
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4831–4843
August 1–6, 2021. ©2021 Association for Computational Linguistics

4831

Sketch and Refine: Towards Faithful and Informative Table-to-Text
Generation

Peng Wang , Junyang Lin , An Yang ,
Chang Zhou , Yichang Zhang , Jingren Zhou , Hongxia Yang†

DAMO Academy, Alibaba Group
{zheluo.wp, junyang.ljy, ya235025, ericzhou.zc,

yichang.zyc, jingren.zhou, yang.yhx }@alibaba-inc.com

Abstract

Table-to-text generation refers to generating
a descriptive text from a key-value table.
Traditional autoregressive methods, though
can generate text with high fluency, suffer
from low coverage and poor faithfulness prob-
lems. To mitigate these problems, we pro-
pose a novel Skeleton-based two-stage method
that combines both Autoregressive and Non-
Autoregressive generation (SANA). Our ap-
proach includes: (1) skeleton generation with
an autoregressive pointer network to select key
tokens from the source table; (2) edit-based
non-autoregressive generation model to pro-
duce texts via iterative insertion and deletion
operations. By integrating hard constraints
from the skeleton, the non-autoregressive
model improves the generation’s coverage
over the source table and thus enhances its
faithfulness. We conduct experiments on both
the WikiPerson and WikiBio datasets. Exper-
imental results demonstrate that our method
outperforms the previous state-of-the-art meth-
ods in both automatic and human evaluation,
especially on coverage and faithfulness. In par-
ticular, we achieve PARENT-T recall of 99.47
in WikiPerson, improving over the existing
best results by more than 10 points.

1 Introduction

Table-to-text generation is a challenging task which
aims at generating a descriptive text from a key-
value table. There have been a broad range of
applications in this field, such as the generation
of weather forecast (Mei et al., 2016), sports news
(Wiseman et al., 2017), biography (Lebret et al.,
2016; Wang et al., 2018), etc. Figure 1 illustrates a
typical input and output example of this task.

Previous methods (Liu et al., 2018; Nie et al.,
2018; Bao et al., 2018) are usually trained in an

†Corresponding author.

Figure 1: An example of table-to-text generation. The
case of poor faithfulness hallucinates content not en-
tailed by the table (marked in red color). The case of
low coverage misses the information of the person’s
birth place (marked in blue color).

end-to-end fashion with the encoder-decoder ar-
chitecture (Bahdanau et al., 2015). Despite gener-
ating text with high fluency, their lack of control
in the generation process leads to poor faithful-
ness and low coverage. As shown in Figure 1,
the case of poor faithfulness hallucinates the oc-
cupation “singer” not entailed by the source table,
and the case of low coverage misses the informa-
tion of the place of birth. Even if trained with a
cleaned dataset, end-to-end methods still encounter
these problems as it is too complicated to learn the
probability distribution under the table constraints
(Parikh et al., 2020).

To alleviate these problems, recent studies (Shao
et al., 2019; Puduppully et al., 2019; Ma et al.,
2019) propose two-stage methods to control the
generation process. In the first stage, a pointer net-
work selects the salient key-value pairs from the ta-
ble and arranges them to form a content-plan. In the
second stage, an autoregressive seq2seq model gen-
erates text conditioned on the content-plan. How-
ever, such methods can cause the following prob-
lems: (1) since the generated content-plan may
contain errors, generating solely on the content-

4832

plan leads to inconsistencies; (2) even if a perfect
content-plan is provided, the autoregressive model
used in the second stage is still prone to hallucinate
unfaithful contents due to the well-known exposure
bias (Wang and Sennrich, 2020) problem; (3) there
is no guarantee that the selected key-value pairs
can be described in the generated text. As a result,
these methods still struggle to generate faithful and
informative text.

In this paper, we propose a Skeleton-based
model that combines both Autoregressive and Non-
Autoregressive generation (SANA). SANA divides
table-to-text generation into two stages: skeleton
construction and surface realization. At the stage
of skeleton construction, an autoregressive pointer
network selects tokens from the source table and
composes them into a skeleton. We treat the skele-
ton as part of the final generated text. At the
stage of surface realization, an edit-based non-
autoregressive model expands the skeleton to a
complete text via insertion and deletion operations.
Compared with the autoregressive model, the edit-
based model has the following advantages: (1) the
model generates text conditioned on both the skele-
ton and the source table to alleviate the impact
of incomplete skeleton; (2) the model accepts the
skeleton as decoder input to strengthen the con-
sistency between the source table and generated
text; (3) the model generates texts with the hard
constraints from the skeleton to improve the gen-
eration coverage over the source table. Therefore,
SANA is capable of generating faithful and infor-
mative text.

The contributions of this work are as follows:

• We propose a skeleton based model SANA
which explicitly models skeleton construction
and surface realization. The separated stages
helps the model better learn the correlation
between the source table and reference.

• To make full use of the generated skeleton,
we use a non-autoregressive model to gener-
ate text based on the skeleton. To the best of
our knowledge, we are the first to introduce
non-autoregressive model to table-to-text gen-
eration task.

• We conduct experiments on WikiPerson and
WikiBio datasets. Both automatic and human
evaluations show that our method outperforms
previous state-of-the-art methods, especially
on faithfulness and coverage. Specially, we

obtain a near-optimal PARENT-T recall of
99.47 in the WikiPerson dataset.

2 Related Work

Table-to-text Generation Table-to-text genera-
tion has been widely studied for decades (Kukich,
1983; Goldberg et al., 1994; Reiter and Dale, 1997).
Recent works that adopt end-to-end neural net-
works have achieve great success on this task (Mei
et al., 2016; Lebret et al., 2016; Wiseman et al.,
2017; Sha et al., 2018; Nema et al., 2018; Liu et al.,
2018, 2019a). Despite generating fluent texts, these
methods suffer from poor faithfulness and low cov-
erage problems. Some works focus on generating
faithful texts. For example, Tian et al. (2019) pro-
poses a confident decoding technique that assigns
a confidence score to each output token to con-
trol the decoding process. Filippova (2020) intro-
duces a “hallucination knob” to reduce the amount
of hallucinations in the generated text. However,
these methods only focus on the faithfulness of the
generated text, they struggle to cover most of the
attributes in the source table.

Our work is inspired by the recently proposed
two-stage method (Shao et al., 2019; Puduppully
et al., 2019; Moryossef et al., 2019; Ma et al., 2019;
Trisedya et al., 2020). They shows that table-to-
text generation can benefit from separating the task
into content planing and surface realization stages.
Compared with these methods, SANA guarantee
the information provided by the first stage can be
preserved in the generated text, thus significantly
improving the the coverage as well as the faithful-
ness of the generated text.

Non-autoregressive Generation Although au-
toregressive models have achieved remarkable suc-
cess in natural language generation tasks, they are
time-consuming and inflexible. To overcome these
shortcomings, Gu et al. (2018) proposed the first
non-autoregressive (NAR) model that can generate
tokens simultaneously by discarding the genera-
tion history. However, since a source sequence
may have different possible outputs, discarding
the dependency of target tokens may cause the
degradation in generation quality. This problem
also known as the “multi-modality” problem (Gu
et al., 2018). Recent NAR approaches alleviate
this problem via partially parallel decoding (Stern
et al., 2019; Sun et al., 2019) or iterative refine-
ment (Lee et al., 2018; Ghazvininejad et al., 2019;
Gu et al., 2019). Specially, Stern et al. (2019) per-

4833

forms partially parallel decoding through insertion
operation. Gu et al. (2019) further incorporates
deletion operation to perform iterative refinement
process. These edit-based models not only close
the gap with autoregressive models in translation
task, but also makes generation flexible by allow-
ing integrates with lexical constrains. However,
the multi-modality problem still exists, making it
difficult to apply NAR models to other generation
tasks, such as table-to-text generation, story gener-
ation, etc. In this work, we use the skeleton as the
initial input of our edit-based text generator. The
skeleton can provide sufficient contexts to the text
generator, thus significantly reducing the impact of
multi-modality problem.

3 Methods

The task of table-to-text generation is to take a
structured table T as input, and outputs a de-
scriptive text Y = {y1, y2, ..., yn}. Here, the
table T can be formulated as a set of attributes
T = {a1, a2, ..., am}, where each attribute is a
key-value pair ai = 〈ki, vi〉.

Figure 2 shows the overall framework of SANA.
It contains two stages: skeleton construction and
surface realization. At the stage of skeleton
construction, we propose a Transformer-based
(Vaswani et al., 2017) pointer network to select
tokens from the table and compose them into a
skeleton. At the stage of surface realization, we
use an edit-based Transformer to expand the skele-
ton to a complete text via iterative insertion and
deletion operations.

3.1 Stage 1: Skeleton Construction
3.1.1 Table Encoder
The source table is a set of attributes represented
as key-value pairs ai = 〈ki, vi〉. Here, the value
of an attribute ai is flattened as a token sequence
vi = {w1

i , w
2
i , ..., w

l
i}, where wji is the j-th token

and l is the length of vi. Following Lebret et al.
(2016), we linearize the source table by represent-
ing each token wji as a 4-tuple (wji , ki, p

+
i , p

−
i),

where p+i and p−i are the positions of the token
wji counted from the beginning and the end of the
value vi, respectively. For example, the attribute
of “〈Name ID, {Thaila Ayala}〉” is represented as
“(Thaila, Name ID, 1, 2)” and “(Ayala, Name ID, 2,
1)”. In order to make the pointer network capable
of selecting the special token 〈EOS〉1, we add a

1〈EOS〉 denotes the end of the skeleton.

special tuple (〈EOS〉, 〈EOS〉, 1, 1) at the end of
the table.

To encode the source table, we first use a linear
projection on the concatenation

[
wj
i ;ki;p

+
i ;p

−
i

]
followed by an activation function:

f ji = Relu(Wf [w
j
i ;ki;p

+
i ;p−i] + bf) (1)

whereWf and bf are trainable parameters. Then
we use the Transformer encoder to transform each
f ji into a hidden vector and flatten the source table
into a vector sequenceH = {h1,h2, ...,hl}.

3.1.2 Pointer Network
After encoding the source table, we use a pointer
network to directly select tokens from the table
and compose them into a skeleton. Our pointer
network uses a standard Transformer decoder to
represent the tokens selected at the previous steps.
Let rt denote the decoder hidden state of previous
selected token ŷt. The pointer network predict the
next token based on the attention scores, which are
computed as follows:

αti =
eu(rt,hi)∑l
j=1 e

u(rt,hj)
(2)

u(rt,hi) =
(Wqrt) · (Wkhi)√

dr
(3)

where Wq and Wk are trainable parameters, dr
is the embedding dimension of rt. According to
the calculated probability distribution α, we select
token based on the following formula:

Pcopy(w) =
∑
w=wi

αti (4)

ŷt+1 = argmax
w

Pcopy(w) (5)

where ŷt+1 represents the output at the next
timestep, and Pcopy(w) represents the probability
of copying token w from the source. There may
be multiple identical tokens in the table, so we
sum up the attention scores of their corresponding
positions.

The pointer network needs target skeletons as
supervision, which are not provided by the table-to-
text datasets. In this paper, we obtain the skeleton
by collecting tokens in both the table and descrip-
tion except the stop words. The token order in the
skeleton remains the same as their relative posi-
tions in the description. More details are described
in Appendix A.

4834

Figure 2: The overall diagram of SANA for generating description for Thaila Ayala in Fig 1.

Given the skeleton S = {s1, s2, ..., sq}, the
pointer network is trained to maximize the con-
ditional log-likelihood:

L1 = −
q+1∑
t=1

log Pcopy(st|s0:t−1, T), (6)

where the special tokens s0 = 〈BOS〉 and sq+1 =
〈EOS〉 denote the beginning and end of the target
skeleton.

3.2 Stage 2: Surface Realization
At the surface realization stage, we use the same
encoder as in the skeleton construction stage. The
decoder is an edit-based Transformer decoder (Gu
et al., 2019) that generates text via insertion and
deletion operations. Different from the original
Transformer decoder which predicts the next to-
ken in an left-to-right manner, the edit-based de-
coder can predict tokens simultaneously and in-
dependently. In this setting, we can use the full
self-attention without causal masking.

3.2.1 Model Structure
To perform the insertion and deletion operations,
we remove the softmax layer at the top of the Trans-
former decoder and add three operation classifiers:
Deletion Classifier, Placeholder Classifier and To-
ken Classifier. We denote the outputs of the Trans-
former decoder as (z0, z1, ...,zn), details of these
three classifiers are as follows:

1. Deletion Classifier which predicts for each
token whether they should be “deleted”(1) or
“kept”(0):

πdelθ (d|i, Y) = softmax(Wdelzi) (7)

2. Placeholder Classifier which predicts the
number of placeholders [PLH] to be inserted
at each consecutive pair:

πplhθ (p|i, Y) = softmax(Wplh[zi; zi+1])
(8)

3. Token Classifier which replaces each [PLH]
with an actual token:

πtokθ (t|i, Y) = softmax(Wtokzi) (9)

During decoding, we use the skeleton predicted
from the first stage as the initial input of the de-
coder. We also use the full table information from
encoder side to mitigate the impact of incomplete
skeleton. As shown in Figure 2, the skeleton will
pass through the three classifiers sequentially for
several iterations. Benefiting from the full self-
attention, each operation is allowed to condition on
the entire skeleton, and thus reduces the probability
of hallucinating unfaithful contents in the final text.

3.2.2 Training
Following Gu et al. (2019), we adopt imitation
learning to train our model and simplify their train-
ing procedure. The iterative process of our model

4835

will produce various of intermediate sequences. To
simulate the iterative process, we need to construct
the intermediate sequence and provide an optimal
operation a∗ (either oracle insertion p∗, t∗ or or-
acle deletion d∗) as the supervision signal during
training. Given an intermediate sequence Y , the
optimal operation a∗ is computed as follows:

a∗ = argmin
a

D(Y ∗, E(Y,a)) (10)

Here, D denotes the Levenshtein distance (Leven-
shtein, 1965) between two sequences, and E(Y,a)
represents the output after performing operation a
upon Y .

To improve the training efficiency, we construct
the intermediate sequence via a simple yet effective
way. Given a source table, skeleton and reference
(T, S, Y ∗), We first calculate the longest common
subsequence X between S and Y ∗, and then con-
struct the intermediate sequence Y ′ by applying
random deletion on Y ∗ except the part of X . We
use Y ′ to learn the insertion and deletion operations.
The learning objective of our model is computed
as follows:

Ledit = Lins + λLdel (11)

Lins = −
∑
p∗i∈p∗

log πplhθ (p∗i |i, T, Y ′)

−
∑
t∗i∈t∗

log πtokθ (t∗i |i, T, Y ′′)
(12)

Ldel = −
∑
d∗i∈d∗

log πdelθ (d∗i |i, T, Y ′′′) (13)

where Y ′′ is the output after inserting placehold-
ers p∗ upon Y ′, Y ′′′ is the output by applying the
model’s insertion policy πtokθ to Y ′′.2 λ is the hyper
parameter.3

3.2.3 Inference
As mentioned above, at the inference stage, we use
the generated skeleton as the initial input of the
decoder. The insertion and deletion operations will
perform alternately for several iterations. We stop
the decoding process when the current text does
not change, or a maximum number of iterations has
been reached.

In order to completely retain the skeleton in the
generated text, we follow Susanto et al. (2020) to
enforce hard constraints through forbidding the

2We do argmax from Equation (9) instead of sampling.
3In our experiment, λ = 1 gives a reasonable good result.

deletion operation on tokens in the skeleton. Spe-
cially, we compute a constraint mask to indicate
the positions of constraint tokens in the sequence
and forcefully set the deletion classifier prediction
for these positions to “keep”. The constraint masks
are recomputed after each insertion and deletion
operation.

4 Experiment Setups

4.1 Datasets

We conduct experiments on the WikiBio (Lebret
et al., 2016) and WikiPerson (Wang et al., 2018)
datasets. Both datasets aim to generate a biography
from a Wikipedia table, but they have different
characteristics. Their basic statistics are listed in
Table 1.

Dataset Train Valid Test Avg Len

WikiBio 582,657 72,831 72,831 26.1
WikiPerson 250,186 30,487 29,982 70.6

Table 1: Statistics of WikiBio and WikiPerson datasets.
Avg Len means the average target length of the
datasets.

WikiBio This dataset aims to generate the first
sentence of a biography from a table. It is a particu-
larly noisy dataset which has 62% of the references
containing extra information not entailed by the
source table (Dhingra et al., 2019).

WikiPerson Different from the WikiBio whose
reference only contains one sentence, the reference
of WikiPerson contains multiple sentences to cover
as many facts encoded in the source table as pos-
sible. In addition, WikiPerson uses heuristic rules
to remove sentences containing entities that do not
exist in the Wikipedia table, making it cleaner com-
pared to the WikiBio dataset.

4.2 Evaluation Metrics

Automatic Metrics For automatic evaluation,
we apply BLEU (Papineni et al., 2002) as well as
PARENT (precision, recall, F1) (Dhingra et al.,
2019) to evaluate our method. Different from
BLEU which only compare the outputs with the
references, PARENT evaluates the outputs that con-
siders both the references and source tables. Fol-
lowing Wang et al. (2020), we further use their pro-
posed PARENT-T metric to evaluate our method
in WikiPerson dataset. PARENT-T is a variant of

4836

PARENT which only considers the correlation be-
tween the source tables and the outputs.

Human Evaluation Human ratings on the gen-
erated descriptions provide more reliable reflection
of the model performance. Following Liu et al.
(2019b), we conduct comprehensive human eval-
uation between our model and the baselines. The
annotators are asked to evaluate from three perspec-
tives: fluency, coverage (how much table content is
recovered) and correctness (how much generated
content is faithful to the source table). We hire 5
experienced human annotators with linguistic back-
ground. During the evaluation, 100 samples are
randomly picked from the WikiPerson dataset. For
each sample, an annotator is asked to score the de-
scriptions generated by different models without
knowing which model the given description is from.
The scores are within the range of [0, 4].

4.3 Implementation Details

We implement SANA using fairseq (Ott et al.,
2019). The token vocabulary is limited to the
50K most common tokens in the training dataset.
The dimensions of token embedding, key embed-
ding, position embedding are set to 420, 80, 5 re-
spectively. All Transformer components used in
our methods adopt the base Transformer (Vaswani
et al., 2017) setting with dmodel = 512, dhidden =
2048, nheads = 8, nlayers = 6. All models are
trained on 8 NVIDIA V100 Tensor Core GPUs.

For the skeleton construction model, the learn-
ing rate linearly warms up to 3e-4 within 4K steps,
and then decays with the inverse square root sched-
uler. Training stops after 15 checkpoints without
improvement according to the BLEU score. We set
the beam size to 5 during inference.

For the surface realization model, the learning
rate linearly warms up to 5e-4 within 10K steps,
and then decays with the inverse square root sched-
uler. Training stops when the training steps reach
300K. We select the best checkpoint according to
the validation BLEU.

4.4 Baselines

We compare SANA with two types of methods:
end-to-end methods and two-stage methods.

For end-to-end methods, we select the following
methods as baselines: (1) DesKnow (Wang et al.,
2018), a seq2seq model with a table position self-
attention to capture the inter-dependencies among
related attributes; (2) PtGen (Pointer-Generator,

See et al. (2017)), an LSTM-based seq2seq model
with attention and copy mechanism; (3) Struct-
Aware (Liu et al., 2018), a seq2seq model using a
dual attention mechanism to consider both key and
value information; (4) OptimTrans (Wang et al.,
2020), a Transformer based model that incorpo-
rates optimal transport matching loss and embed-
ding similarity loss. (5) Conf-PtGen (Tian et al.,
2019), a pointer generator with a confidence decod-
ing technique to improve generation faithfulness;
(6) S2S+FA+RL (Liu et al., 2019b), a seq2seq
model with a force attention mechanism and a re-
inforce learning training procedure; (7) Bert-to-
Bert (Rothe et al., 2019), a Transformer encoder-
decoder model where the encoder and decoder are
both initialized with BERT (Devlin et al., 2019).

For two-stage methods, we select the following
methods as baselines: (1) Pivot (Ma et al., 2019),
a two stage method that first filter noisy attributes
in the table via sequence labeling and then uses
the Transformer to generate text based on the filter
table; (2) Content-Plan (Puduppully et al., 2019),
a two stage method that first uses a pointer network
to select important attributes to form a content-plan
and then uses a pointer generator to generate text
based on the content-plan.

5 Results

5.1 Comparison with End-to-End Methods

We first compare SANA with end-to-end methods,
Table 2 shows the experimental results. From Table
2, we can outline the following statements: (1) For
WikiPerson dataset, SANA outperforms existing
end-to-end methods in all of the automatic evalu-
ation metrics, indicating high quality of the gen-
erated texts. Specially, we obtain a near-optimal
PARENT-T recall of 99.47, which shows that our
model has the ability to cover all the contents of the
table. (2) For the noisy WikiBio dataset, SANA out-
performs previous state-of-the-art models in almost
all of the automatic evaluation scores except the
PARENT precision, which confirms the robustness
of our method. Although Conf-PtGen achieves
the highest PARENT precision, its PARENT re-
call is significantly lower than any other method.
Different from Conf-PGen, SANA achieves the
highest recall while maintaining good precision.
(3) It is necessary to prohibit deleting tokens in the
skeleton. After removing this restriction (− hard
constrains), our method has different degrees of
decline in various automatic metrics. (4) SANA

4837

Model WikiPerson WikiBio
BLEU PARENT(P / R / F1) PARENT-T(P / R / F1) BLEU PARENT(P / R / F1)

DesKnow 16.20 63.92 / 44.83 / 51.03 41.10 / 84.34 / 54.22 - - / - / -
PtGen 19.32 61.73 / 44.09 / 49.52 42.03 / 81.65 / 52.62 41.07 77.59 / 42.12 / 52.10
Struct-Aware 22.76 51.18 / 46.34 / 46.47 35.99 / 83.84 / 48.47 44.93 74.18 / 43.50 / 52.33
OptimTrans 24.56 62.86 / 48.83 / 53.06 43.52 / 85.21 / 56.10 - - / - / -
Conf-PtGen - - / - / - - / - / - 38.10 79.52 / 40.60 / 51.38
S2S+FA+RL - - / - / - - / - / - 45.49 76.10 / 43.66 / 53.08
Bert-to-Bert - - / - / - - / - / - 45.62 77.64 / 43.42 / 53.54

SANA 25.23 65.69 / 56.88 / 59.96 44.88 / 99.47 / 61.34 45.78 76.93 / 46.01 / 55.42
− hard constrains 24.97 64.72 / 56.42 / 59.29 43.75 / 98.97 / 60.17 45.31 76.32 / 45.26 / 54.64
− skeleton 19.55 61.80 / 44.29 / 50.29 40.80 / 84.03 / 53.97 42.58 74.29 / 41.32 / 50.41

Table 2: Comparison with end-to-end methods. P, R, F1 represent precision, recall and F1 score, respectively. “−
hard constrains” means removing the restriction of forbidding the deletion operation on tokens in the skeleton, “−
skeleton” means removing the skeleton construction stage.

Model WikiPerson WikiBio
BLEU PARENT(P / R / F1) PARENT-T(P / R / F1) BLEU PARENT(P / R / F1)

Pivot 24.71 62.24 / 50.02 / 52.99 41.78 / 89.68 / 56.35 44.39 76.35 / 41.90 / 51.85
+ Oracle 25.08 62.34 / 50.63 / 53.47 42.08 / 89.71 / 56.59 45.38 75.98 / 42.57 / 52.45

Content-Plan 25.07 58.56 / 53.86 / 54.52 38.63 / 91.18 / 54.01 43.21 74.69 / 43.53 / 52.71
+ Oracle 28.50 59.31 / 56.02 / 55.96 39.64 / 91.62 / 55.07 50.57 76.32 / 47.33 / 56.45

SANA 25.23 65.69 / 56.88 / 59.96 44.88 / 99.47 / 61.34 45.78 76.93 / 46.01 / 55.42
+ Oracle 30.29 69.27 / 67.89 / 68.28 45.13 / 99.79 / 61.54 54.51 80.03 / 51.02 / 61.01

Table 3: Comparison with two-stage methods. P, R, F1 represent precision, recall and F1, respectively. “+ Oracle”
means using oracle information (i.e., oracle skeleton or content-plan) as input.

performs poorly after removing the skeleton con-
struction stage (− skeleton). This shows that the
edit-based non-autoregressive model is difficult
to directly apply to table-to-text generation tasks.
The skeleton is very important for the edit-based
model, which can significantly reduce the impact
of the multi-modality problem. Combining both
autoregressive and non-autoregressive generations,
SANA achieves state-of-the-art performance.

5.2 Comparison with Two-Stage Methods
We further compare SANA with the two-stage
methods. As shown in Table 3, there is an ob-
vious margin between SANA and the two base-
lines, which shows that SANA can more effectively
model the two-stage process. In order to prove that
SANA can make use of the information provided
by the first stage, we use the gold standard (i.e.,
the oracle skeleton or content-plan extracted from
heuristics methods) as the input of the models used
in the second stage. With this setup, SANA has
made significant improvements in multiple auto-
matic metrics while other methods have limited
improvements. Specially, the improvements of
Pivot are limited because its gold standard does
not model the order of the attributes. Although

Model Fluency ↑ Coverage ↑ Correctness ↑

Pivot 3.40 3.58 2.89
Content-Plan 3.39 3.70 2.98
Struct-Aware 3.31 3.60 2.94
DesKnow 3.45 3.42 3.07
SANA 3.46 3.72 3.11

Table 4: Human evaluation on WikiPerson for SANA
and baselines. The scores (higher is better) are based
on fluency, coverage and correctness, respectively.

the first stage of Content-Plan is similar to SANA,
its PARENT scores (either precision, recall and
F1) has not been obvious improved, especially on
WikiPerson dataset. This shows that the edit-based
decoder of SANA can make use of the oracle skele-
ton to produce high quality descriptions.

5.3 Human Evaluation

We report the human evaluation result on the
WikiPerson dataset in Table 4. From the demon-
strated results, it can be found that SANA outper-
forms the other end-to-end or two-stage models on
all the human evaluation metrics. This is consis-
tent with our model’s performance in the automatic
evaluation. In the evaluation of fluency, though the

4838

(1) Name ID: William Edward Ayrton (2) Place of burial: Brompton Cemetery (3) Place of birth: London
(4) Educated at: University College London (5) Date of birth: 14 September 1847 (6) Occupation: Physicist
(7) Date of death: 8 November 1908 (8) Aware received: Fellow of the Royal Society (9) Child: Barbara Ayarton-Gould

Model Miss Output
DesKnow (9) William Edward Ayrton Fellow of the Royal Society (14 September 1847 – 8 November

1908) was a British Physicist . Brompton Cemetery he was born in London the son of
Sir Thomas and his wife Mary (nee Fleming) . he was educated at University College
School and University College London .

Struct-
Aware

(1) (2) (9) William Edward Keeler Fellow of the Royal Society (14 September 1847 – 8 November
1908) was a British Physicist and Physicist . he was elected a Fellow of the Royal
Society in 1889 and was a member of the Royal Society of London and the Royal
Society of London and the Royal Society of London . he was educated at the University
College London and at the University College London where he was a pupil of the
chemist William.

OptimTrans None William Edward Ayrton Fellow of the Royal Society (14 September 1847 – 8 November
1908) was an English Physicist . William was born in London and educated at University
College London. he is buried in Brompton Cemetery London . he was elected a Fellow
of the Royal Society in 1901. he was the father of Barbara Ayrton-Gould .

SANA None William Edward Ayrton Fellow of the Royal Society (14 September 1847 – 8 November
1908) was an English Physicist . he is buried in Brompton Cemetery London . he
studied physics at University College London . Ayrton was born in London . he was the
father of Barbara Ayrton-Gould.

Table 5: Example outputs from different methods. The red text stands for the hallucinated content in each gen-
erated description. Given the table, all the models except SANA generate unfaithful content to varying degrees.
Meanwhile, both DesKnow and Struct-Aware miss some table facts, while SANA recovers them all.

models except for Struct-Aware reach similar per-
formances, SANA performs the best, which demon-
strates that its generation has fewer grammatical
and semantic mistakes. In the evaluation coverage,
SANA outperforms the Content-Plan model and
defeats the other models by a large margin. This
result is consistent with our proposal that SANA
can cover sufficient information in the source table,
and it can ensure the informativeness of genera-
tion. As to correctness, the advantage of SANA
over the other models indicates that our model gen-
erates more faithful content and suffers less from
the hallucination problem. It should be noted that
although Content-Plan and DesKnow are on par
with SANA on coverage and correctness respec-
tively, they fail to perform well on both metrics in
contrast with SANA. This indicates that our model
generates both informative and faithful content.

5.4 Case Study

Table 5 shows the descriptions generated by dif-
ferent methods from the test set of WikiPerson.4

DesKnow and Struct-Aware miss some attributes
and hallucinate unfaithful contents (marked in red).
Although OptimTrans achieves better coverage, it

4For fair comparison, we use the generation examples of
baselines provided by Wang et al. (2020)

hallucinates the unfaithful content “in 1901” not en-
tailed by the table. Compared to these methods, our
method can cover all the attributes in the table and
does not introduce any unfaithful contents. In addi-
tion, the generation length of SANA is shorter than
Struct-Aware and OptimTrans, which shows that
SANA can use more concise text to cover the facts
of the table. These results indicate our method is
capable of generating faithful and informative text.
We put more generation examples in Appendix B.

6 Conclusion

In this paper, we focus on faithful and informa-
tive table-to-text generation. To this end, we pro-
pose a novel skeleton-based method that combines
both autoregressive and non-autoregressive gen-
erations. The method divides table-to-text gener-
ation into skeleton construction and surface real-
ization stages. The separated stages helps model
better learn the correlation between the source table
and reference. In the surface realization stage, we
further introduce an edit-based non-autoregressive
model to make full use of the skeleton. We con-
duct experiments on the WikiBio and WikiPerson
datasets. Both automatic and human evaluations
demonstrate the effectiveness of our method, espe-
cially on faithfulness and coverage.

4839

Acknowledgements

We thank Tianyu Liu for his suggestions on this
research and his providing of inference results of
the baseline models. We also thank Yunli Wang for
the insightful discussion.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Junwei Bao, Duyu Tang, Nan Duan, Zhao Yan, Yuan-
hua Lv, Ming Zhou, and Tiejun Zhao. 2018. Table-
to-text: Describing table region with natural lan-
guage. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh,
Ming-Wei Chang, Dipanjan Das, and William Co-
hen. 2019. Handling divergent reference texts when
evaluating table-to-text generation. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4884–4895.

Katja Filippova. 2020. Controlled hallucinations:
Learning to generate faithfully from noisy data. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings,
pages 864–870.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6114–
6123.

Eli Goldberg, Norbert Driedger, and Richard I Kit-
tredge. 1994. Using natural-language processing to
produce weather forecasts. IEEE Expert, 9(2):45–
53.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor O. K. Li, and Richard Socher. 2018. Non-
autoregressive neural machine translation. In 6th
International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30

- May 3, 2018, Conference Track Proceedings. Open-
Review.net.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural In-
formation Processing Systems, pages 11179–11189.

Karen Kukich. 1983. Design of a knowledge-based re-
port generator. In 21st Annual Meeting of the As-
sociation for Computational Linguistics, pages 145–
150.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1203–1213.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1173–
1182.

V. I. Levenshtein. 1965. Binary codes capable of cor-
recting deletions, insertions, and reversals. Soviet
physics. Doklady, 10:707–710.

Tianyu Liu, Fuli Luo, Qiaolin Xia, Shuming Ma,
Baobao Chang, and Zhifang Sui. 2019a. Hierar-
chical encoder with auxiliary supervision for neural
table-to-text generation: Learning better representa-
tion for tables. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
6786–6793.

Tianyu Liu, Fuli Luo, Pengcheng Yang, Wei Wu,
Baobao Chang, and Zhifang Sui. 2019b. Towards
comprehensive description generation from factual
attribute-value tables. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5985–5996.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang,
and Zhifang Sui. 2018. Table-to-text generation by
structure-aware seq2seq learning. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Shuming Ma, Pengcheng Yang, Tianyu Liu, Peng Li,
Jie Zhou, and Xu Sun. 2019. Key fact as pivot: A
two-stage model for low resource table-to-text gen-
eration. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2047–2057.

Hongyuan Mei, Mohit Bansal, and Matthew R Walter.
2016. What to talk about and how? selective genera-
tion using lstms with coarse-to-fine alignment. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 720–730.

4840

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019.
Step-by-step: Separating planning from realization
in neural data-to-text generation. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 2267–2277.

Preksha Nema, Shreyas Shetty, Parag Jain, Anirban
Laha, Karthik Sankaranarayanan, and Mitesh M
Khapra. 2018. Generating descriptions from struc-
tured data using a bifocal attention mechanism and
gated orthogonalization. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1539–1550.

Feng Nie, Jinpeng Wang, Jin-ge Yao, Rong Pan, and
Chin-Yew Lin. 2018. Operation-guided neural net-
works for high fidelity data-to-text generation. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3879–3889.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and
Dipanjan Das. 2020. Totto: A controlled table-to-
text generation dataset. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1173–1186.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 6908–6915.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87.

Sascha Rothe, Shashi Narayan, and A. Severyn. 2019.
Leveraging pre-trained checkpoints for sequence
generation tasks. Transactions of the Association for
Computational Linguistics, 8:264–280.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1073–
1083.

Lei Sha, Lili Mou, Tianyu Liu, Pascal Poupart, Sujian
Li, Baobao Chang, and Zhifang Sui. 2018. Order-
planning neural text generation from structured data.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wenfei
Xu, et al. 2019. Long and diverse text generation
with planning-based hierarchical variational model.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3248–
3259.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In Pro-
ceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97, pages
5976–5985. PMLR.

Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He,
Zi Lin, and Zhihong Deng. 2019. Fast structured
decoding for sequence models. Advances in Neural
Information Processing Systems, 32:3016–3026.

Raymond Hendy Susanto, Shamil Chollampatt, and
Liling Tan. 2020. Lexically constrained neural ma-
chine translation with levenshtein transformer. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3536–
3543.

Ran Tian, Shashi Narayan, Thibault Sellam, and
Ankur P Parikh. 2019. Sticking to the facts: Con-
fident decoding for faithful data-to-text generation.
arXiv preprint arXiv:1910.08684.

Bayu Trisedya, Jianzhong Qi, and Rui Zhang. 2020.
Sentence generation for entity description with
content-plan attention. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 9057–9064.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30:5998–6008.

Chaojun Wang and Rico Sennrich. 2020. On exposure
bias, hallucination and domain shift in neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3544–3552.

Qingyun Wang, Xiaoman Pan, Lifu Huang, Boliang
Zhang, Zhiying Jiang, Heng Ji, and Kevin Knight.
2018. Describing a knowledge base. In Proceed-
ings of the 11th International Conference on Natural
Language Generation, pages 10–21.

4841

Zhenyi Wang, Xiaoyang Wang, Bang An, Dong Yu,
and Changyou Chen. 2020. Towards faithful neural
table-to-text generation with content-matching con-
straints. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1072–1086.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document gen-
eration. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 2253–2263.

A Automatic Skeleton Annotation

Algorithm 1 describes the automatic skeleton an-
notation process. Given a table and its correspond-
ing description, we first collect tokens appearing
in both the table and description except the stop
words, then these tokens are sorted based on their
positions in the description in ascending order. In
this way, we can obtain a sequence composed of
the selected tokens. We regard this sequence as a
skeleton.

B More Generation examples

We further provide a case study, using another two
examples (including a very challenging example
which needs to recover a large number of facts), to

show the effectiveness of our method SANA. In the
following pages, we show the example outputs in
Table 6 and 7. In these examples, the SANA model
shows much better capability of generating infor-
mative and faithful descriptions compared with the
baselines.

Algorithm 1 Automatic Skeleton Annotation
Input: A stop word set W , a parallel dataset D =
{(T1, Y ∗1), (T2, Y ∗2), ..., (T|D|, Y ∗|D|)};

Output: A skeleton list S;
1: Initial the skeleton list S = []
2: for (Ti, Y

∗
i) ∈ D do

3: Ti = ((k1, v1), (k2, v2), ..., (km, vm))
4: Vi = (v1, v2, ..., vm)
5: Y ∗i = (y∗1, y

∗
2, ..., y

∗
n)

6: Initialize the skeleton list Si = []
7: for y∗j ∈ Y ∗i do
8: if y∗j ∈ Vi and y∗j /∈W then
9: Append token y∗j to the skeleton list Si

10: end if
11: end for
12: collect the skeleton list S += Si
13: end for

4842

(1) Name ID: Aaron Miller (2) Member of sports team: Colorado Avalanche (3) Member of sports team: Quebec
Nordiques (4) Date of birth: August 11 1971 (5) Place of birth: Buffalo, New York (6) Country of citizenship: United
States (7) Participant of: 2006 Winter Olympics (8) Participant of: 2002 Winter Olympics (9) Sport: Ice hockey
(10) Position played on team / speciality: Cornerback

Model Miss Output
DesKnow 7, 8 Aaron Miller (born August 11 1971) is an United States former professional Ice

hockey Defenceman who played in the National Hockey League (NHL) for the Quebec
Nordiques and the Colorado Avalanche . he was born in Buffalo, New York and played
for the Quebec Nordiques and the Ottawa Senators .

Struct-
Aware

7, 8 Aaron Miller (born August 11 1971 in Buffalo, New York New York) is a retired United
States professional Ice hockey Defenceman who played in the National Hockey League
(NHL) for the Quebec Nordiques Colorado Avalanche Colorado Avalanche Colorado
Avalanche Colorado Avalanche and Quebec Nordiques. he was drafted in the 2nd round
of overall of the 2002 NHL Entry Draft.

OptimTrans None Aaron Miller (born August 11 1971 in Buffalo, New York) is an United States former
professional Ice hockey Defenceman who played in the National Hockey League (NHL)
for the Quebec Nordiques and Colorado Avalanche . he was a member of the United
States men’s national Ice hockey team at the 2002 Winter Olympics and 2006 Winter
Olympics.

SANA None Aaron Miller (born August 11 1971 in Buffalo, New York) is a retired United States
professional Ice hockey Defenceman . he also played for the Quebec Nordiques and the
Colorado Avalanche . Miller was also a member of United States ’s ice hockey in the
2002 Winter Olympics and 2006 Winter Olympics .

Table 6: Example outputs from different methods. The red text stands for the hallucinated content in each generated
description. Compared with DesKnow and Struct-Aware, SANA recovers all the table facts without generating any
unfaithful content.

4843

(1) Name ID: Émile Mbouh (2) Member of sports team: Le Havre AC (3) Member of sports team: Perlis FA
(4) Member of sports team: Sport Benfica e Castelo Branco (5) Member of sports team: Qatar SC (6) Mem-
ber of sports team: Vitória S.C. (7) Member of sports team: Tanjong Pagar United FC (8) Member of sports team:
CS Chênois (9) Member of sports team: Cameroon national football team (10) Number of matches played: 46 (11)
Number of points / goals / set scored: 2 (12) Member of sports team: Union Douala (13) Member of sports team:
Diamant Yaoundé (14) Member of sports team: Ettifaq FC (15) Member of sports team: Liaoning Whowin F.C.
(16) Member of sports team: Sabah FA (17) Place of birth: Douala (18) Date of birth: 30 May 1966 (19) Sport:
Association football (20) Participant of: 1994 FIFA World Cup (21) Participant of: 1990 FIFA World Cup (22) Posi-
tion played on team / speciality: Midfielder

Model Miss Output
DesKnow 2, 3, 4, 5, 6, 8,

10, 11, 12, 13,
14, 15, 16, 21,
22

Émile Mbouh (born 30 May 1966) is a former Cameroon national football team
Association football . he was born in Douala and played for the Tanjong Pagar United
FC in the 1994 FIFA World Cup .

Struct-
Aware

2, 3, 4, 5, 6, 8,
10, 11, 12, 13,
14, 15, 16, 17,
21

Émile Mbouh, (born 30 May 1966) is a Cameroonian retired Association football who
played as a Midfielder . Le represented Cameroon national football team at the 1994
FIFA World Cup and 1994 FIFA World Cup . he played for Le FC Sport Yaoundé,
United Yaoundé and Tanjong Pagar United FC

OptimTrans 2, 3, 5, 6, 8, 12,
13, 14

Émile Mbouh (born 30 May 1966) is a Cameroonian retired Association football who
played as a Midfielder . born in Douala Émile began his career with Sport Benfica e
Castelo Branco and Tanjong Pagar United FC . he also represented Cameroon national
football team at the 1994 FIFA World Cup and 1990 FIFA World Cup . he also played
for Sabah FA and Liaoning Whowin F.C. in the Malaysia Super League . he also played
for Tanjong Pagar United FC and Liaoning Whowin F.C. in the Chinese Super League.

SANA 3, 12, 13, 21 Émile Mbouh (born 30 May 1966) is a retired Cameroonian Association football who
played as a Midfielder . born in Douala Mbouh played club football in France for Sport
Benfica e Castelo Branco Le Havre AC CS Chênois Vitória S.C. Tanjong Pagar United
FC Qatar SC Ettifaq FC Tanjong Pagar United FC Qatar SC Sabah FA and Liaoning
Whowin F.C. . Mbouh played for the Cameroon national football team (46 caps and
scoring 2 goals) and two games at the 1994 FIFA World Cup .

Table 7: Example outputs from different methods. The red text stands for the hallucinated content in each generated
description. This table contains a large number of facts to recover, which makes the case very challenging. In
contrast with the other models, SANA misses much fewer facts and does not produce unfaithful content.

