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Abstract

The notorious one-to-many nature of open-
domain dialogues poses huge challenges for
automatic evaluation methods. Recent stud-
ies attempt to mitigate this issue by consid-
ering the similarity of the generated response
with the conversational context and design dis-
criminative models to learn from multiple pos-
itive responses. Despite the promising results,
they can not be applied to general scenarios
where training data with multiple responses
is unavailable. To this end, in this paper,
we propose a self-supervised setting to obtain
a smooth latent space that can both capture
discourse-level context information and im-
plicitly model more references in latent space.
Specifically, we present EMS, an Enhanced di-
alogue evaluation Metric in latent Space. Ex-
perimental results on two real-world dialogue
datasets confirm the superiority of our method
for open-domain dialogue evaluation, where
both Pearson and Spearman correlations with
human judgments outperform all baselines.

1 Introduction

With the surge of deep learning techniques,
generation-based open-domain dialogue systems
have witnessed significant improvement in re-
cent years. Plenty of novel and effective mod-
els (Sutskever et al., 2014; Serban et al., 2016;
Li et al., 2015; Serban et al., 2016; Zhao et al.,
2017; Gu et al., 2018; Qiu et al., 2019; Chan et al.,
2019b; Serban et al., 2017; Wolf et al., 2019; Hu
et al., 2019; Chen et al., 2020) are proposed and
have greatly promoted the development of the open-
domain dialogue generation. Unlike the endless
emergence of novel methods, however, there is still
no meaningful and widely accepted automatic eval-
uation metric for dialogue generation yet. As we

∗ This work was done while Z. Chan was an intern at
Tencent AI Lab. Corresponding Author: Rui Yan.

know, automatic evaluation allows quick and ef-
fective comparison between different systems and
is crucial for the development of natural language
generation (NLG) tasks (Dathathri et al., 2019; Gu
et al., 2019; Gao et al., 2019; Chan et al., 2019a,
2020). The lack of meaningful automatic evalua-
tion metrics has become a significant impediment
for open-domain dialog generation research.

Over the past decade, many automatic evalu-
ation metrics are proposed to evaluate the open-
domain dialogue systems. Among them, the word
overlap-based automatic evaluation metrics from
NLG tasks, such as BLEU (Papineni et al., 2002)
in machine translation and ROUGE (Lin, 2004)
in text summarization, are popular. In addition,
Embedding Metrics (Mitchell and Lapata, 2008;
Forgues et al., 2014; Rus and Lintean, 2012) have
been utilized to evaluate the open-domain dialogue
systems (Gu et al., 2018; Chan et al., 2019b; Shen
et al., 2018). Recently, with the fantastic develop-
ment of the large-scale pre-training model (Devlin
et al., 2018; Liu et al., 2019; Radford et al., 2019),
researchers proposed to enhance the embedding
metrics by converting the dialogue sentences to
hidden space via pre-training model (Zhang et al.,
2019; Sellam et al., 2020; Zhao et al., 2019; Xi-
ang et al., 2021). The common idea behind these
metrics is that they measure the semantic similar-
ity between a reference response and a generated
response, independent on the conversational con-
text. However, due to the notorious one-to-many
nature (Li et al., 2015; Zhao et al., 2017; Qiu et al.,
2019; Gu et al., 2018) of open-domain dialogue,
a good response should be related well to its con-
text yet may be largely different from a reference
response in semantics.

Some other works (Tao et al., 2018; Ghazar-
ian et al., 2019; Sinha et al., 2020) thereby pro-
posed to build automatic dialogue evaluation met-
rics by considering the similarity of the generated
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responses with the conversational context. Specif-
ically, these works design discriminative models
which can judge whether the generated responses
match the conversational context well, which learn
from {conversational context, response reference,
negative sample} pairs in unsupervised learning
manner. Zhao et al. (2020) further proposed to
enhance such discriminative evaluation metrics by
finetuning on a few human-annotated data to im-
prove the robustness. These discriminative metrics
trained using a single relevant response and mul-
tiple negative samples. However, Sai et al. (2020)
argued that such discriminative metrics should be
trained on multiple relevant responses (i.e., positive
samples) and multiple negative samples, to favor
the one-to-many nature in open-domain dialogues.
Therefore, they collected a new dataset which con-
tains multiple relevant and irrelevant responses for
any given conversational context to train their dis-
criminative evaluation model and the model trained
by multiple relevant responses shows impressive
performance. However, there are no organized rel-
evant multiple responses in most existing datasets.
Collecting a new dataset is expensive and time-
consuming. Thus, we aim to learn multiple refer-
ence information with limited data.

Inspired by the impressive effectiveness of
the Variational Auto-encoder (VAEs) and Condi-
tional Variational Auto-encoder (CVAEs) on the
representation learning and dialogue modeling,
we propose to learn the dialogue representations
via VAEs/CVAEs for better evaluation. Equip
with such dialogue representations, we obtain an
Enhanced dialogue evaluation Metric in latent
Space (EMS). EMS is a self-supervised evalua-
tion metric with a two-stage training procedure.
It represents dialogue sentences in a smooth la-
tent space to both capture discourse-level context
information and model more feasible latent refer-
ences. Specifically, in the first stage, we build a
VAE based model to map the dialogue sentences
into a latent (or semantic) space. Li et al. (2019)
showed that VAEs can be viewed as a regularized
version of the auto-encoder and learn a smooth
latent space through the regularization from the
Gaussian prior. Then, we train our model by op-
timizing CVAEs’ objective which forces the prior
distribution to capture the feasible latent references
information (details in Section 3.3). In the second
stage, we combine the dialogue representations and
the captured feasible latent reference information to

train a discriminative model. Meanwhile, we give a
potential explanation of our motivation about why
using feasible latent reference information can lead
to a better evaluation (details in Section 3.1). Exper-
imental results on two real-world dialogue datasets
confirm the superiority of our method for open-
domain dialogue evaluation, where both Pearson
and Spearman correlations with human judgments
outperform all baseline methods.

In a nutshell, our contributions can be summa-
rized as follows:
•We proposed a novel automatic evaluation met-

ric, i.e., EMS, for open-domain dialogue systems;
•We proposed a pre-training variational model

to capture the feasible latent references;
• Experiments performed on two large datasets

demonstrate the effectiveness of our proposed
model and outperform all baseline methods.

2 Related Work

Word overlap-based Metrics. Several word
overlap-based automatic evaluation metrics, such
as BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), and ROUGE (Lin, 2004),
have been widely used to evaluate the quality of
generated responses. These word overlap-based
metrics measure how many words overlap in a
given generated response when compared to a ref-
erence response. Liu et al. (2016); Lowe et al.
(2017); Tao et al. (2018) argued that these word
overlap-based metric scores are weakly correlated
to human judgment due to ignoring the notorious
one-to-many nature of the open-domain dialogues.
Therefore, Yuma et al. (2020) proposed the im-
proved BLEU, which compares the generated re-
sponse with multiply diverse references.

Embedding-based Metrics. Unlike word
overlap-based metrics comparing two raw sen-
tences, Embedding Metrics (Mitchell and Lapata,
2008; Forgues et al., 2014; Rus and Lintean, 2012)
map sentences to a high dimensional space, and
calculate similarity based on the high-dimensional
representations. Embedding Metrics are recently
popular for evaluating the generation tasks, such
as text summarization (Gao et al., 2020; Chen
et al., 2021), question answer (Gao et al., 2019)
and text generation (Hashimoto et al., 2019; Chan
et al., 2020). Meanwhile, several works (Qiu et al.,
2019; Chen et al., 2020; Gao et al., 2021) have
shown their effectiveness in the open-domain dia-
logue systems. With the development of the large-
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scale pre-training model (Devlin et al., 2018; Liu
et al., 2019; Radford et al., 2019), some studies,
e.g., BERTScore (Zhang et al., 2019) and Mover-
Score (Zhao et al., 2019), further enhance the qual-
ity of representations via a large-scale pre-training
model. However, these embedding-based metrics
perform a better comparison compared to word
overlap-based metrics but still ignore the one-to-
many nature of open-domain dialogues.

Learning-based Metrics. Recent studies (Tao
et al., 2018; Sinha et al., 2020) attempt to mitigate
the one-to-many issue by considering the similar-
ity of the generated response with the conversa-
tional contexts. The similarity is calculated by
a designed discriminative model which learns to
evaluate whether a response matches the conversa-
tional context well. The discriminative model is
learned from tuples of data, {conversational con-
text, response reference, negative sample}, in an
unsupervised learning manner. However, these
learning-based metrics rely on a sophisticated sam-
pling technique. Lan et al. (2020) proposed a sam-
pling strategy to collect the valuable negative sam-
ples for the discriminative training. Bak and Oh
(2020) conduct speaker sensitive response evalua-
tion by conducting negative sampling from several
levels. To further improve the robustness, Zhao
et al. (2020) proposed to enhance the discrimina-
tive model by finetuning on a few human-annotated
data. Sai et al. (2020) argued that these discrimina-
tive metrics should be trained on multiple relevant
responses and multiple irrelevant samples for any
given context. Therefore, they collected such a
dataset and improved the evaluation performance
greatly. However, collecting a new dataset is expen-
sive and time-consuming. In this work, we propose
a method to improve the effectiveness of the dis-
criminative metrics based on the VAEs/CVAEs.

3 Methodology

In this paper, we propose an Enhanced dialogue
evaluation Metric in latent Space (EMS), which
contains two training stages (illustrated in Fig. 2).
In this section, we first conduct some discussions
about our motivations in Section 3.1. Then, we
introduce the overall architecture in Section 3.2.
The two training stages are described in Section 3.3
and Section 3.4, respectively. Finally, we describe
the inference process in Section 3.5.

Tell me your hobby first.

I like play tennis.

It is a secret.

𝑃 (𝑧|𝑐, )𝑟3

𝑃 (𝑧|𝑐, )𝑟2

𝑃 (𝑧|𝑐, )𝑟1
𝑄(𝑧|𝑐)
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Figure 1: Distributions in latent space. Each circle rep-
resents a Gaussian distribution while three small circles
refer to a special Gaussian distribution for each corre-
sponding response. Naturally, the biggest circle indi-
cates the prior Gaussian distribution. We use the prior
distribution to approximate all the response conditional
distribution. Dotted lines indicate the latent response.

3.1 Discussion about Motivation

We conduct a discussion about our motivation
from information theory. Let ri denotes a feasi-
ble response coming from {rk}Nk=1 which repre-
sents N feasible latent references. Assume a bi-
nary label l ∈ {0, 1} indicates whether a response
matches its context well. Existing works (Tao et al.,
2018; Ghazarian et al., 2019; Sinha et al., 2020;
Zhao et al., 2020) training with single relevant
response are actually maximizing I(l; c, ri). Re-
cently, Sai et al. (2020) proposed to training with
multiple relevant responses, which actually max-
imizes I(l; c, {rk}Nk=1). An intuitive explanation
for the surprising improvement in Sai et al. (2020)
is that I(l; c, {rk}Nk=1) ≥ I(l; c , ri)1.

However, there are no organized relevant mul-
tiple responses in existing datasets and collecting
a new dataset is expensive and time-consuming.
Therefore, we aim to capture the feasible latent
reference information with limited data. Inspired
by previous works which model multiple responses
for dialogue (Zhao et al., 2017; Qiu et al., 2019;
Chan et al., 2019b), we utilize CVAEs (details in
Section 3.2) which build a prior distribution P (z|c)
to capture the feasible latent reference informa-
tion in the latent space. Specifically, when training
CVAEs, P (z|c) is forced to be close to the posterior
distribution Q(z|c, ri) for any reference response
ri as illustrated in Fig. 1. In this sense, if z is sam-
pled from P (z|c), z may contain some information
of any ri in some extent, and z can be used as a
surrogate of {rk}Kk=1. Therefore, we can expect

1There is a brief proof in Apendix A.
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I(l; c, {rk}Nk=1) ≥ I(l; c, ri, z) ≥ I(l; c, ri).

3.2 Overall Architecture

Previous works (Li et al., 2019; Gururangan et al.,
2019; Li et al., 2020) concluded that VAEs can
learn a smooth latent space through the regulariza-
tion from the gaussian prior. Inspired by Li et al.
(2020), we propose a novel architecture which can
be regarded as a large-scale pretrained language
model (PLM) based on VAEs/CVAEs.

Encoder. Li et al. (2019) argue that the
VAEs might benefit from initialization with a non-
collapsed encoder, because the encoder provides
useful information from the beginning of training.
We use the Masked PLMs (Devlin et al., 2018; Liu
et al., 2019) as the text encoder because of their
impressive effectiveness in natural language under-
standing tasks. We describe the encoding process
as following,

hq = PLM([c; r]),

hp = PLM(c)
(1)

where c, r indicate conversational context and re-
sponse reference, respectively.

Latent Variable Modeling. For modeling
the latent variable, we hypothesize that the ap-
proximated variational prior and posterior fol-
lows an isotropic multivariate Gaussian distribution
N (µ, σ2I), where I represents the diagonal covari-
ance. We use a recognition network qφ(z|hq) and
a prior network pθ(z|hp) to approximate the poste-
rior Q(z|c, r) and the prior P (z|c), respectively.

Decoder. The reconstruction process2 forces the
latent variable to contain the useful posterior infor-
mation, which is a crucial step in the variational
training. We use another PLM as the decoder to re-
construct the original input texts. For transporting
the latent variable to the PLM decoder, we use the
memory mechanism mentioned in Li et al. (2020)
where the latent variable plays the role of an ad-
ditional memory vector for the PLM decoder to
attend. Specifically, the latent variable z is con-
verted through a Multilayer Perceptron (MLP) and
separated into several vectors, each of which is
transported to the PLM decoder via attention mech-
anism.

2Note that the reconstruction process doesn’t only indi-
cate the autoregressive generation but also the masked causal
generation.

3.3 Stage 1: Representation in Latent Space

Our first stage is to learn the latent representation
of the dialogues and capturing the feasible latent
reference information. Specifically, we first opti-
mize our model via VAEs’ objective to model a
smooth latent space. Then, we train our model
by CVAEs’ objective to capture the feasible latent
reference information. We describe the details as
following.

A smooth latent space. Following Li et al.
(2020), we first train the posterior module by op-
timizing the VAEs’ objective. Li et al. (2019)
showed that VAEs can be viewed as a regularized
version of the autoencoder and can learn a smooth
latent space. Based on this, we convert sentences in
a universal smooth latent space. In a smooth latent
space, latent representation of similar sentences
should be close to each other and vice versa (Li
et al., 2019). Therefore, it is a great outset for
our model. To train this model, the log-likelihood
objective is maximized through pushing up its vari-
ational lower bound:

−KL(pθ(z|hq)||q(z))
+Epθ(z|hq)[log pθ([c; r]|z, hq)],

(2)

where KL(·) represents the KL-divergence term,
which serves as the regularization that encourages
pθ(z|hq) to approach to q(z), i.e., a standard Gaus-
sian distribution; E[·] is the term of reconstruction
loss, reflecting how well the decoder performs.
Feasible latent reference information. The one-
to-many nature of the open-domain dialogues poses
that there can be a lot of reasonable responses for
the same conversational context. Therefore, we
handle this one-to-many nature by CVAE as pre-
vious works (Zhao et al., 2017; Gu et al., 2018;
Chan et al., 2019b) to capture the feasible latent
reference information. As shown in Fig. 1, CVAE
builds Gaussian posterior distributions for each fea-
sible reference and forces the prior distribution to
approach the posterior distributions. Ideally, a well-
learned prior distribution will cover all the feasible
latent reference information. We train our model by
optimizing the following variational lower bound:

−KL(qφ(z|hq)||pθ(z|hp))
+Eqφ(z|hq)[log pθ([c; r]|z, hq)]

(3)

where KL(·) represents the KL-divergence term,
which serves as the regularization that encourages
the prior pφ(z|hp) to approach the approximated
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Figure 2: The detailed architecture of our proposed EMS and there are two stages in the training process. The first
and second training stage is describled in Section 3.3 and Section 3.4, respectively. In the second training stage,
the response input is replaced by the generated responses which need be evaluated. The Position Emb indicates the
Position Embedding.

posterior qθ(z|hq), i.e. a conditional Gaussian dis-
tribution.
Training procedures. Previous works (Bowman
et al., 2015; Zhao et al., 2017) mentioned that VAE
and CVAE training is challenging due to the KL
vanishing issue, where the decoder ignores the con-
ditional information and all the resulting posteriors
almost collapse to a same Gaussian prior. To mit-
igate this issue, first, we initialize our model with
Optimus (Li et al., 2020), a large-scale VAE-based
PLM model, while optimizing Eq. 2.

To mitigate the same issue while optimizing
Eq. 3, we use the cyclical KL annealing sched-
ule (Fu et al., 2019). Specifically, we add a hy-
perparameter α to control the weight of the KL-
divergence in Eq. 3. We set α close to zero in the
first half of cyclic schedule, linearly anneal α to 1
in the next one-fourth of cyclic schedule and kept
α = 1 in the remaining cyclic schedule.

Moreover, the Free Bits (Bowman et al., 2015)
is also crucial for the training. It replaces the KL-
divergence in Eq. 3 by a hinge loss

max(γ,KL(qφ(z|hq)||pθ(z|hp))) (4)

where γ is a hyperparameter which controls the in-
formation space for the each dimension of the latent
variable. Finally, an extra bag-of-word loss (Zhao
et al., 2017) is also used during the training.

3.4 Stage 2: Matching Training
In the second stage, we learn to judge the simi-
larity between the conversational context and the
response using the learned representations. Li et al.

(2020) argue that the KL regularization applied on
z has a large impact on the preceding layer feature,
thus, the preceding layer feature also contains the
information of z. Therefore, we consider combin-
ing hq and z into the final representation,

h′q = (1− τ) · hq + τ · zq, (5)

where τ is a hyperparameter and zq indicates the
latent representation from the posterior network.
Meanwhile, we use the feasible latent reference
information, captured by our prior network, to en-
hance the matching. We combine these two repre-
sentations as following,

e = σ(Wg · [hp;hq; zp] + bg)

z′p = e · zp + (1− e) · hp
(6)

where Wg and bg are trainable parameters, and e
is learned by the gate mechanism that controls the
fusion of zp and hp. Note that zp indicates the
latent representation from the prior network. The
activation function σ is sigmoid. Finally, we infer
matching score between the conversational context
and generated reference as follows,

gc = σ(Ws · ([h′q; z′p]) + bs) (7)

where Ws and bs are trainable parameters and the
activation function σ is sigmoid. Finally, we opti-
mize our model with positive sampling and nega-
tive sampling (Lan et al., 2020) based on the dis-
criminative training scheme.
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3.5 Inference

In the inference process, we input the conversa-
tional context and response candidate as the c and
r in Eq. 1, and conduct the operation as Eq. 5, Eq. 6
and Eq. 7 to obtain the score gc. We use the gc as
matching degree of the response candidate.

4 Experiments

4.1 Dataset

To evaluate the effectiveness of our proposed auto-
matic evaluation metric EMS, we conduct experi-
ments on the following two open-access datasets.

Persona-Chat Dataset. The persona-chat
dataset (Zhang et al., 2018) is a large persona-
conditioned chit-chat style dialogue dataset which
consists of 10,907 multi-turn dialogue sessions3.

DailyDialog Dataset. The dailydialog
dataset (Li et al., 2017) is an another widely-used
large collection of human-human dialogues which
consists of 13,118 multi-turn dialogue sessions4.

Human-annotated Dataset. We collect the
human-annotated datasets from Amazon Mechani-
cal Turk and obtain two human-annotated datasets
which consist of 750 context-response pairs in the
persona-chat dataset and 800 ones in the dailydi-
alog dataset, respectively. Following Zhao et al.
(2020), the generated references come from several
classical dialogue models, i,e., Seq2Seq (Sutskever
et al., 2014), Seq2Seq with Attention (Serban et al.,
2016), HRED (Serban et al., 2017), VHRED (Ser-
ban et al., 2016), GPT-2 (Wolf et al., 2019).

4.2 Baselines

We compare our proposed method with the follow-
ing highly related and strong baselines.

BLEU. We utilize BLEU score (Papineni et al.,
2002) to measure n-grams overlaps between re-
sponse reference and generated response. Specifi-
cally, we follow the conventional setting in Sinha
et al. (2020) and use the multi-bleu5.

ROUGE. ROUGE (Lin, 2004) is the most popu-
lar metric in the text summarization task. There, we
report the f1 score of Rouge-{1,2,3,L} and Rouge-
L identifies the longest common subsequence be-
tween the generated and reference to better account

3http://parl.ai
4http://yanran.li/dailydialog
5https://github.com/OpenNMT/

OpenNMT-py/blob/master/tools/multi-bleu.
perl

for sentence-level structure when computing word
overlap.

METEOR. The METEOR (Banerjee and Lavie,
2005) is designed as an improvement on BLEU
using a harmonic mean of precision and recall, as
well as stemming and synonyms.

Embedding Metrics. Embedding Metrics com-
pute the similarity between the embeddings repre-
sentations of generated results and reference. The
used embeddings come from glove6. In particu-
lar, we calculate three metrics: 1) Average, cosine
similarity between the averaged word embeddings
in the two sentences (Mitchell and Lapata, 2008);
2) Extrema, cosine similarity between the largest
extreme values among the word embeddings in the
two sentences (Forgues et al., 2014); 3) Greedy, i.e.,
greedily matching words in two sentences based on
the cosine similarities, and the total scores are then
averaged across all words (Rus and Lintean, 2012).

BERTScore. BERTScore (Zhang et al., 2019)
uses a strong PLM model to greedily match each
word in a reference response with one word in the
generated response. By doing so, it computes the
recall of the generated sequence. BERTScore was
shown to have strong system-level and segment-
level correlation with human judgment on several
machine translation tasks.

BLEURT. BLEURT (Sellam et al., 2020) is
based on the BERTScore and finetuned on human
judgments after pretraining on large-scale synthetic
data with multiple automatic metrics as supervision
signals. BLEURT has shown its strong correlation
with human judgment on machine translation tasks.

RUBER. RUBER (Tao et al., 2018) is an unsu-
pervised automatic evaluation metric that consid-
ering the similarity of the generated response with
conversational context and response reference.

MAUDE. MAUDE (Sinha et al., 2020) pro-
posed an unreferenced automated evaluation metric
that uses large-scale PLMs to extract hidden repre-
sentations of dialogue sentences, and leverages the
temporal transitions that exist between them.

4.3 Settings

The dimension of latent variable z is set to 768 to
improve the information bottleneck. As we men-
tioned before, the encoder and the decoder in our
model are BERT (Devlin et al., 2018) and GPT-
2 (Radford et al., 2019), respectively. We use the

6http://nlp.stanford.edu/data/glove.
840B.300d.zip

http://parl.ai
http://yanran.li/dailydialog
https://github.com/OpenNMT/OpenNMT-py/blob/master/tools/multi-bleu.perl
https://github.com/OpenNMT/OpenNMT-py/blob/master/tools/multi-bleu.perl
https://github.com/OpenNMT/OpenNMT-py/blob/master/tools/multi-bleu.perl
http://nlp.stanford.edu/data/glove.840B.300d.zip
http://nlp.stanford.edu/data/glove.840B.300d.zip
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Tokenizer of BERT to conduct the texts for BERT
and tokenizer of GPT-2 for GPT-2 in all experi-
ments. We use the Optimus (Li et al., 2020) to save
the time consumption of the VAE training. The
recognition network and prior network are consist
of 3 layers MLP with Dropout layer and GELU
function. When training, we set the mini-batch size
to 16. The AdamW optimizer is used to train the
VAEs module with the initial learning rate 5e-5,
and the learning rate warmup and decay strategy
is employed. The value of τ in Eq. 5 is set to 0.01.
When we conduct the matching training, we change
the initial learning rate to 3e-6, and the learning
rate warmup and decay strategy is also employed.

5 Results and Analysis

5.1 Overall Performance

We examine the performance of our model com-
pared with baselines on two open-access datasets
and the results.

The word-overlap metrics based on n-gram per-
form worst. As shown in Table 1 and Table 2,
the word-overlap evaluation metrics, i.e., BLEU,
ROUGE, and METEOR, obtain the worst perfor-
mance in the dialogue evaluation on both two
datasets. Among them, BLEU (hybrid) scores on
two datasets are both less than 0.1, though it is the
most widely used metric in machine translation.
Intuitively, the information from n-gram is more
accurate with a larger n (the most accurate informa-
tion comes from the whole sentence). However, as
the results shown in the Table 1 and Table 2, the cor-
relation score decays when n increases. The same
phenomenon is observed when using ROUGE. It
seems using n-grams as the representation of the
dialogue sentence is not a good choice.

PLM is an effective representation extractor
for dialogue sentences. From Table 1 and Ta-
ble 2, we can see that most embedding-based met-
rics, i.e., Average, Extrema, Greedy, BERTScore
and BLEURT, using pretrained embedding to rep-
resent the sentences, perform better than word-
overlap metrics which uses n-grams as represen-
tation. Furthermore, traditional embedding-based
metrics with Glove-based embedding, i.e., Aver-
age, Extrema, Greedy, perform worse than the
embedding-based metrics with PLM-based embed-
ding, i.e., BERTScore and BLEUET. Thus, we can
know that using PLM to represent the dialogue
sentence is more effective for the evaluation.

Learning-based discriminative metrics outper-

Table 1: Performance of our EMS methods and all
baselines evaluated on the Persona-Chat Dataset. The
BERTScore and BLEURT are built based on the base
and large version of the Roberta (Liu et al., 2019).

Metrics Pearson’s ρ Spearmans’s r

BLEU
Hybrid 0.0602 (0.100) 0.0623 (0.088)

1-gram 0.2486 (<0.001) 0.2201 (<0.001)

2-gram 0.1991 (<0.001) 0.1891 (<0.001)

3-gram 0.0998 (<0.001) 0.1138 (<0.001)

4-gram 0.0558 (0.127) 0.0622 (0.002)

ROUGE
1-gram 0.2663 (<0.001) 0.2553 (<0.001)

2-gram 0.1706 (<0.001) 0.1715 (<0.001)

3-gram 0.1062 (0.004) 0.1157 (0.001)

L 0.2777 (<0.001) 0.2619 (<0.001)

METEOR 0.2507 (0.033) 0.2297 (0.020)

Embedding Metrics
Average 0.1330 (<0.001) 0.1452 (<0.001)

Extrema 0.2354 (<0.001) 0.2272 (<0.001)

Greedy 0.2585 (<0.001) 0.2502 (<0.001)

BERTScore
Base 0.2943 (<0.001) 0.2781 (<0.001)

Large 0.2782 (<0.001) 0.2619 (<0.001)

BLEURT
Base 0.3560 (<0.001) 0.3482 (<0.001)

Large 0.3045 (<0.001) 0.2857 (<0.001)

RUBER 0.4581 (<0.001) 0.4570 (<0.001)

MAUDE 0.5619 (<0.001) 0.5631 (<0.001)

EMS 0.5856 (<0.001) 0.5921 (<0.001)

form training-free metrics. From Table 1 and Ta-
ble 2, we can observe that all the learning-based
discriminative metrics (i.e., RUBER, MAUDE, and
our EMS) outperform all other training-free met-
rics (i.e., BLEU, ROUGE, METEOR, Average, Ex-
trema, Greedy, BERTScore, and BLEURT) in both
the Pearson and Spearman correlation with human
judgment. Therefore, we conclude the learning-
based discriminative metrics are very powerful to
evaluate the open-domain dialogue systems.

Our proposed EMS metric performs the best.
Our EMS metric achieves the best performance
with 0.5856, 0.5921 in Pearson and Spearman cor-
relation with the human judgment on the persona-
chat dataset, respectively. Meanwhile, on the dai-
lydialog dataset, EMS obtains 0.5331, 0.5253 in
Pearson and Spearman score. These experimental
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Table 2: Performance of our EMS methods and all
baselines evaluated on the DailyDialog Dataset. The
BERTScore and BLEURT are built based on the base
and large version of the Roberta (Liu et al., 2019).

Metrics Pearson’s ρ Spearmans’s r

BLEU
Hybrid 0.0240 (0.498) 0.0211 (0.551)

1-gram 0.2285 (<0.001) 0.2050 (<0.001)

2-gram 0.1115 (<0.001) 0.0812 (<0.001)

3-gram 0.0364 (0.304) 0.0401 (0.257)

4-gram 0.0261 (0.461) 0.0211 (0.551)

ROUGE
1-gram 0.1424 (<0.001) 0.0921 (0.009)

2-gram 0.1226 (<0.001) 0.1104 (0.002)

3-gram 0.0534 (0.131) 0.0467 (0.187)

L 0.1401 (<0.001) 0.0901 (0.011)

METEOR 0.2095 (<0.001) 0.1809 (<0.001)

Embedding Metrics
Average 0.0272 (0.443) 0.0440 (0.214)

Extrama 0.1763 (<0.001) 0.1652 (<0.001)

Greedy 0.1311 (<0.001) 0.1186 (<0.001)

BERTScore
Base 0.1139 (0.001) 0.1132 (0.001)

Large 0.1273 (<0.001) 0.1251 (<0.001)

BLEURT
Base 0.3478 (<0.001) 0.3356 (<0.001)

Large 0.2260 (<0.001) 0.1916 (<0.001)

RUBER 0.4328 (<0.001) 0.4310 (<0.001)

MAUDE 0.5162 (<0.001) 0.5343 (<0.001)

EMS 0.5331 (<0.001) 0.5253 (<0.001)

results show our method outperforms all existing
baselines, indicating the superiority of our method.

5.2 Analysis

Our model aims to enhance the dialogue evaluation
via variational training. Hence, in this subsection,
we examine whether variational training can im-
prove the performance by ablation study.

First, we replace the hidden representation (“w/o
q”) in Eq. 5 by the one from pure BERT, i.e., CLS.
From the performance in Table 3, the KL regular-
ization enhances the performance of EMS metric
on both two datasets which proves a smooth latent
space (via VAE training) is important. Second, as
shown in Table 3, without zp in Eq. 6 (“w/o p”)
which captures the feasible latent reference infor-
mation, EMS gains a performance drop. Therefore,

Table 3: Performance of the ablation study. Note that ρ
and r indicate the Pearson’s ρ and Spearmans’s r.

Metrics Persona-Chat Dataset DailyDialog Dataset

ρ r ρ r

EMS 0.5856 0.5921 0.5331 0.5253

w/o q 0.5732 0.5741 0.5298 0.5221
w/o p 0.5621 0.5618 0.5193 0.5218

Table 4: Two evalution cases from DailyDialog Dataset.
eos indicates the end of the current sentence.

Context:

did you get your bus pass? eos i have n’t
gone to get it yet. eos why have n’t you
got it? eos i do n’t know where to go to get
one. eos i know where to get them from.

Reference: where do i get it?

Generated: what kind of buses are they on?

Human (1-5) BLEU (0-1) MAUDE (1-5) EMS (1-5)

3.00 0.00 4.99 3.32

Context:

what a beautiful home! eos you’ll notice
that the window treatments, carpeting, and
drapes are all new. eos i like the way the
blinds give you privacy from the street.
eos follow me into the kitchen. you will
love it. eos i love that they put a wine
storage area in the kitchen.

Reference: the best part is the bedroom and attached
bathroom.

Generated: i’m sure you will.

Human (1-5) BLEU (0-1) MAUDE (1-5) EMS (1-5)

3.50 0.00 1.17 2.29

it proves the effectiveness of the feasible latent
reference information.

5.3 Case Study

To explain more intuitively, we show two cases of
our experiments in Table 4. In the first case, we can
observe the golden score from the human is 3.00,
however, MAUDE predicts the score as 4.99. We
find the MAUDE gives such a high score because
there is a keyword (“what kind of buses are they
on ?”) in the generated response which also exists
in the conversational context. In the second case,
MAUDE gives an extremely low score, i.e., 1.17,
since no repeated words in the generated response
and the context. However, our EMS gives scores
similar to the Human Score, 3.32 and 2.29 in the
first and second case, respectively. It proves that
our EMS is more similar to human evaluation.
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6 Conclusion and Future Work

In this study, we propose a two-stage automatic
evaluation metric, i.e., EMS, which can obtain a
smooth latent space that can both capture discourse-
level context information and model more feasible
latent references for evaluating the open-domain
dialogues. Experimental results on two dialogue
datasets confirm the superiority of our method for
open-domain dialogue evaluation, where both Pear-
son and Spearman correlations with human judg-
ments outperform all baseline methods.

Owing to the promising performance of the vari-
ational training, we pursue to design the training
procedures for better representation in latent space.
Besides, we will explore more efficient methods to
obtain more useful feasible reference information.
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A Proof

As well we know, the the mutual information (MI)
of X and Y is defined as

I(X;Y ) = H(X)−H(X | Y )

= H(Y )−H(Y | X)
(8)

where H(·) denotes the entropy.
Obviously, we can get

H(l | c, {rk}Nk=1) = H(l | c, ri, {rk}Nk=1 \ ri)
≤ H(l | c, ri).

(9)
Then, we can compare the MI of using the feasible
latent reference information and not as follows

I(l; c, {rk}Nk=1) = H(l)−H(l | c, {rk}Nk=1)

≥ H(l)−H(l | c, ri)
= I(l; c, ri).

(10)
where we can observe the MI is enhanced.


