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Abstract

Some interpersonal verbs can implicitly at-
tribute causality to either their subject or their
object and are therefore said to carry an im-
plicit causality (IC) bias. Through this bias,
causal links can be inferred from a narrative,
aiding language comprehension. We inves-
tigate whether pre-trained language models
(PLMs) encode IC bias and use it at inference
time. We find that to be the case, albeit to
different degrees, for three distinct PLM ar-
chitectures. However, causes do not always
need to be implicit—when a cause is explicitly
stated in a subordinate clause, an incongruent
IC bias associated with the verb in the main
clause leads to a delay in human processing.
We hypothesize that the temporary challenge
humans face in integrating the two contradict-
ing signals, one from the lexical semantics of
the verb, one from the sentence-level seman-
tics, would be reflected in higher error rates
for models on tasks dependent on causal links.
The results of our study lend support to this hy-
pothesis, suggesting that PLMs tend to priori-
tize lexical patterns over higher-order signals.

1 Introduction

Recognising causal links in narrative is an integral
component of language comprehension that often
relies on implicit cues (Trabasso and Sperry, 1985).
Pre-trained language models, which form the basis
of many language processing solutions nowadays,
should therefore pick up on such cues and integrate
them correctly with other signals to enable accurate
causal inferences in downstream tasks, including
question answering and information extraction.
Psycholinguists have identified one such cue in
the implicit causality bias of interpersonal verbs:
some interpersonal verbs tend to implicate causal-
ity on either their subject or their object (Garvey
and Caramazza, 1974). It is this bias that leads to
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Figure 1: Illustration of implicit causality (IC) and ex-
plicit causality (EC) in contexts where the two are con-
gruent, and where they are incongruent.

wide agreement among subjects in psycholinguis-
tic studies, that in a sentence like John appreciates
Mary, the cause for appreciation likely lies with
a property or action of Mary’s rather than John’s.
Causality can also be stated explicitly, in the form
of a subordinate because clause, for instance, and
it can optionally contradict the implicit causality of
the verb in the main clause. In Figure 1, we show
two verbs in the context of explicit statements of
causality (EC) that are either congruent or incon-
gruent with their IC bias. Psycholinguistic studies
show that congruency affects language compre-
hension, with human participants taking longer to
identify the referent to the pronoun after because in
incongruent contexts compared to congruent ones
(Caramazza et al., 1977). The integration of the
two signals costs humans extra effort, but they are
eventually able to overcome the false initial expec-
tation based on lexical semantics (i.e. IC) and form
a final response that takes into consideration the
full sentence-level semantics (i.e. EC). Ettinger
(2020) suggests that in the context of such diverg-
ing signals, models would likely fail to integrate
all signals correctly, producing a response that is
consistent with the initial, shallow expectation and
therefore incorrect.

In this work, we study a range of large
transformer-based pre-trained language models
(PLMs) with a focus on their awareness of IC bias
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and their response to stimuli of the kind shown in
Figure 1. Following Ettinger (2020), we hypothe-
size that a language model aware of IC bias would
experience interference from this signal in the con-
text of incongruent EC, resulting in errors of judge-
ment on a co-reference resolution task dependent
on causal inference.

In a study of six PLMs from three model fam-
ilies: unidirectional generative, bidirectional gen-
erative and bidirectional discriminative, we find
that IC bias is reliably encoded by all, but not used
to an equal degree when making predictions in a
controlled setting designed to test for IC awareness.
In line with our hypothesis, we find that models
with high IC awareness suffer an interference from
IC bias in contexts of incongruent causality. We
discuss these findings with reference to model type,
size and amount of training data; we also draw
general conclusions about the shortcomings of lan-
guage models, which seem to prioritise a low-level
lexical pattern (when they are aware of it in the first
place) over a higher-order contextual signal.

2 Related Work

The study of the linguistic capacities of neural lan-
guage models (LMs) has become especially rel-
evant in current NLP research, where representa-
tions from PLMs feed into systems for various com-
plex tasks, typically improving performance. Many
of the testing paradigms used in psycholinguistics
lend themselves well to LM analysis as they rely
on a textual stimulus and a lexical response.

Linzen et al. (2016) were first to borrow from
the psycholinguistic testing paradigm, in a study of
the capabilities of LSTM-based models to resolve
subject-verb number agreement. Goldberg (2019)
adopted the psycholinguistic approach in an assess-
ment of BERT (Devlin et al., 2019) on a number of
syntactic tasks and found it to perform remarkably
well on all. Hawkins et al. (2020) studied the abil-
ity of different LMs to capture human preferences
as to the argument structure of English verbs.

The analysis of semantic capabilities in LMs in-
cludes studies on negative polarity in LSTM LMs
(Marvin and Linzen, 2018; Jumelet and Hupkes,
2018), reasoning based on higher-order linguistic
skill (Talmor et al., 2019), arithmetic and composi-
tional semantics (Stalitinaité and Iacobacci, 2020),
stereotypic tacit assumptions and lexical priming
(Misra et al., 2020; Weir et al., 2020). Many of
these studies look at recent PLMs and draw mixed

conclusions about the level of semantics encoded
by these models. Peters et al. (2018) and Tenney
et al. (2019) observed that PLMs do encode some
higher-order syntactic abstractions in the higher
layers (whereas lower-order syntactic information
is encoded in the lower layers). However, in a com-
parison of contextualized and static word embed-
dings, Tenney et al. (2019) concluded that PLMs
do not generally offer the same improvement with
respect to semantics as they do for syntax.

At the crossroad of semantic analysis and psy-
cholinguistic approaches, Ettinger (2020) intro-
duced a suite of six psycholinguistic diagnostics
for the analysis of semantic awareness in LMs.
The tasks were selected based on a specific pat-
tern observed in the response of human participants
in psycholinguistic studies: an initial expectation
(marked by an N400 electrophysiological response)
that diverges from the final answer in a cloze task
that humans offer once they have had time to fully
consider the test prompt. Ettinger (2020) suggests
that LMs might be “tripped up” in such contexts if
they are unable to accurately integrate all the avail-
able information—she indeed found that to be the
case for role-based event prediction in BERT (De-
vlin et al., 2019), for example. The phenomenon
we study, incongruency in causality signals, has
been observed to trigger a similar response in hu-
mans (Van Berkum et al., 2007) and can thus be
expected to also “trip up” LMs.

Implicit causality bias was previously consid-
ered in PLM analysis by two works, both looking
at how well unidirectional PLMs capture it. Upad-
hye et al. (2020) studied IC from the perspective of
how different connectives between the main clause
and the following clause (because, and as a result,
full stop) affect the strength of the bias. While
they did not find strong evidence for a correla-
tion to human-based results in this respect, they
did observe that in the context of connective be-
cause PLMs assigned lower probability to subject-
referring pronouns for an object-biasing verb as
compared to a subject-biasing verb. Davis and van
Schijndel (2020) observed that GPT2-XL (Radford
et al., 2019) encodes some level of IC bias in its
representations (measured in terms of similarity
between the representation of the pronoun and its
two potential referents) and its decision on how
to resolve a referent at prediction time is weakly
influenced by that. They took the analysis one step
further and looked at whether GPT2-XL uses IC
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information to resolve relative clause attachment,
which in humans is conditioned by IC bias—no
evidence was found to suggest that that was the
case. Our study extends previous work on IC bias
in several ways: we study both unidirectional and
bidirectional models, we measure bias in the same
terms as was done in psycholinguistic work and
can therefore assess the correlation between the
two, and we study the matter from a perspective
that has not been considered before, namely the
case of incongruent explicit and implicit causality.

3 Materials

Here we describe the two psycholinguistic diag-
nostics that we draw on: for the study of IC bias
in isolation and its integration with EC. We also
describe the modifications necessary to make these
diagnostics suitable for PLMs.

3.1 Context-free IC Bias

Ferstl et al. (2011) studied IC bias in a context free
of EC through a sentence completion task where
subjects were presented with a stimulus like

(1) John praised Mary because __

and asked to finish the sentence. Continuations
were observed to start with a third person pronoun
(he or she) 94.2% of the time. The researchers
counted the ratio of continuations referring back to
the subject of the sentence, s.,;,s, and back to the
object, oyins, and computed a bias score for each
verb as 100 x (Swins - Owins)/(swins + Owins)-
This results in a range of —100 (verbs with ex-
treme Object bias, hereafter O-bias) to 100 (verbs
with extreme Subject bias, hereafter S-bias). The
study covered 305 interpersonal English verbs with
responses from 96 subjects.

In another study of IC bias, Hartshorne and
Snedeker (2013) presented subjects with stimuli
with a nonce ending, e.g.

(2) John praised Tim because he was a dax.

and asked them the question Who do you think is
a dax? The nonce ending is meant to provide a
content-free continuation that does not affect the
interpretation of the ambiguous pronoun, neither
semantically (as the madeup dax carries no mean-
ing), nor syntactically—Hartshorne et al. (2015)
conclude that explanations of the form is a/an X do
not affect people’s intuitions about who the expla-
nation referred to.

Our approach is to use the procedure of Ferstl
et al. (2011) as is to test unidirectional PLMs, as
they are naturally suited to the open-end input for-
mat. Since bidirectional PLMs have been trained
on complete utterances and may thus act unpre-
dictably in an open-end context,! we test such
models with a modification of the procedure of
Hartshorne and Snedeker (2013):> we convert it
into a cloze task with a gender mismatch between
the participants, such that (3) becomes

(3) John praised Mary because ___ was a dax.

We adopt the mismatched-gender setting as it
more closely resembles the sentence completion
task in Ferstl et al. (2011). In both formats we
can now identify the preferred referent by looking
at the probability of pronouns he and she for the
empty slot, each one referring unambiguously to
only one referent. Inducing a prediction for a pro-
noun in the empty slot is also a more natural choice
of co-reference than repeating one of the names
(Holtzman et al., 2019).

In the examples shown throughout the paper,
John and Mary are used as placeholders for the sub-
ject and object of the verb of interest. The choice
of names to go in these slots can affect model pre-
dictions (Abdou et al., 2020), so we generate 200
variants of each stimulus, varying the names and
the order between the two genders and we query
the PLMs with all of them. The full procedure is
described in Appendix B.

We compile a list of 200 nonce words using
the 194 nonce words made available by Bangert
et al. (2012), five nonce words from Cuskley
et al. (2015), manually chosen to resemble English
nouns, and dax, used in Hartshorne and Snedeker
(2013). When presenting a bidirectional PLM with
the aforementioned 200 variants of a stimulus, we
dynamically draw a nonce word at random from
this list without replacement.

The procedure described above is applied to each
of the 305 verbs studied in Ferstl et al. (2011).

3.2 IC Bias in the Context of EC

Caramazza et al. (1977) tested the effect of incon-
gruency between IC and EC using pairs of sen-
tences built around the same verb, where one con-
tains an explanation congruent with the verb’s bias

"We find that a common response of generative bidirec-
tional PLMs to stimuli like those in (1) is to predict a full-stop
for the empty slot.

’See Appendix A.1 for an alternative we considered.
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and the other contains an incongruent explanation
(refer back to Figure 1 for some examples). Partici-
pants were shown one sentence at a time on a screen
and asked to say out loud who the referent was to
the pronoun after because. Caramazza et al. (1977)
carried out experiments both with stimuli where the
referents are of the opposite gender and where the
referents are of the same gender—responses were
delayed in the context of incongruent explanations
as compared to congruent ones in both settings,
the effect being stronger in the mismatched-gender
setting.

Our approach is to adopt the mismatched-
gender setting and to convert this task into a cloze
task as well, an example stimulus being:

(4) John praised Mary because ___ had done well.

The stimuli used by Caramazza et al. (1977) and
other related studies like Garnham et al. (1996) use
only a handful of verbs (14 and 22, respectively).
We therefore found it necessary to develop a more
expansive dataset for the purposes of our study.
Following the procedure described in Appendix C
we constructed pairs of subject-referring explana-
tions and object-referring explanations for 99 verbs,
33 strongly subject-biased verbs (bias> 65), 33
strongly object-biased verbs (bias< —65), and 33
verbs from the middle of the scale, which can be
thought of as having no effect on the attribution of
implicit cause. Selecting the verbs in this fashion,
with large gaps between each group, allows us to
see the difference between them most clearly.

Similarly to before, 200 variants of each stimulus
are generated, varying the names of the referents
and the order between the two genders.

4 Procedure

In this section we describe how we induce re-
sponses to the tasks described in §3 for the two ex-
periments in this study: measuring context-free IC
bias and IC bias in the context of EC. Six English
PLMs are considered in this study, representative of
the unidirectional generative, bidirectional genera-
tive and bidirectional discriminative paradigms in
language modeling. As seen in Table 1, GPT, BERT
and ELECTRA are comparable in size and training
data. GPT2-M, ROBERTa-L and ELECTRA-L are
included as the ‘bigger siblings’ to the former three
models respectively, selected to resemble closely
the architecture of their counterparts, while having

Work Size Data Dir Obj

English
GPT Radford et al. (2018) 110 16 Uni Gen
GPT2-M Radford et al. (2019) 345 40 Uni Gen
BERT  Devlinet al. (2019) 110 16 Bi Gen
ROBERTa-L Liuetal. (2019) 355 160 Bi Gen
ELECTRA Clark et al. (2020) 110 16 Bi Disc
ELECTRA-L —"— 335 160 Bi Disc
German BERT - 110 12 Bi  Gen
Spanish BERT  Caifiete et al. (2020) 110 20 Bi Gen
MBERT - 110 194 Bi Gen

Table 1: Model properties in terms of size (number
of parameters in millions), training data (size in GB),
directionality (uni- or bi-directional), and token-level
training objective (generative or discriminative). Ger-
man BERT and mBERT are not the product of any pub-
lished work, but are closely associated with Devlin et al.
(2019).

a larger size and richer training data.> Comparisons
can therefore be made across the three base models,
on one hand, and within each pair of a base model
and its larger counterpart, on the other. The three
larger models are comparable in size, but not fully
comparable in training data, GPT2-M being trained
on only a quarter of what the other two models are
trained on. In a small multilingual experiment, we
also experiment with German BERT, Spanish BERT
and mBERT,* a multilingual version of BERT.

We first describe the procedure for bidirectional
generative PLMs which is most straightforward.
Both experimental tasks can be formulated as a
cloze task (see Examples (3) and (4)). We place a
mask tag in the empty slot, pass the input through
the model and compute the probability that the
models assigns to tokens he and she for the position
of the mask tag.

The procedure is equally trivial when testing uni-
directional PLMs for context-free IC bias effects,
where the stimuli can naturally take on an open-
ended form (see Example (1)). The partial sentence
is passed through the model and a probability for
the relevant pronouns is computed. Measuring the
effect of IC bias in the context of EC, on the other
hand, cannot be performed in the next-word pre-
diction paradigm, so for this task we instead use
the unidirectional PLMs as language scorers: we

3For implementational details see Appendix D.

“The size of the training data for mBERT is not exactly
known—it consists of the 100 biggest Wikipedias. English
Wikipedia, as made available on HuggingFace in 2019 is 14
GB in size; with the next 99 Wikipedias being 13% the size
of the English Wikipedia on average (based on number of
articles), that works out to an estimate of 194GB in total.
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Model Exp p(he) =
GPT(2) 1C p(he |w1..iw4)
IC+EC  p(w;...w4 he wg...ws)

(RO)BERT(a) both
ELECTRA both

p(MASK==he |wj...ws MASK wg...ws)
p(class=0 |w;...wq he wg...ws)

Table 2: Probing PLMs for the effect of context-free IC
(IC) and IC in the context of EC (IC+EC) experimen-
tal paradigm. w;...wy = John praised Mary because;
we...wg = was a dax / had done well for IC and IC+EC,
resp. The procedure is analogous for she.

create two versions of each stimulus, one with pro-
noun she, one with pronoun 4e in the empty slot,
and obtain a probability for each as the average
over the probabilities of all tokens in the sequence.

The discriminative model ELECTRA is trained to
recognize replaced tokens in its input, i.e. for each
token it computes a probability over two classes,
replaced (R) and original (0). Based on the rea-
soning outlined in Appendix E we conclude that
the more appropriate way to probe ELECTRA in
our experiments is by taking the average over the
probability of class O for all tokens in a sequence,
instead of looking at the probability of this class
for the pronoun of interest alone. In a procedure
similar to the one used for GPT2-M when used as
a language scorer, we present ELECTRA with two
versions of each stimulus , one with &e, one with
she in the slot of interest, and we compute the aver-
age probability of class O for each. We formalize
the handling of all model types in Table 2.

5 Exp. 1: Context-free IC Bias

With this experiment we want to determine whether
English PLMs exhibit the same tendencies as hu-
mans when it comes to the IC bias of actions/states
expressed with interpersonal verbs in a context free
of any explicit causes. To this end, we use the mate-
rials described in §3.1 and the procedure described
in §4. For any given model, the IC bias per verb is
measured over the responses of the model to the set
of 200 stimuli, each response processed as follows.

5.1 Measuring Bias

For a sentence with a female subject and a male
object, the probability of she would be denoted
as p°, the probability of he as p°, and p°* > p°
would indicate a preference for the subject for this
stimulus. Refer back to Table 2 for a summary
of how these probabilities are obtained with each
model.

B S-bias O-bias
GPT
BERT

EL

GPT2-M
RoB-L
EL-L

Human
0 20 40 60 80 100
Bias Ratio

Figure 2: Ratio of S-bias verbs and O-bias verbs.

Having obtained the values p® and p° for each
of the 200 stimuli per verb, we next calculate the
bias of this verb in the following manner:

Swins = (05, —p3) >0 (1)
neN
Owins = Y (0 —P2) <0 (2)
neN
bias = 100 x <s“’i"5 - OW"“) 3)
Swins T Owins
where N is the set of 200 stimulus variants per
verb. This metric gives us a range from —100 (ex-
treme O-bias) to 100 (extreme S-bias), with 0 indi-
cating an absence of any bias altogether.

5.2 Preliminary analysis

As validation of the experimental procedure, we
note that the generative models, BERT, ROBERTa-L,
GPT, GPT2-M, ranked one of the two vocabulary
items of interest, ke or she, as their top prediction at
a rate of 99.0, 99.4, 99.3 and 100.0 percent, respec-
tively. It is reassuring to see that the models behave
similarly to humans in this respect, who selected
he or she at a rate of 94.2% as a first token after
because (Ferstl et al., 2011). That also indicates
that the probabilities assigned to the two tokens are
meaningful (Holtzman et al., 2019).

Figure 2 shows the ratio of S-bias verbs and O-
bias verbs as determined by each of the models and
by humans. Compared to human IC bias scores,
which give an even distribution of verbs across the
S-bias and O-bias classes, we see that most models
show an imbalance in this respect—-most notably,
BERT and GPT2-M show an almost categorical pref-
erence for the object of the sentence. These trends
could relate to the syntactic role of the participants
(subject v. object), to their linear order, or to refer-
ent proximity. The first two factors are difficult to
decouple in English, a language with a relatively
fixed subject-verb-object word order. We discuss
the effect of proximity in Appendix A.2.
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To gain a clearer understanding of the IC bias
awareness of the different models, we analyze the
results of this experiment in their raw form and also
with discounting for other potential sources of bias.
In addition to the object bias discussed above, we
include gender and choice of nonce words, which
on their own did not appear to have a strong effect,
but could combine with each other and with the
object bias in unpredictable ways. The discounting
for p(he), for example, in the context of stimulus
John apologized to Mary because _was a dax is
done by subtracting the average probability of pro-
noun /e in the context of any stimulus with a male
subject and word dax in the nonce word slot (152.5
data points on average).

5.3 Results

Table 3 quantifies the correspondence between
model IC bias and human IC bias in terms of Spear-
man’s p over bias scores and in terms of micro-
averaged F1 score over the polarity of the IC bias
(subject-bias v. object-bias). For a plot of the ex-
act bias values see Figure 6 in Appendix F. The
PLMs most affected by the discounting for other
biases are BERT and GPT2-M, which also showed
the strongest imbalance as observed in Figure 2.
All PLMs show a significant correlation to human
IC bias, although this observation has the caveat of
a small dataset (only 305 data points).

Within the pairs of related models, we can say
that the differences between BERT and ROBERTa-L
on the one hand and ELECTRA and ELECTRA-L on
the other, are small, which suggests that already
with 16GB of training data and 110M parameters,
these architectures reach their potential in terms of
capturing and using IC bias. For the two unidirec-
tional PLMs, we see that after discounting GPT2-M
exhibits a considerably higher correlation to human
IC bias scores. This may indicate that the larger
size and/or richer training data of GPT2-M have en-
abled the model to better capture IC bias, although
the correlation still remains low in absolute terms.

Comparing unidirectional PLMs to bidirectional
ones, we find that the latter obtain a stronger cor-
relation to humans scores. A similar trend holds
for the F1 scores, where bidirectional models show
a greater awareness of the polarity of the IC bias
of verbs (especially after discounting). We refrain
from making comparisons across model architec-
tures beyond the uni- v. bidirectional dichotomy,
to avoid drawing false conclusions: as we are us-

BERT ROB-L GPT GPT2-M EL EL-L
p 0.58*% 0.67* 0.22* 0.22* 0.72% 0.72%
F1 0.508 0.672 0.607 0.482 0.744 0.754
p 0.65% 0.69* 0.23* 0.38* 0.73* 0.71*
F1 0.698 0.734 0.564 0.649 0.774 0.748
LDA | 0.67* 0.58* 0.64* 0.46* 0.73*% 0.67*
LR 0.71*%  0.6* 0.67% 0.49* 0.75*% 0.7*

Table 3: Correspondence between human- and model-
induced IC bias scores (a) for model predictions, mea-
sured in terms of Spearman’s p correlation over bias
scores and F1-score over bias polarity before (rows 1
and 2) and after discounting (rows 3 and 4); and (b) for
model representations (rows 5 and 6). * denotes signif-
icance at p < 0.001.

ing different procedures to induce a response from
generative and discriminative models, it could be
argued that a direct comparison is not methodologi-
cally robust. The discriminative models are making
a binary decision over two options predefined by
us, while the generative models are computing a
probability distribution over hundreds of thousands
of vocabulary items.

5.4 Further Analysis

To measure the models’ sensitivity to IC bias in
a perfectly comparable setting, we carry out an
additional comparison on the level of representa-
tions, thus abstracting away from the top layers of
the models where the differences ensue. We ex-
tract ‘decontextualized’ verb representation from
the PLMs following the procedure described in
Appendix G. Using those, we carry out two types
of probes: an extrinsic one, where we train a lin-
ear regression model (LR) to map from a verb’s
representation to its IC bias; and an intrinsic one,
where we use linear discriminant analysis (LDA)
to identify the single dimension in the verb repre-
sentations that is most informative of IC bias.’ The
benefit of the latter approach is that it does not add
any newly trained parameters to the computation
of the correlation (Torroba Hennigen et al., 2020).
In both cases, the result is a vector of scalars (the
values predicted by the LR, or the values of the
selected dimension)—we measure the correlation
between these values and human IC bias to deter-
mine how much of the latter can be recovered from
the representations.

To reduce overfitting, which is inevitable with

5As LDA operates over a space of discrete labels, we
convert the IC bias scores into 3 classes (> 0, < 0, = 0).
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Figure 3: Ratio of S-bias and O-bias verbs in German
(top) and Spanish (bottom).

305 datapoints in total and representations of 768
to 1024 dimensions, we apply PCA to the repre-
sentations prior to fitting the LR and LDA models,
reducing the representations to 5% of their original
size. Each model (LR and LDA) is fit on a ran-
dom 50% split of the data and applied on the other
50% to predict (LR) or transform (LDA). This pro-
cedure is repeated 100 times for robustness. The
mean correlations are reported in the last two rows
of Table 3. We see that larger models yield lower
correlations than their smaller counterparts, sug-
gesting that the former might encode IC bias in a
more distributed manner than the latter.

Comparing models of equal size, we see that
a similar pattern holds here as observed over the
models’ predictions, with the unidirectional models
showing a lower correlation than the bidirectional
ones, although the gap is substantially smaller in
this space. It appears that unidirectional models
might encode more IC bias than they exhibit at
inference time. ELECTRA shows the highest corre-
lation among the base-size models and ELECTRA-L
the highest among the large models—as this com-
parison abstracts away from the specific objective
each models uses (generative v. discriminative),
we can conclude that the two ELECTRA models
capture IC bias to the greatest extent out of the six
PLMs studied here.

5.5 1IC Bias in Other Languages

IC bias is not an English-specific phenomenon—
Goikoetxea et al. (2008) obtained human judge-
ments for 100 Spanish verbs, and Van den Hoven
and Ferstl (2018) did so for 100 German verbs.
Here, we probe Spanish (es) BERT, German (de)
BERT and mBERT for their IC bias awareness. De-
tails on the choice of proper nouns and nonce words
are discussed in Appendix H. As seen in Figure 3 a
recency/object bias is observed for the PLMs inves-
tigated here as well, so we present the results with
and without discounting.

German Spanish
BERT mBERT BERT mBERT

p 0.54* 0.23 0.13  -0.00
F1 0.600 0.600  0.540 0.560
p 0.51* -0.13 0.16 -0.15
F1 0.680 0.380  0.610 0.360
LDA | 0.26* -0.0 0.09  0.08
LR | 047* 0.02 0.12 0.03

Table 4: Correspondence between human- and model-
induced IC bias in German and Spanish. For more de-
tails see the caption of Table 3.

Table 4 summarizes the results before (rows 1
and 2) and after discounting (rows 3 and 4). The
poor performance of the multilingual mBERT is not
surprising—Ronnqvist et al. (2019) found mBERT
to be inferior to monolingual models at making a
prediction for randomly masked subtokens (specif-
ically looking at German, among other languages);
and Vuli¢ et al. (2020) found mBERT and XLM-R to
both be inferior to their monolingual counterparts
on probing tasks pertaining to lexical semantics.

German BERT shows a medium-strength correla-
tion to human scores, whereas Spanish BERT shows
no such correlation at all, both on the level of pre-
dictions and model representations. This observa-
tion could be attributed to the pro-drop nature of
Spanish, wherein pronouns are often dropped when
in subject position. This likely makes the learning
of IC bias in Spanish harder for a PLM, as less
evidence is available in the context to connect the
explanation to its referent.

From this section, we conclude that English bidi-
rectional PLMs reliably capture and use IC bias
in their predictions. Unidirectional models encode
IC bias but do not greatly rely on it at prediction
time. Having established that IC bias affects the
behavior of at least some PLMs, we now evalu-
ate how these models integrate this implicit signal
with more explicit signals from the sentence-level
semantics.

6 Exp. 2: IC Bias in the Context of EC

With this experiment, we test the hypothesis that
when the IC and EC signals converge in congruent
contexts, i.e. they point to the same referent, the
models would have more ease predicting the cor-
rect referent, whereas when the two signals diverge
in incongruent contexts, the models would be more
prone to errors. We test this hypothesis using the
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Figure 4: Accuracy on co-reference resolution over
stimuli with congruent and incongruent IC and EC.

materials described in §3.2 and the procedure from
§4. We present each stimulus to the models in 200
versions varied for subject and object referents. In
this experiment, we do not perform discounting:
unlike Experiment 1 where we wanted to gain as
clear a view as possible of the level of IC bias that
models exhibit, isolated from other sources of bias,
here we want to see how IC bias interacts with EC,
subject to any other potential sources of bias.

6.1 Results

Figure 4 shows the results from this experiment.
All models are substantially better at resolving the
antecedent correctly on average compared to a ran-
dom baseline of 50%. Looking at the neutral stim-
uli as indication for the models’ general ability to
solve this task, we see that the two largest and most
richly trained models, ROBERTa-L and ELECTRA-L,
perform best. In line with our expectations, we
see that most models score lower on resolving an-
tecedents in incongruent contexts and higher in
congruent ones. This is true for the four bidirec-
tional PLMs, which also exhibited higher IC bias in
Experiment 1. The gap is largest for ELECTRA and
still substantial for ROBERTa-L and ELECTRA-L.
The unidirectional models, on the other hand, show
a noisier behavior, with a relatively small gap be-
tween the three types of stimuli, and an inconsistent
ranking between them.

6.2 Discussion

As IC bias contributes to the construction of causal
links in narrative and as such aids language compre-
hension (Trabasso and Sperry, 1985), it is desirable
that PLMs capture and use this signal coming from
the lexical semantics of interpersonal verbs. In Ex-
periment 1, we found that all PLMs studied show
a medium to high correlation with human IC bias

scores on the level of representations, with bidi-
rectional ones doing so on the level of predictions,
too. While IC bias does contribute to language
comprehension, it also has the unfortunate effect
of interference in the context of incongruent EC. In
this respect, models with higher IC bias awareness,
i.e. the bidirectional PLMs in our study, suffer a
greater drop in performance. Meanwhile, the uni-
directional PLMs studied, which show little aware-
ness of IC bias in a context free of EC, also show
no interference from it when resolving referents in
the presence of EC. Paradoxically, the superior per-
formance of bidirectional PLMs with respect to IC
bias also exposes a limitation of theirs: while these
models are advanced enough to use IC bias for
their predictions, their interpretation of semantics
is still fairly shallow. The lower-order signal com-
ing from lexical semantics is given priority over
the higher-order signal coming from the sentence-
level semantics. In the experiment presented in
this section, this leads to a higher error rate on
resolving pronoun antecedents in incongruent con-
texts, with potential impact on tasks that depend
on co-reference resolution, e.g. document summa-
rization (Azzam et al., 1999), question answering
(Morton, 1999; Vicedo and Ferrandez, 2000), and
information extraction (Zelenko et al., 2004).

7 Conclusion

From the comparison of six competitive PLMs,
BERT, ROBERTa-L, GPT, GPT2-M, ELECTRA and
ELECTRA-L, we conclude that PLMs can exhibit IC
bias much like humans do, but that different models
do so to a different degree, with bidirectional mod-
els showing moderate to strong correlation to hu-
man judgements, and unidirectional models show-
ing only a weak correlation. This ability of some
PLMs has the unfortunate effect that it makes them
prone to higher error rates in contexts of incongru-
ent IC and EC signals, where the PLMs overly rely
on IC bias. This finding adds to a growing body
of evidence that PLMs prioritize lexical cues over
higher-order semantic cues (cf. Tenney et al., 2019).
As our hypothesis is inspired by the observation
that humans experience a delay in the processing of
incongruent contexts (Caramazza et al., 1977), our
findings point to the potential of drawing further
inspiration from such psycholinguistic phenomena
in studying the behaviour of language models (Et-
tinger, 2020). Seeing that language models show
a growing potential as off-the-shelf task solvers
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(Radford et al., 2019; Brown et al., 2020), studying
their predictions is an important avenue for better
understanding their capabilities and limitations.
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A Alternative task formulation

A.1 Splitting the clauses

Hartshorne and Snedeker (2013) induce a response
by presenting participants with a sentence like

(5) John praised Tim because he was a dax.

and asking them the question Who do you think
is a dax? In the spirit of Radford et al. (2018) and
Radford et al. (2019) we considered reformulating
this into a task suitable for a language model as:

(6) John praised Tim because he was a dax. The
one who was a dax was

This formulation would have allowed us to use
unidirectional PLMs in a more natural way, for
next-word prediction, since the token of interest
now comes at the end of the sequence; and it would
have been equally suitable for bidirectional PLMs.
We performed experiments with it and found that
models largely scored at chance level for the stimuli
containing neutral verbs, which renders the results
for the congruent and incongruent stimuli invalid.
The difficulty PLMs faced in solving this task could
stem from the more complex inference required
and/or from the border-line unnatural structure of
the inputs.

A.2 Swapping the clauses

Seeing that all models show some degree of object
bias, we considered an alternative task formulation,
where the main clause and the subordinate clause
are swapped:

(7) Because ___ was a dax, John praised Mary.

In this formulation, the proximity changes for the
two referents, such that now the subject is closer
to the pronoun of interest. This clause-swapping
can only be applied to bidirectional models for the
purposes of measuring context-free IC bias as de-
scribed in Section 3.1. Figure 5 shows the results
obtained with this task formulation. Comparing
these numbers to the ones presented in Figure 2,
we see that all models show a more balanced distri-
bution of verbs across the S-bias and O-bias classes,
with the two ELECTRA models closely matching
human scores. This suggests that reference proxim-
ity is indeed a factor in the choice of the pronoun.
Still, we see that ROBERTa-L and especially BERT
remain strongly biased towards the object of the
sentence, meaning that proximity is not the only
factor at play.

B S-bias O-bias

BERT Il
ELECTRA I

RoBERTa I
ELECTRA-L I——

Human
0 20 40 60 80 100
Bias Ratio

Figure 5: Ratio of S-bias verbs and O-bias verbs with
swapped clauses.
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Although this task formulation appears to lead to
a reduced object bias across the four bidirectional
models, we refrain from using it in our main exper-
iments because it is not attested in psycholinguistic
studies, i.e. it could have unforeseeable effects on
human judgements of IC bias. As our main goal
is to analyse the models’ behavior in relation to
human behavior, we follow closely the experimen-
tal protocol used in the available psycholinguistic
studies on IC bias.

B Proper nouns

In this section we consider a seemingly minor
but important consideration. Abdou et al. (2020)
showed that model predictions on the Winograd
Schema Challenge greatly vary with changes in the
gender and identity of proper nouns used in the
stimuli. We alleviate this issue by marginalizing
over a range of proper nouns. To do so, we create
multiple versions of the same stimulus with differ-
ent proper noun combinations and use the average
response of a model over all of the stimuli as an
indication of the model’s response to an abstract
subject and object. We use 10 male names and 10
female names in 200 permutations. To ensure that
the names in these lists are perceived as common
names for the gender they represent, we used the
models themselves to select the names, compiling
a list of names unique to each model. We queried
each model with the following sequences and took
the top 10 names predicted:® She is a woman and
her name is MASK. and He is a man and his name
is MASK.

C Development of Materials

Neither Caramazza et al. (1977) nor Garnham et al.
(1996) provide an explicit description of the proce-
dure used to design their materials, so we extrapo-
late their methods by observing the materials them-
selves: the main goal in constructing a stimulus is
to ensure that a particular ending is unambiguous
(in a standard, most-likely reading) in pointing to
exactly one of the two referents. The explanations
always start with a verb in the past tense, e.g. had
done well. And they are simple in the sense that
they require little background knowledge. Using

The mask tag and full-stop were omitted for GPT2-M. As
ELECTRA cannot be used in this fashion, we instead used the
generative counterpart of the model to obtain the list of names
and confirmed that ELECTRA accepts them in their respective
contexts (i.e. that it labels them as original tokens).

these observations as guidelines, we manually con-
structed pairs of congruent-incongruent contexts
for 99 verbs, i.e. 198 stimuli in total. The materials
were validated by three native English speakers and
one fluent English speaker, who were asked to per-
form the cloze task on one stimulus from each pair
and to mark ambiguous cases as such rather than
making a guess at random. Eight contexts were
judged as ambiguous and replaced with a better
alternative, also validated in turn.

D Model implementations

We use the models as shared in the Hugging-
Face library (Wolf et al., 2019). In English
experiments, we use bert-base-uncased, electra-
large/base/small-discriminator, gpt2, and roberta-
base. For German we use bert-base-german-cased,
german-nlp-group/electra-base-german-uncased,
dbmdz/german-gpt2, for Spanish dccuchile/bert-
base-spanish-wwm-cased, and for both we use
xIm-roberta-base and bert-base-multilingual-cased.

All experiments were run on a MacBook Pro,
each taking between 1h (for smaller models) to 4h
(for larger models).

E Probing ELECTRA

Consider the example sentence The cake is very
delicious and a “corrupted” version of it we might
present to ELECTRA: The shoe is very delicious.
The model could give us a label sequence like
{0R000} for the latter, to indicate that shoes do
not belong to the world of delicious things. And
we could look at the probability distribution for the
second token to quantify the strength of ELECTRA’s
objection to seeing this token in this position. Alter-
natively, ELECTRA could resolve the conflict with
a label sequence like {OOOOR} to indicate that a
taste-related adjective is not suitable for describ-
ing a shoe. In this case, looking at the probability
distribution for the word shoe could be rather unin-
formative. This leads us to conclude that taking the
average over the probability of label O for all tokens
in a sequence is more informative than looking at
the probability of this label for a single token.

F Experiment 1 visualisation

Figure 6 shows the data corresponding to the results
described in Section 3.1. We offer this visualisation
for the sake of clarity as correlation coefficients
can often be misleading without the accompanying
data. By and large, the visualisation of the data
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Figure 6: Model bias to human bias agreement.

corroborates the results discussed in the main body
of the paper.

One observation here is that human bias scores
are uniformly distributed between the two extremes
(100 and -100), whereas model bias scores tend to
be closer to the two endpoints. The scores obtained
in the human-based study represent the responses
of 100 people to the same stimulus. Deviation from
the extremities here show that people differ in their
judgements to some degree. The scores obtained
in our study represent the responses of a single
model to 200 variants of the same stimulus. In this
sense, it is not surprising that the model’s scores
occupy the two extremities — this shows the models’
consistency in judging a given verb to be subject or
object biasing.

G Model representations

To obtain a single representation of any given verb
from any given model, we encode a sequence like
John praised Mary and take the representation for
the first subtoken of the verb. With BERT’s tok-
enizer, for example, the first subtoken of a verb
amounts to the full verb form 57.1% of the time,
and to the root of the verb 19.3%; in the remaining
22.6% the unit is ‘meaningless.” These numbers
vary across models, but in all cases, we are looking
at contextualized embeddings, so even ‘meaning-
less’ subtokens should be a valid proxy to the verb’s
representation. To abstract away from the exact
choice of proper nouns, we repeat this procedure
for the 200 name variants and take the element-
wise average over all the representations.

H Spanish and German experiments

The contexts we used for extracting proper nouns
from the non-English models were Er ist ein Mann
und heifit and Sie ist eine Frau und heif3t for Ger-
man and Ella es una mujery se llama and El es un
hombre y se llama for Spanish. For BERT DE we
used Sie heifit and Er heif3t instead, as these stim-
uli more consistently yielded names in the high
ranks. Since the generator for ELECTRA DE is not
publicly available, we used a different procedure to
obtain the lists of personal nouns for this model: we
queried WikiData for the top 100 male and female
given names for people from Germany and then
scored these with ELECTRA in the context shown
above. We selected the 10 names for each gender
that yielded highest probability of an O label.

For the nonce-word slot of the stimuli,
we sourced nonce nouns from Dykstra-Pruim
(2003) and Zaretsky et al. (2016) (German) and
Cantd Sanchez (2011) (Spanish). As these lists
contain less than 200 words, here sampling for the
nonce-word slot in the 200 variants of a stimulus
was done with replacement.
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