforcement learning.
Experiments on the MultiWOZ dataset show
that our model achieves competitive results
with state-of-the-art models on automatic eval-
uation metrics, indicating that our phrase-level
action space has improved flexibility and is ef-
fective for solving task-oriented dialogs.

1 Introduction

Dialog policy optimization is key research to ef-
ficiently solving real-world tasks (Rastogi et al.,
2020; Budzianowski et al., 2018; Lewis et al.,
2017). In neural response generation, which has
made remarkable progress in recent years (Vinyals
and Le, 2015; Li et al., 2016a; Serban et al., 2017;
Bao et al., 2019), many methods that apply rein-
forcement learning (RL) have been proposed (Li
et al., 2016b; Peng et al., 2018; Saleh et al., 2019;
Zhao et al., 2019). In those studies, one major issue
was how to define an action space. Early research
proposed a method in which each word of the re-
sponse is an action (Li et al., 2016b). However,
this has a shortcoming that the generated responses
deviate from natural human language (Zhao et al.,
2019). A possible reason is that the action space is
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Figure 1: Demonstration of phrase-level action. The
model generates useful phrases and rearrange them to
form a response.

huge, making it difficult to optimize with RL. More-
over, rewarding only the task accomplishment can
cause biased improvement, which leads the model
to ignore the comprehensibility of the generated
response (Wang et al., 2020a).

To overcome such issues, LaRL (Zhao et al.,
2019) was proposed, which used a discrete global
vector to represent dialog acts. In this method, rein-
forcement learning is performed only on those dis-
crete latent variables, thus the policy optimization
is achieved without affecting the language genera-
tion. However, LaRL depends on a single vector
from the beginning to the end during the response
generation, even though a response may often con-
tain more than one dialog act and contents (Wang
et al., 2020b). Due to this, a static, global vector
tends to be an entangled representation of multi-
ple dialog acts, sentence structure, and contents.
Therefore, using a global vector for action space
sacrifices the flexibility of the response generation.

To improve the flexibility of the surface realiza-
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tion, we propose phrase-level action reinforcement
learning (PHRASERL), in which the model per-
forms action selections in fine-grained semantic
units. PHRASERL is based on neural hidden semi-
Markov model (HSMM) decoder (Wiseman et al.,
2018) which generates typed text-segments from
hidden states, and we use them as an action space.
This disentangles the generation process: the pol-
icy learns to structure a response as a sequence of
hidden states, while each hidden state is trained to
represent content or a type of phrase. Intuitively, as
described in figure 1, our model learns to generate
useful phrases during the supervised pre-training,
and it is further trained with reinforcement learning
to reorder the phrases and form a response.

Experiment results on the task-oriented Multi-
WOZ dataset (Budzianowski et al., 2018) show that
our best performing model outperforms LaRL by
far and achieves competitive results with the state-
of-the-art models in automatic evaluation. Fur-
thermore, PHRASERL can maintain a high BLEU
score, suggesting that the model is flexible in its
output response depending on the context. Finally,
we study the phrase generation from hidden states
in a case study, and show that the hidden state-
action space is capable of generating (1) informa-
tive response, (2) grammatical sentence, and (3)
diverse intentions, which can be considered as re-
quirements for an effective action space. Our code
is available at https://github.com/Alab-NII/
PhraseRL.

2 Related Work

A classical approach for realizing task-oriented dia-
log systems is the frame-based dialog system (Chen
et al., 2017). This model generates a response in
a pipeline fashion, by splitting the generation pro-
cess into three modules: natural language under-
standing, dialog management, and natural language
generation. Natural language understanding con-
verts user utterances to a semantic frame which is
considered a dialog state, and a popular method
is slot filling (Mrksi¢ et al., 2017; Ramadan et al.,
2018). The estimated dialog state is then passed
on to dialog management to determine the next ac-
tion, which is formulated as a partially-observable
Markov decision process (POMDP) (Young, 2006).
The action space is represented with hand-crafted
dialog acts (Budzianowski et al., 2018; Stolcke
et al., 2000) or meaning representations (Balakrish-
nan et al., 2019). Finally, a natural language gener-

ator generates a response, which is often realized
with recurrent neural networks (Zhou et al., 2016;
Tran and Nguyen, 2017). Our proposed model
spans between dialog management and natural lan-
guage generation, however, our model does not
require any hand-crafted representation.

Past works that applied reinforcement learning
to dialog models have shown a huge performance
improvement in task success (Lewis et al., 2017;
He et al., 2018). Li et al. (2016b) proposed a dialog
generation method by using deep reinforcement
learning with words as action spaces. Although the
rewards were carefully designed, it is reported that
these models tend to generate incomprehensible re-
sponses. Zhao et al. (2019) solved the problem by
using discrete latent variables as the action space.
Wang et al. (2020a) have extended LaRL and ap-
plied hierarchical reinforcement learning technique
to decouple the dialog policy and natural language
generation. The model is composed of two policy
networks; one is the high-level policy which acts
on latent dialog act and another is the low-level
policy that acts on words. The low-level policy is
prone to degeneration, so the paper proposes to use
language model discriminator as a reward provider.
These models either use words or a global latent
variable as an action space, however, our work
stands between the two by using phrases for the
action space.

3 Preliminaries

In this section, we first explain the characteristics
and formulation of the HSMM. We then describe
the neural HSMM decoder, which will be the back-
bone of our proposed method.

3.1 Hidden Semi-Markov Model (HSMM)

In our work, we consider sentences as a sequence
of phrases, and the probabilistic model that can
represent this is the hidden semi-Markov model
(HSMM). The difference between a standard hid-
den Markov model (HMM) and HSMM is shown
in figure 2. While an HMM gives one observation
from a hidden state, an HSMM gives a sequence
of observations per hidden state. Therefore, if we
consider words as observations, hidden states will
be phrases.

To represent a variety of sentences with a lim-
ited number of hidden states, HSMM is expected
to assign the same sequence of hidden states for
similar sentences. Figure 3 is an example. As it can
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Q000 0000
Figure 2: The difference between Hidden Markov Mod-
els (left) and Hidden Semi-Markov Models (right)

[what]s [time]2s [would you like]1: [to leave ?]34
[what]s [kind of food]2s [would you like]11 [to eat ?]a4

Figure 3: An example of sentence segmentation in
HSMM. The number represents the index of a hidden
state.

be seen, each hidden state has a type; for instance,
hidden state #8 and #11 outputs the same phrase,
while #23 outputs noun phrases and #34 outputs
verb phrases for end of questions. In this way, text-
segments assigned to a certain hidden state will be
having a similar property.

For our model, we specifically use conditional
HSMMs which takes a source input z. For each
timestep ¢ € {1,---,T}, we denote the observa-
tions as y - - - yr and the discrete hidden states as
z € {1,---, K'}. We additionally introduce two
latent variables; the length of the current observa-
tion sequence, denoted as /; € {1,2,---, L}, and
a binary variable which represents whether the se-
quence is finished at timestep ¢, denoted as f;. The
maximum number of hidden states K and observa-
tion length L are tunable parameters. An HSMM
will be represented with a joint distribution of the
observations and the described latent variables:

T-1
p(y, 2,1, f|$a 0) = H p(zt+17 ‘Ztvx)ft
t=0

T—1
X H p(le1]2e1)
=0
T

X Hp(yt—lt-i-l:t‘zt’ltvx)ft'

t=1

(D
In other words, an HSMM will be the product
of three probabilities: state transition distribution,
length distribution, and emission distribution.

3.2 Neural HSMM Decoder

We now introduce a neural HSMM decoder (Wise-
man et al., 2018). Figure 4 shows the overview
of the decoder model. The aforementioned three
distributions can be obtained using trainable pa-
rameters. We define the embeddings of the x as

. b
!

How

Rd

about <res. name> ? <eos>

Figure 4: Model overview of neural HSMM decoder.

2 € R? and the hidden state z as z € R<,

State Transition Distribution For the state tran-
sition function p(zy41|2¢, ), we use K x K matrix,
where sum of each row is 1. We define the state
transition matrix as

p(zt41l21,7) o AB + C(x)D(z), (2)

where A € REX™1 and B € R™*X represents
state embeddings, and where C : R? — RE*m2
and D : R? — R™2*K 5 a non-linear function
parameterized with neural networks. m; and mo
are tunable parameters.

Length Distribution Wiseman et al. (2018) have
found that parameterizing length distribution leads
to hidden states that specialize in specific output
lengths. To avoid that, we simply used uniform dis-
tribution for every length probability p(l¢+1|2¢41).

Emission Distribution For the emission distri-
bution p(y¢—1,+1:t|2t, lt, ©), we use the product of
the token probability. Therefore, the emission dis-
tribution is obtained with

p(yt—lt+1:t|zt =kli=1lx)=
It
1 pwetisilvetisri—trio, 2 = k,z) 3
i=1
x p({eop)[Ye—ts41:4, 2t = K, ) X Ly,

where (eop) stands for end-of-phrase token which
indicates the end of emission for each hidden state.
We use gated recurrent unit (GRU) to compute the
token probabilities:

v; = WReLU (GRU ([yl{,l,zk} ,hi—1)> )

where y/_, is the embeddings of the generated
previous token and z* is the embeddings of the
hidden state k. Finally, the probability of the token
w will be

p(yt—lt-‘ri — ’U)|Zt - ka lt — l,l’) — ,UZ',’LU' (5)
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Training We assume z, [, f of an HSMM is un-
observable, so we maximize the marginal likeli-
hood of the emission y given only input z by train-
ing. The marginal likelihood of ¥ in HSMMs can
be efficiently computed using a dynamic program-
ming algorithm such as backward-algorithm (Mur-
phy, 2002). Using variables (3, 8%, the backward-
algorithm can be expressed as

Bi(4) = p(yerr.|2e = J, fr = 1,¢)
(6)

K
> B (k)p(zer1 = k2 = )
k=1

Bi (k) = p(yetrr|zee1 =k, fr = 1,¢)
L
=D _Brr(k)p(liyr = lzes1 = k)
=1
P(Yerrarilzers = byl = 1)),
(7)
where S7(j) = 1. Finally, from the definition
fo = 1, the log-marginal likelihood of y will be:

o~

K
Inp(yle; 0) =In > B5(k)p(z1 = k). (8)
k=1

Here, we compute p(z; = k) with a linear layer.
Since equations (6) and (7) are differentiable, we
can optimize # by maximizing the log-marginal
likelihood In p(y|x; @) with backpropagation.

4 Proposed Method

The original neural HSMM decoder (Wiseman
et al., 2018) was proposed as a data-to-text gen-
eration method, so the model needs modification
to be applied to dialog response generation. Par-
ticularly, we investigate what the HSMM should
condition on, in other words, we determine the in-
put x. However, we need to carefully design x
because of a known problem of the neural HSMM
decoder, which will be explained first. Afterward,
we discuss how to improve the response quality by
applying reinforcement learning.

4.1 Conditional Source for Neural HSMM
Decoder

The neural HSMM decoder is based on the assump-
tion that the output phrases from each hidden state
to be independent of each other. However, if the
source x is informative enough to capture the inter-
dependence between the phrases, the RNN decoder

may fully depend on the source « and ignore the
hidden state z for the generation. We will call this
problem the interdependence problem. To avoid
this, we must use weak source input that does not
contain enough information to precisely predict the
target response.

For our work, we use contextual information
(e.g. dialog history, belief state, database results)
as a conditional source x. A common practice to
embed contextual information is to use a GRU and
a linear layer to encode, and as a result, we obtain
continuous embeddings . However, continuous
embeddings can result in the interdependence prob-
lem, since they can theoretically contain infinite
information.

To weaken the encoder, we reduce the resolution
of the input embeddings a by using discrete embed-
dings. We define it as an array of /N-way categori-
cal variables: * = {@x1, x2, -+ , )}, where each
x, is a N-sized binary vector and M is the num-
ber of variables. To obtain this, straight-through
Gumbel-softmax (Jang et al., 2017) is applied to
the conditional source encoded by a GRU and a lin-
ear layer. In our experiments in section 6, we will
compare the results of these discrete embeddings
with continuous embeddings.

4.2 Response Generation with Reinforcement
Learning

To rearrange the invented hidden states of a neural
HSMM decoder, we apply reinforcement learning,
which we named this method as phrase-level action
reinforcement learning (PHRASERL). Here, we
consider a Markov decision process of input con-
text as state x € S, hidden states (which represents
phrases) as action space z € A, and task-success
rate as rewards r € R. We define the timestep of
hidden state selection as t' = {1,2,--- ,7"}. We
consider the combined initial state selection and
state transition as policy 7 : S — A and apply RE-
INFORCE algorithm (Williams, 1992). For each
reward r in time step ¢/, we use discounted re-
ward Gy = Zz/:o v¥ry 1, during training. Now,
the policy gradient will be:

T/
VJ(r)=E Zvﬂlogw(zt/\x)Gt/ .

t'=1

Note that we do not train the GRU for the emission
distribution; we only further train the hidden state
transition. For embedding the contexts, we used
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the pre-trained encoder and did not further update
during this RL step.

5 Experimental Settings

5.1 Task Description

For the experiments, we use MultiWwOZ dataset
(Budzianowski et al., 2018). MultiWOZ is a large-
scale task-oriented dialog dataset, which contains
seven types of domains such as booking restau-
rants, hotels, and train seats. We specifically
use Dialogue-Context-to-Text Generation task pro-
posed in the original paper. In this task, a model is
given an oracle belief state, and the model’s goal
is to generate an appropriate and informative re-
sponse. For the evaluation, we use BLEU, Inform
Rate, and Success Rate. We also compute the total
score, which is used in previous works to compare
models in MultiWOZ dataset. Total score is calcu-
lated with BLEU + (Inform + Success)/2.

5.2 Model Details

Duplicated Hidden States While increasing the
number of hidden states allows for a more expres-
sive latent model, the computational complexity of
the neural HSMM decoder will increase linearly
depending on the number of hidden states K. In or-
der to increase the number of hidden states without
making the computation heavier, we use the same
emission distribution for multiple hidden states as
proposed in Wiseman et al. (2018). For instance, if
we set the base state as 80 and duplicated 5 times,
K will be 400 and we use z mod 80 for the input
into the computation of emission distribution. This
way, the model can utilize a large number of hidden
states in the state transition, while the model only
needs to run the GRU feed-forward for a smaller
number of times to compute emission distribution.

Training Details We first train the neural
HSMM decoder with supervised learning, and later
we further train with reinforcement learning as ex-
plained in section 4.2. To embed the context infor-
mation x, we use a MLP layer for encoding oracle
belief state and a GRU for encoding dialog his-
tory. For comparison, we trained both continuous
and discrete embeddings, which we denote each
model as CONT and DISC respectively. To train
with reinforcement learning, we use the MultiwOZ
RL setup proposed in (Zhao et al., 2019). For the
rewards, We US€ T'success + Tinform + "BLEU-

The average loss is computed with the valida-
tion dataset after every epoch, and early stopping

is performed after 5 consecutive epochs without
improvement. When we determine the number of
hidden states, we tested every 10 states from 40 to
120 for base states, and 1, 3, 5, 7 for duplication.
In consequence, K = 400 (80 base states, dupli-
cated 5 times) produced the best results, and the
following evaluations are based on these results.
For the vocabulary set, we substituted the words
that occurred less than 30 times in the dataset with
an unknown tag ({(unk)). We used beam search
with a beam size of 5 for the decoding. For more
details, refer to Appendix A.

5.3 Baseline and State-of-the-Art Models

Our model is compared with the following models:

* Baseline (Budzianowski et al., 2018) is pro-
posed in the original MultiWOZ paper. The
model is based on Seq2Seq with attention on
the context words.

* Word-Level RL further trains the pre-trained
baseline on reinforcement learning with the
action space of words. It is known that this
model often encounters a degeneration prob-
lem, in which the generated sentence will di-
verge from natural human sentences.

e Latent Action Reinforcement Learning
(LaRL) (Zhao et al., 2019) introduces a dis-
crete latent variable between the encoder and
decoder to represent a dialog act. Similar to
our model, it first trains on supervised pre-
training, then it further trains the dialog policy
with reinforcement learning.

» Hierarchical Disentangled Self-Attention
Network (HDSA) (Chen et al., 2020) intro-
duces hierarchical dialog act. The model is
composed of 3 transformer layers which each
layer corresponds to each hierarchy of the dia-
log act. The model switches the self-attention
based on the dialog act, which is called the
disentangled self-attention.

* SOLOIST (Peng et al., 2020) is a transformer-
based auto-regressive language model for task-
oriented dialog, pre-trained on large and di-
verse dialog corpora. The model is fine-tuned
on MultiWOZ task.

* MarCo (Wang et al., 2020b) extends the idea
of HDSA and considers a hierarchical dialog
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Figure 5: Average rewards for every 500 episodes of
our proposed models. DisSCc-RL and CONT-RL indi-
cates discrete and continuous embeddings, respectively.
The maximum reward is 3.0.

act. The difference is that it co-generates the
dialog act sequence and the response jointly.

* HDNO (Wang et al., 2020a) decouples the di-
alog policy and natural language generation
by applying hierarchical RL. This model uses
language model as a reward provider to main-
tain grammaticality.

Among these models, Word-Level RL, LaRL,
and HDNO use reinforcement learning and, there-
fore, are considered as the main competitors to our
PHRASERL. Also, note that HDNO uses rewards
from external modules to avoid degeneration, but
PhraseRL does not use them in this experiment.

6 Results and Analysis

6.1 Automatic Evaluations

Table 1 shows the results of the automatic evalu-
ation of our models. We firstly see that applying
reinforcement learning greatly improves the scores,
indicating that hidden states had been an effective
action space. We also see that discrete embed-
dings outperform continuous embeddings in every
score. This shows that the model can improve gen-
eration performance by alleviating the interdepen-
dence problem with weaker encoders. It also can
be observed that the discrete embeddings are sig-
nificantly effective within reinforcement learning
models. This can also be seen in the reward graph
shown in figure 5, where discrete embeddings have
a sharper reward increase compared to continuous
embeddings. A possible reason behind this is that
discrete embeddings led the phrase generation to

be less diverse and strongly typed, which made the
agent easier to learn the relation between a hidden
state and the generated phrases.

We also compare our best model (DISC-RL)
with the past works, and the results are shown in
table 2. Our model achieved competitive results
with the recently proposed state-of-the-art models,
which also is near-human performance.

Comparing with LaRL, our model significantly
outperforms in BLEU score even after applying
RL. A possible reason for LaRL’s low BLEU score
is that it cannot fully express the diverse human
sentences in a discrete global vector. On the other
hand, PHRASERL can broaden the range of expres-
sion by dividing the action space into finer semantic
units, which enables it to learn more human-like re-
sponses. Additionally, the improvement in Inform
Rate and Success Rate can also be attributed to the
ability of PHRASERL to flexibly select content.

Nevertheless, if we compare with state-of-the-art
models without using RL, our model has a lower
BLEU score. This suggests that using fixed phrases
and arranging them have a drawback in regard to
generating grammatical responses, since it lacks
word-level flexibility. However, it is surprising to
see that it still achieves a competitive score even
with such disadvantage.

6.2 Model Analysis

Although our PHRASERL was able to maintain a
high BLEU score, this can only be because the
model was rewarded with the BLEU score dur-
ing the training. We also trained the model with-
out using the BLEU score for rewards and the re-
sults are shown in table 3. Although there is a
slight decrease, it is still largely outperforming the
Word-Level RL and LaRL. This indicates that our
PHRASERL is resistant to degeneration to some
extent, even without adding external modules for
rewarding grammaticality as in HDNO. Further
improvements can be expected by applying exter-
nal rewards for avoiding degeneration, though this
remains as future work.

Table 4 shows the generated phrases from ran-
domly selected hidden states. By observing the
outcome of DISC, we can notice that the common
property of the generated phrases are interpretable:
state 303 outputs “verb phrases for the end of ques-
tion”, state 239 outputs ’beginning of the question”,
state 103 outputs “features of a facility”, state 70
outputs “back-channeling words”, and state 325
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BLEU (%) Inform (%) Success (%) Total

CONT 15.3 56.7 429 65.2
Disc 15.7 71.5 46.3 74.6
CONT-RL 16.7 86.2 67.2 93.5
Disc-RL 18.0 95.6 79.3 105.4

Table 1: Evaluation results of MultiWOZ test dataset of our models. RL indicates additional training on reinforce-
ment learning. The total score is computed with BLEU + (Inform + Success) / 2.

RL BLEU (%) Inform (%) Success (%) Total

Human - - 91.0 82.7 -
Baseline (Budzianowski et al., 2018) - 18.9 71.3 61.0 85.0
HDSA (Chen et al., 2020) - 23.6 82.9 68.9 99.5
SOLOIST (Peng et al., 2020) - 18.3 89.6 79.3 102.8
MarCo (Wang et al., 2020b) - 20.0 92.3 78.6 105.5
Word-Level RL (Zhao et al., 2019) v 1.4 80.5 79.1 81.2
LaRL (Zhao et al., 2019) v 12.8 82.8 79.2 93.8
PHRASERL (Ours) v 18.0 95.6 79.3 105.4
HDNO (Wang et al., 2020a) v 18.9 96.4 84.7 109.5

Table 2: Evaluation results of MultiWOZ test dataset compared with previous works. Our PHRASERL is the result
of DiSC-RL. The results were obtained from corresponding papers.

outputs “noun phrases for domains”. This indi-
cates that the hidden states in Disc are strongly
typed. Although phrases of CONT also seems to be
typed, some states such as state 138 have multiple
types. This is due to the interdependence problem
because the RNN can recognize which type to use
depending on the conditional input x.

6.3 Case Study

To verify that the hidden states are a valid and flexi-
ble action space, we qualitatively validate the gener-
ated phrases. Figure 6 shows the generated phrases
from user input and possible responses that can be
formed by reordering the phrases. The possible
responses were generated from hidden states that
were reordered by hand. We consider three criteria
for a valid and flexible action space in MultiwOZ
dataset: the model must be able to (1) inform ap-
propriate content (e.g. restaurant name, departure
time), (2) generate grammatical sentences, and (3)
generate diverse dialog acts.

Content Appropriate contents for this case
would be the area of the restaurant ([value_area]),
price range ([value_pricerange]), name of the
restaurant ([restaurant_name]), and type of food
([value_food]). These entities appear at least once
in the generated phrases, and the model can select
the content by acting on the hidden states. Further-
more, as shown in the third and fourth examples
of possible responses, the model can use a simi-

lar hidden state sequence for generating similarly
structured responses, but it can still tweak the con-
tent depending on their strategy.

We further investigated if the contents are suffi-
ciently provided with the hidden states. We counted
the number of cases in the test set where all the en-
tities in the golden response were contained in the
generated phrases. As a result, 83.6% of the cases
had sufficient information in the generated phrases,
which we consider enough because the model may
have other response options. Therefore, we can
conclude that the first condition has been met.

Grammar Although there remains the possibil-
ity of generating ungrammatical sentences, the pos-
sible responses in figure 6 show that an appropriate
sequence of hidden states will allow generating
fluent responses.

Dialog Act As shown in the bottom section in
figure 6, the four response samples have different
intentions. For instance, the first response asks the
type of food to the user, while the second response
recommend a restaurant and ask for a booking. Par-
ticularly, a second example contains two different
dialog acts (recommend and offer booking), but the
model can choose to finish with the first sentence to
just recommend. This shows that our PHRASERL
have disentangled representation for each dialog
acts. Therefore, we can conclude that the model
can flexibly select from several intentions.
Finally, in table 5, we show an example response
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BLEU (%) Inform (%) Success (%) Total
Tsuccess + Tinform + TBLEU 18.0 95.6 79.3 105.4
T'success T Tinform 17.1 95.7 78.9 104.4

Table 3: Evaluation results of DisC-RL with different rewards in MultiWOZ test set.

CONT

State 190 | State 138 | State 4

| State 114 | State 85

what type of attraction | to book a ticket in the [area]

in the [area] . the address is [address]

what day a different type of | located in the [area] . it leaves at [time]

what area to book it at [time] that day . the postcode is [postcode]

what type of food a hotel or free wifi with that . the price is [price]

what information to know free to enter available . it is [pricerange]
Disc

State 303 | State 239 | State 103 | State 70 | State 325

to stay ? (eos) what day free internet and parking | sure, any restaurant -s

to dine ? (eos) what time free to enter okay , a lot of attractions

to dine in how many tickets | located at [address] you are welcome . | any attractions

to book ? (eos) what area [pricerange] -ly priced iam sorry , any hotel -s

to arrive ? (eos) what type of food | free wifi and parking yes, a few

Table 4: Top-5 frequently generated phrases from randomly selected hidden states. (eos) indicates end-of-sentence.

User Input:

I am looking for an [value_pricerange] restaurant in the center of town.

Generated Phrases:

Phrase # of hidden states

a preference ?

i recommend [restaurant_name]
[value_food] or [value_food]
the [restaurant_name]

to try a different

do you have a
a table for you

restaurant -s

would you like me

i have [value_count] options

cuisine preference ?

. do you have

. which

would you be interested

there are [value_count] options

in the [value_area] 8 . would you like 2 a different area 1
? 6 [value_pricerange] restaurant -s 2 . its 1
a good choice S there are no 2 . is there 1
. 4 there are [value_count] 2 a particular area 1
i have [value_count] 3 for you ? 1 . do you prefer 1
[value_food] , [value_food] , 3  what type of food 1 i am sorry , 1
price range 2 me to book [value_count] 1 . can i book 1
would you like 2 a few 1 and [restaurant_name] 1
to try 2 okay , 1 preference for price range 1
2 1 1
2 1 1
2 1 1
2 1 1
2 1 1
2 1

in the [value_pricerange] you would like

Possible Responses:

okay , i have [value_count] options .
i recommend [restaurant_name]
there are no [value_pricerange] restaurant -s .
there are no [value_pricerange] restaurant -s .

what type of food would you like ?

. can i book a table for you ?

would you like to try a different area ?

would you like to try a different price range ?

Figure 6: A case study for generated phrases of DISC. In the second section, we show the number of hidden states
that output the same phrase. The third section shows possible responses which were generated from inputting
sequence of hidden states ordered by hand. The colors indicate the corresponding phrases.

from MultiWOZ test dataset. We first see that
CONT is not generating a grammatical response.
This may be due to the interdependence problem
that tries to output various sentences in the same
hidden state sequence. On the other hand, the rest
of our models can generate a grammatical and in-
context response. We also observe that while mod-
els without RL generate plausible responses, RL
models provide a more informative response by
including hotel names and phone numbers. The

reason is that the model often receives rewards by
conveying those information.

7 Conclusion and Future Work

In conclusion, this paper proposes a phrase-level
action reinforcement learning for neural response
generation. A neural HSMM decoder is introduced
to learn hidden states that output typed phrases, and
we used them as the action space for reinforcement
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Context i am looking for a place to stay in the
[value_area] of the city . i would prefer

a [value_count] star hotel please .

Human Response | there are several guesthouses available

. do you have a price preference ?

Baseline i have [value_count] hotel -s in the
[value_area] . would you like to book

aroom ?

CONT yes , i have [value_count] a few in the
[value_area] . would you like a hotel

or guesthouse ?

Disc sure , there are [value_count] options .

is there a particular price range ?

CONT-RL i have the [hotel.name] in the
[value_area] . the phone number is [ho-

tel_phone] .

Disc-RL [hotel_name] is in the [value_area] .

would you like me to book it for you ?

Table 5: Example responses from baseline and our
models. (unk) represents unknown word of the model.

learning. Our experiments on MultiWOZ dataset
have shown that the model is capable of generat-
ing flexible outputs with RL, achieved competitive
results to state-of-the-art models. A possible fu-
ture direction is to apply hierarchical reinforcement
learning, where the high-level policy determines
the dialog act of the entire response, while low-
level policy designs the syntax of the response.
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Supervised Learning

Batch Size

Word Embedding

State Embedding

Context Encoder RNN
Decoder RNN

Optimizer

Dropout

Transition Matrix

Number of Hidden States K
Maximum Emission Length L

32

128

128

GRU (256)

GRU (256)

Adam (Ir=1e-3)

0.5

mi = 64, mo = 32

400 (80 base states duplicated 5 times)
4

Categorical Embeddings M x N (Disc Only) | 10 x 10
Gumbel Softmax Temp. 7 (D1SC Only) 1.0
Reinforcement Learning

Discount Rate v 0.99

Optimizer

Adam(Ir=1e-4)

Table 6: Parameters used in the experiments.
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