EBERT: Efficient BERT Inference with Dynamic Structured Pruning

Zejian Liu?, Fanrong Li'%, Gang Li' and Jian Cheng'*

'National Laboratory of Pattern Recognition, Institute of Automation, CAS
2School of Future Technology, University of Chinese Academy of Sciences
{liuzejian2018, lifanrong20l17}Q@ia.ac.cn,gangli0426@gmail.com,
jcheng@nlpr.ia.ac.cn

Abstract

Pruning has been demonstrated as an effective
way of reducing computational complexity for
deep networks, especially CNNs for computer
vision tasks. In this paper, we investigate
the opportunity to accelerate the inference
of large-scale pre-trained language model via
pruning. We propose EBERT, a dynamic struc-
tured pruning algorithm for efficient BERT in-
ference. Unlike previous methods that ran-
domly prune the model weights for static in-
ference, EBERT dynamically determines and
prunes the unimportant heads in multi-head
self-attention layers and the unimportant struc-
tured computations in feed-forward network
for each input sample at run-time. Experimen-
tal results show that our proposed EBERT out-
performs other state-of-the-art methods on dif-
ferent tasks.

1 Introduction

In the last few years, transformer-based (Vaswani
et al., 2017) large-scale pre-trained language mod-
els, such as BERT (Devlin et al., 2019), RoOBERTa
(Liu et al., 2019), and GPT-3 (Brown et al.,
2020), have achieved state-of-the-art results on
many NLP tasks, including language understand-
ing, question answering, and reading comprehen-
sion. Most recently, researchers also successfully
applied transformer-based models to computer vi-
sion tasks, achieving comparable or superior perfor-
mance compared to traditional convolutional net-
works. For example, Carion et al. (2020) propose
detection transformer (DETR) for object detection,
Dosovitskiy et al. (2021) design a transformer-
based model, namely Vision Transformer (ViT),
for image classification. However, due to the no-
table computational complexity and memory foot-
print, it is difficult for these models to deploy on
hardware platforms under moderate computing and
resource budget. Therefore, how to reduce model

complexity to enable efficient inference for large-
scale pre-trained language models is a critical issue.

Pruning is a commonly used technique for net-
work compression, which has been widely explored
to reduce computation and storage requirements of
convolutional neural networks for computer vision
tasks (Han et al., 2015, 2016; Li et al., 2016). How-
ever, can transformer-based models benefit from
pruning? Michel et al. (2019) observe that a large
percentage of attention heads can be removed with
negligible performance drop, which indicates that
the importance of different heads in same layer is
different. Sanh et al. (2020) propose a simple, deter-
ministic first-order weight pruning method which
can prune lots of parameters with minimal accuracy
loss. Although these methods are able to reduce
the memory footprint, they cannot achieve real per-
formance gain on general-purpose hardware, such
as GPGPU, due to the unstructured sparsity after
pruning.

Adaptive inference strategy is also proposed to
accelerate the inference of BERT. It is based on two
observations: 1) the input samples usually have dif-
ferent levels of difficulty. For a given model, it
may over-calculate the simple samples while fail
in complex samples (Liu et al., 2020); 2) similar
to convolutional neural networks, the lower and
higher layers of transformer extract different infor-
mation, and features provided by the intermediate
layers may be enough for some samples (Xin et al.,
2020). FastBERT (Liu et al., 2020) and DeeBERT
(Xin et al., 2020) are two state-of-the-art adaptive
inference models for compressing BERT. Both of
them insert extra classification layers between each
layer of the network. During inference, each input
sample only goes through part of model when the
outputs of extra classifiers meet predefined criteria
like entropy and uncertainty. Because the number
of executed layers is reduced, real speedup can be
achieved. However, skipping all the computations

4814

Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4814-4823
August 1-6, 2021. ©2021 Association for Computational Linguistics

of the remaining layers may be harmful to the ac-
curacy.

In this paper, we propose EBERT, a hardware-
friendly, simple yet effective algorithm that incor-
porates structured pruning with adaptive inference
for efficient BERT inference. Specifically, EBERT
inserts predictors for self-attention sub-layer and
feed-forward sub-layer in each transformer block,
as illustrated in Figure 1. During inference, the
predictors dynamically determine which heads of
self-attention layers and channels of feed-forward
network can be pruned according to current in-
put. Once a head or a channel is pruned, the cor-
responding computations and memory cost can be
completely avoided. Compared with static pruning
methods that permanently prune some parameters,
it can avoid prune important parameters for cur-
rent input samples which will cause large perfor-
mance drop. To the best of our knowledge, it’s the
first time to apply dynamically structured pruning
to BERT. Experimental results on different bench-
mark demonstrate that the proposed EBERT can
achieve better trade-off between computation re-
duction and accuracy.

2 Related Work

Adaptive inference. As different input samples
usually have different levels of difficulty, using
fixed-size model to process all samples may be
non-optimal in terms of computational efficiency.
Therefore, the main goal of adaptive inference is to
adaptively skip part of the computations according
to each input sample to reduce complexity. Fast-
BERT (Liu et al., 2020) adds student classifiers
to the output of each transformer block and use
self-distillation strategy to improve performance.
The model architecture of DeeBERT (Xin et al.,
2020) is similar to FastBERT, but it use entropy
of output to decide whether to exit at early stages.
PABEE (Zhou et al., 2020) proposes a novel early-
exit criterion that dynamically stops forward com-
puting when the output of internal classifiers keep
unchanged for a pre-defined number of steps.

Pruning. Pruning is an intuitively simple yet ef-
fective technique for model compression, which re-
moves unimportant computations based on certain
criterion. Michel et al. (2019) observe that a large
percentage of attention heads can be removed with
negligible performance loss and propose a greedy
pruning algorithm. Compressing BERT (Gordon
et al., 2020) explores the effect of unstructured

f

[Classifier]

Embedding Layer

Input Sentence

Figure 1: The overall architecture of EBERT. For each
input sentence, the predictor dynamically determines
which heads or channels can be pruned.

weight pruning with different levels of pruning and
different training stages. McCarley et al. (2019) in-
vestigate the relationship between structured prun-
ing and task-specific distillation. SNIP (Lin et al.,
2020) proposes a structured pruning method to pe-
nalize an entire residual module in Transformer
model toward an identity mapping.

Distillation. Knowledge Distillation (Hinton
et al., 2015) is an effective technique to get light
models from heavy models without sacrificing too
much performance. DistilBERT (Sanh et al., 2019)
leverages knowledge distillation at pre-training
phase to get a lighter pre-trained model, then di-
rectly fine-tunes on downstream tasks. BERT-PKD
(Sun et al., 2019) proposes an incremental knowl-
edge extraction process. Apart from learning from
the final output of teacher model, student model
also patiently learns from intermediate layers. Tiny-
BERT (Jiao et al., 2020) performs distillation at
both the pre-training and task-specific fine-tuning
phase. Data augmentation is also used to improve
the accuracy of student model.

3 Methods

In this section, we will first introduce the architec-
ture of EBERT. As shown in Figure 1, it can be
divided into BERT branch and predictor branch.
Then we will describe the training and inference in
details.

4815

mask:[100 1]

Predictor_s

“—d—

Output
(a) Predictor_s in MHA.
X mask:[100111]
Predictor_f
Ageeiintnis it S Y
! ﬁFCZH(-)]
: : Chan:‘lell Selector
! FC1+BN+ReLg]
\ A J
(CO N m— !
X —> X —>
— d—> —d,— —d — >
Input | £} 0, w, Output

(b) Predictor_fin FFN.

Figure 2: The details of predictors in MHA and FFN layer. Here we assume that n = 4, h = 4 and d; = 6. Shadow

area means that computations can be skipped.

3.1 BERT Branch

The architecture of BERT consists of three parts:
the embedding layer, multi-layer bidirectional
Transformer encoders and the task-specific clas-
sification layer. Given an input sentence S =
[s0, 51, ..., Sn| With length n, where sg is usually
a special classification token [C'LS], the embed-
ding layer will transform it to a sequence of vector
representations:

E = Embedding(S), E € R™¢ (1)

The Transformer encoder contains two sub-
layers: multi-head self-attention (MHA) layer and
position-wise fully connected feed-forward net-
work (FFN),

Z; = LN(FFN(H;)+ H;)
wheret =1,2,..., Land Zy = E. LN is the Layer
Normalization operation.
The final component of BERT is a task-specific

classification layer. It accepts the representation to
[C'LS] token as input to generate final results, as:

O = Classifier(Zr[0,:]) (3)

2)

3.2 Predictor Branch

In order to prune unimportant heads and channels
for individual input sentence, we add predictors
for MHA and FFN in each layer, respectively. The
predictor consists of two feed-forward layer, one
batch normalization layer and a ReLLU activation
layer, as depicted in Figure 2. The output ¢ of the
second feed-forward layer will be transformed to a
0-1 mask by a function f(-):

t = FC2(ReLU(BN(FC1(z))))

4
m = f(t),m € {0,1} &

where z = Z[0, :]. It means that the input of pre-
dictor is only [C'LS] representation. This choice
is based on two reasons. 1) Overhead. Although
using the whole representation of input sentence
may improve the performance of predictors, the
amount of computations increases linearly with the
sentence length n. When n is large, the computa-
tional overhead of predictors can not be ignored.
2) Representation ability. Because the final hid-
den state to [C'LS] token in the last transformer
block is used in task-specific classifier to generate
classification results, we assume that [C'LS] repre-

4816

sentation encodes most of the useful information
of the sentence. Note that the representation to
[C'LS] token in the first MHA is independent with
the input sentence, so we use average pooling of
MHA as input.

Intuitively, ¢ represents the probability of heads
or channels being selected. In order to train the
model end-to-end with back propagation, Gumbel-
Softmax trick (Jang et al., 2017; Maddison et al.,
2016) is adopted in our model. Given class prob-
abilities my, ma, ...y, discrete samples z can be
drawn as:

z = one_hot(arg max[g; + logm;]) (5)

i
where g; is a sample drawn from a Gumbel distri-
bution. Gumbel-Softmax trick replaces arg max
operation with a softmax function, which is a con-
tinuous differentiable approximation to arg max:

i = exp((log(m;) + gi)/T ©)

>y eaxp((log(mj) + g;)/7)

As the value of mask m is binary (0 for
prune and 1 for preserve), we can simplify the
Gumbel-Softmax formulation (Verelst and Tuyte-
laars, 2020). For the output t[i] € (—o0, 0), we
can convert it to probabilities 7; and 72 by using a
sigmoid function o:

m = o(t[i])
mo = 1 — o(t[i]) @
Substituting (7) into (6), we can get:
tli] + g1 —
o = oL il g2 N
y2=1—1

As y1 < yo means the head or channel will be
pruned, the final formulation is:

1, i 0.5
f(t[i])={ f o= ©)

0, otherwise

3.3 Training

The entire training process can be divided into three
stages: fine-tune the BERT branch, joint train both
branches, and re-train the BERT branch.

Fine-tuning. In the first stage, only BERT
branch is fine-tuned on downstream tasks with loss
Liqsk- The training strategy is the same as BERT
in (Devlin et al., 2019).

Joint Training. In this stage, we jointly train the
pre-trained BERT branch and randomly initialized
predictor branch to make the average ratio of re-
maining Floating-point operations (FLOPs) reach
a target value C; € [0, 1]. In order to achieve this
goal, we add a loss to minimize the difference be-
tween real computational cost of the whole network

and Cj:)
F.
e~ (5-0)

Where F, is the FLOPs of original network, and
F, is the average FLOPs of current model in a
mini-batch.

In addition to the FLOPs constraint, we also add
extra loss function to control the sparsity of each
MHA and FFN, as in (11). The purpose is to avoid
high sparsity of some layers that is harmful to the
accuracy of the model.

1 L—1 FlM 2
_ c
e =13 (7w <)
1=0 o
L—1 IF 2
i3 ()
L £

where F'™ and F!M refer to the FLOPs of I-th
MHA in current model and original model. The
definition of F¥" and F!¥ is similar. The final loss
to be optimized is then given by

(10)

Lr=
1=0

L= Etask: +)\1£s + >\2(£M + EF) (12)

where A\ and A5 control the magnitude of task and
sparsity loss, respectively.

Re-training. As different input samples usually
activate different parts of heads, the total update of
a particular head is less than that of regular training
process. As a result, the heads are probably not
trained sufficiently. So do the channels in FFNs.
Therefore, in this stage, we freeze the parameters
of predictors and only re-train the BERT branch.

3.4 Inference

The computation flow during inference is shown in
Figure 2. Given an input sequence, the predictor
generates a mask by using the representation to
[CLS] token. For MHA, heads with mask *0’ will
not be executed. For FFN, as matrix-matrix mul-
tiplication can be transformed to multiple matrix-
vector multiplications, we only need to complete
part of computations where vector’s mask is not
Zero.

4817

BERT-base | L=12, h=12, d=768, d; = 3072
Predictor, 768 — 64 — 12
Predictor 768 — 64 — 3072

Table 1: The detailed setting of BERT and Predictors.
RoBERTa is with the same setting.

Note that the exponential operation in (8) is typ-
ically expensive on hardware. Fortunately, this
formulation can be simplified during inference by
removing Gumbel noise. f(-) now can be rewritten

as: . '
f(t[z’])—{l’ i >0

0, otherwise

4 Experiments

4.1 Setup

Datasets and Metrics. To verify the effective-
ness of EBERT, we conduct experiments on four
classification tasks from GLUE benchmark (Wang
et al., 2018): Multi-Genre Natural Language Infer-
ence Matched/Mismatched (MNLI-m/mm), Quora
Question Pairs (QQP), Question Natural Language
Inference (QNLI) and Stanford Sentiment Tree-
bank (SST-2). We exclude other tasks as the results
have large variance due to the number of train-
ing examples is very small (Iess than 9k). MNLI-
m/mm, SST-2 and QNLI use accuracy as metric,
while the average of F1 and accuracy is used for
QQP.

Furthermore, we also conduct experiments on
SQuADI1.1 (Rajpurkar et al., 2016) and SQuAD?2.0
(Rajpurkar et al., 2018), both of which are large-
scale reading comprehension datasets. SQuAD1.1
consists of more than 100k questions, and the an-
swer to each question is a segment of text from
the corresponding reading passage. SQuAD2.0 is
more difficult as it contains over 50k unanswerable
questions. We mainly report Exact Match (EM)
and F1 scores.

Implementation details. We apply the proposed
methods to both BERT-base and RoBERTa-base,
and implement them with the HuggingFace Trans-
formers Library (Wolf et al., 2020). The detailed
setting of BERT and predictors is shown in Table 1.
Figure 3 shows the ratio of FLOPs and parame-
ters of each operation in one encoder. We can find
that the extra cost of the predictors is very small.
All experiments are completed on a single Nvidia
GeForce RTX2080Ti GPU.

MHA,
35.12%

(b) #FLOPs

MHA,
: \ 32.00%
redictor

(a) #Params

Figure 3: The ratio of FLOPs and parameters of each
operation in one encoder.

For the GLUE benchmark, we set batch size
to 32, learning rate to 3e-5, training epochs to 3
while other hyperparameters are kept unchanged
from the library for all downstream tasks at back-
bone fine-tune stage. During joint training, we use
A1 = 4, Ao = 20 for BERT while A\ = 2, Ao = 10
for RoBERTa. The learning rate for predictors’
parameters is 0.02 and 0.01, respectively. The hy-
perparameters in the third stage is the same as the
first stage.

For SQuADI1.1 and SQuAD2.0, the batch size
is 12, learning rate is 3e-5 and training epoch is 2.
Other settings are consistent with those for BERT
on GLUE benchmark.

Baseline. In order to evaluate the effectiveness
of EBERT, we implement a Top-k version of BERT
that f(-) is as (14). We keep the sparsity of each
layer the same, so the value of k can be decided by
C;. What’s more, for a certain &, the sparsity is a
fixed value, so no extra loss need to be added. The
training objective is just L;4s%. The training meth-
ods is the same as EBERT with Gumbel-Softmax.

1, of t[i] € topk(t)

. (14)
0, otherwise.

For convenience, in the following sections we
will use the subscript ¢ to represent Top-k version
and use subscript g for Gumbel-Softmax version.

4.2 Results on the GLUE benchmark

The main results of our proposed method on the
development set of GLUE benchmark are shown
in Figure 4. For BERT-base, the results of Gumbel-
Softmax is always better than Top-k with the
same or even smaller ratio of remaining FLOPs
on four tasks. For example, when remaining 50%
FLOPs, EBERT, only drops 0.6% on QQP task,
while EBERT; drops 1.8%. On the MNLI task,
EBERT,’s accuracy with 77% remaining FLOPs
is higher than the accuracy of EBERT; with 81%
remaining FLOPs.

4818

MNLI-m(84.7) QQP(89.5) QNLI(91.5) SST-2(93.2)
y 3 89.0 ~ 92
5 3 A
5 T 885 g g
A = < <91 S/
i 4 % 580 5 5 /
o 3 L
5 z 8 % g
Sel 5 / 9%
=81 Gumbel 5 875 S/ g Gumbel P Gumbel Gumbel
/ —e— Topk 870 —e— Topk ss| —e— Topk) —e— Topk
40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80
Remaining FLOPs % Remaining FLOPs % Remaining FLOPs % Remaining FLOPs %
(a) BERT-base
MNLI-m(88.0) QQP(89.8) QNLI(92.8) SST-2(94.2)
94
861 89.5 _
o 8) 91 e
285 S 200 > % —
5 = / ’ 3 90 51 1
R4 = VZ < < 2 =
a S 88.5) Iy Y
= 83 g / R R
ks z ¢ [SIE) I
5 T 88.0 p
=8 Gumbel 5 // Gumbel / Gumbel y Gumbel
b —e— Top-k 8751 / —e— Topk 88) / —e— Topk 90| / —e— Topk
811 ¢
40 50 60 70 80 40 50 60 70 80 40 50 60 70 80 40 50 60 70 80

Remaining FLOPs % Remaining FLOPs %

Remaining FLOPs % Remaining FLOPs %

(b) RoBERTa-base

Figure 4: Results on the development set of GLUE benchmark.

Figure 4(b) shows the performance of ER-
oBERTa, and we can find the similar result, e.g.
with 50% remaining FLOPs, the performance of
ERoBERTa, is 2.3% higher than EROBERTa, on
the MNLI task. This proves the generality of our
proposed method to different model.

4.3 Results on the SQuAD benchmark

To further demonstrate the generality of our
method, we conduct experiments on the SQUAD
v1.1 and v2.0 benchmark, which are reading com-
prehension task that the model need to predict the
answer text span in the text for a given question.
The results are shown in Figure 5. Similar to the
observation in Figure 4, our approach achieves con-
sistent improvement on each ratio of remaining
FLOPs compared with the Top-k version. For in-
stance, with 50% remaining FLOPs, EBERT im-
proves the EM and F1 score by 2.8% and 2.4%
on SQuAD vl.1, respectively. On SQuAD v2.0,
the improvement of EM and F1 score is 3.3% and
3.4%.

4.4 Comparison with Other Methods

We compare our proposed EBERT with other state-
of-the-art compression methods. For distillation
methods, we compare with DistilBERT (Sanh et al.,
2019), BERT-PKD(Sun et al., 2019) and BERT-of-
Theseus (Xu et al., 2020). For pruning, we compare
with SNIP (Lin et al., 2020). We also compare with
other two dynamic methods: DeeBERT (Xin et al.,
2020) and PABEE (Zhou et al., 2020). We do

SQuADL.1(88.5) SQuAD1.1(81.3)

/ Gumbel
—o— Topk

50 60 70
Remaining FLOPs %

SQuAD2.0(75.3)

Gumbel
—o— Topk

80 40 50 6 70 80
Remaining FLOPs %

SQuUAD2.0(72.1)

74
701

Dev-EM

Gumbel
Top-k

Gumbel
—eo— Top-k

66

50 60 70

40 80
Remaining FLOPs %

50 60 70
Remaining FLOPs %

Figure 5: Results on the development set of SQuAD
benchmark.

not compare with FastBERT (Liu et al., 2020) as
they don’t report results on the GLUE and SQuAD
benchmark.

Note that other works don’t report the FLOPs.
However, as all of these methods try to reduce com-
putational cost by reducing the number of layers
dynamically or statically, it is reasonable to get
FLOPs from speedup ratio or compression ratio un-
der the assumption that the FLOPs is proportional
to the execution time for a specific layer. For ex-
ample, as the DistilBERT-6L only has half number
of layers of BERT-base, we assume the ratio of
remaining FLOPs is 50%.

4819

MNLI-m SST-2 QQP QNLI
Acc. RF%. Acc. RF%. Fl/Acc. RF%. Acc. RF%.
dev set
BERT-base 84.7 100 932 100 87.9/91.1 100 915 100
DistilBERT-6L. 82.2 50 91.3 50 -/88.5 50 89.2 50
BERT-PKD 81.3 50 91.3 50 - - - -
SNIP - - 91.8 50 -/88.9 50 89.5 50
DeeBERT 80.7 63 90.0 63 - - - -
PABEE 83.6 62 92.0 62 - - - -
82.4 51 91.6 50 87.2/90.6 50 89.6 51
EBERT, 83.1 60 92.2 60 87.5/90.8 59 90.2 59
test set
BERT-base 84.7 100 937 100 71.5/89.4 100 90.8 100
BERT-PKD 81.5 50 92.0 50 70.7/88.9 50 89.0 50
BERT-of-Theseus | 82.4 50 92.2 50 71.6/89.3 50 89.6 50
DeeBERT 80.0 63 91.5 53 69.4/- 51 87.3 56
82.4 50 92.8 50 70.1/88.8 50 89.2 50
EBERT, 83.3 60 934 60 70.0/88.8 59 89.6 59

Table 2: Comparison with other compressed methods on the development and test set of MNLI, SST-2, QQP and

QNLI. RF means the ratio of remaining FLOPs.

Table 2 lists the results on both development set
and test set. The results on test set are provided
by the GLUE evaluation server. Compared with
other methods, our approach retains competitive
performance with less FLOPs. For instance, our
approach achieves the accuracy of 92.2% on SST-
2 with 60% remaining FLOPs. On the test set of
MNLI task, the accuracy of our method is 83.3%
with only 60% remaining FLOPs, while DeeBERT’
accuracy is 80.0% with 63% remaining FLOPs.

4.5 Further Analysis

4.5.1 Impact of Re-training

The training process of EBERT contains three
stages: fine-tuning, joint training and re-training.
The purpose of re-training is to make each head
and channel sufficiently trained. To evaluate the
efficacy of this stage, we conduct experiments with
RoBERTa on two tasks. Results are shown in Fig-
ure 6, we can see that the performance improve-
ment is obvious. With 50% remaining FLOPs, the
performance of the model is improved from 84.4%
to 85.0% on MNLI and 92.2% to 92.8% on SST-2,
respectively. The average performance improve-
ment on MNLI and SST-2 is 0.4% and 0.8%, re-
spectively. Comparing these two results, we find
that the improvement is more obvious on small
datasets. The reason for this phenomenon is that
the parameters of the model are updated more fre-

MNLI-m(88.0) SST-2(94.2)
[94
861
o
2
- 893
85 <
a >
E 2
S 92
§ 8 W/0 re-train W/0 re-train
re-train —e— re-train
40 40

50 60 70 50 60 70
Remaining FLOPs% Remaining FLOPs%

Figure 6: The effectiveness of re-training stage for
RoBERTa on MNLI and SST-2.

quently on large datasets, which makes the training
of the model more sufficient at the joint training
stage. As a result, re-training can be skipped for
large datasets to make trade-offs.

4.5.2 Mask Distribution

Like in (Chen et al., 2019), we investigate the dis-
tribution of the learned masks. Although EBERT
can dynamically generate mask for each head and
channel for different samples, some masks may be
constant of all time, which means that these masks
are input-independent. Figure 8 is the layer-wise vi-
sualization of mask distribution in MHA and FFN
on SST-2 task for masks that are 1) always one (on),
2) always zero (off), and 3) input-dependent. We
can see that a large subset of the masks are input-
dependent for both heads and channels, which in-
dicates that our model learns to predict the im-

4820

0 MHA M FFN

80% Remaining FLOPs 40% Remaining FLOPs
5
10 200 5 1500
g 2000 4
E 1000 E
-g 6 1500 % —g 3 %
O = o} =
& S @)
* 4 1000 ¥ H*+ 9 I+
500
2 500 1
0 2 4 6 8 10 2 0 2 4 6 8 10 2
Layer Layer

Figure 7: Average number of non-pruned heads of MHA and non-pruned channels of FFN by layer for RoBERTa-

base with different remaining FLOPs on the SST-2 task.

MHA FFN
B ON [DEP mOFF B ON B DEP mOFF

1.0

0.8

0.6

Percentage

0.4

0.2

0.0 8 10 12

6
Layer

Figure 8: The distribution of masks in MHA and FFN
for RoBERTa-base with 50% remaining FLOPs on
SST-2 tasks. DEP refers to input-dependent.

portance of heads and channels for different input
samples. For head, the proportion of masks that
are input-dependent is higher in the shallow layers.
For channel, the 2nd, 5th, 8th and 11th layer have
higher proportion of input-dependent masks than
other layers.

4.5.3 Layer Distribution

In Section 3.3, we add two extra loss £ and Lp
to prevent some layers from being too sparse. We
conduct experiments on SST-2 task with RoOBERTa
to verify the effectiveness of these constraints. Fig-
ure 7 shows the average number of non-pruned
heads of MHA and non-pruned channels of FFN
with different ratio of remaining FLOPs. We can
see that the number in each layer is quite close,
which indicates the average amount of calculations
is similar. More importantly, this value is near
the target C;. For example, when remaining 80%
FLOPs, the number of non-pruned heads is around
9, which is exactly 80% of the number of heads
in one MHA. Similarly, the number of non-pruned
heads are around 4 and 5 when remaining 40%
FLOPs. This phenomenon proves that £,; and L

do limit the sparsity of each layer.

5 Conclusion and Future Works

In this paper, we propose a novel pruning method
for efficient BERT inference, which is called
EBERT. With the help of predictor branch, EBERT
can dynamically prune unimportant heads in MHA
and unimportant channels in FFN for each input
sample at run-time. Compared with other compres-
sion methods, experiments on GLUE and SQuAD
benchmarks demonstrate that EBERT can achieve
better accuracy-efficiency trade-off.

As we talk about in Section 4.1, the performance
of our method on small dataset has large variance.
Similar observations also have been mentioned in
other works (e.g. SNIP). In order to improve the
generality of our method, it would be interesting to
find out the exact reason and find the corresponding
solution.

Acknowledgment

This work was supported in part by National Nat-
ural Science Foundation of China (N0.61972396),
National Key Research and Development Program
of China (No. 2020AAA0103402), the Strategic
Priority Research Program of Chinese Academy of
Sciences (No. XDA27040300).

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario

4821

Amodei. 2020. Language models are few-shot learn-
ers. arXiv preprint arXiv:2005.14165.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In ECCV, pages 213-229, Cham.
Springer International Publishing.

Zhourong Chen, Yang Li, Samy Bengio, and Si Si.
2019. You look twice: Gaternet for dynamic filter
selection in cnns. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations.

Mitchell A. Gordon, Kevin Duh, and Nicholas An-
drews. 2020. Compressing bert: Studying the ef-
fects of weight pruning on transfer learning. arXiv
preprint arXiv:2002.08307.

Song Han, Huizi Mao, and William J Dally. 2016.
Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huff-
man coding. International Conference on Learning
Representations (ICLR).

Song Han, Jeff Pool, John Tran, and William Dally.
2015. Learning both weights and connections for ef-
ficient neural network. In Advances in Neural Infor-
mation Processing Systems, volume 28, pages 1135—
1143. Curran Associates, Inc.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categor-
ical reparameterization with gumbel-softmax.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. TinyBERT: Distilling BERT for natural lan-
guage understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
4163-4174, Online. Association for Computational
Linguistics.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. 2016. Pruning filters for effi-
cient convnets. CoRR, abs/1608.08710.

Zi Lin, Jeremiah Liu, Zi Yang, Nan Hua, and Dan Roth.
2020. Pruning redundant mappings in transformer
models via spectral-normalized identity prior. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 719-730. Association
for Computational Linguistics.

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao,
Haotang Deng, and Qi Ju. 2020. FastBERT: a self-
distilling BERT with adaptive inference time. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6035—
6044, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh.
2016. The concrete distribution: A continuous re-
laxation of discrete random variables.

J.S. McCarley, Rishav Chakravarti, and Avirup Sil.
2019. Structed pruning a bert-based question an-
swering model. arXiv preprint arXiv:1910.06360.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In Ad-
vances in Neural Information Processing Systems,
volume 32, pages 14014-14024. Curran Associates,
Inc.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQUAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784—
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf.
2019. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M. Rush.
2020. Movement pruning: Adaptive sparsity by fine-
tuning.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019.
Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on

4822

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://link.springer.com/chapter/10.1007/978-3-030-58452-8_13
https://link.springer.com/chapter/10.1007/978-3-030-58452-8_13
https://openaccess.thecvf.com/content_CVPR_2019/html/Chen_You_Look_Twice_GaterNet_for_Dynamic_Filter_Selection_in_CNNs_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Chen_You_Look_Twice_GaterNet_for_Dynamic_Filter_Selection_in_CNNs_CVPR_2019_paper.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2002.08307
https://arxiv.org/abs/2002.08307
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://arxiv.org/pdf/1503.02531.pdf
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1608.08710
https://doi.org/10.18653/v1/2020.findings-emnlp.64
https://doi.org/10.18653/v1/2020.findings-emnlp.64
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
http://arxiv.org/abs/1910.06360
http://arxiv.org/abs/1910.06360
https://papers.nips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/pdf/1910.01108.pdf
https://arxiv.org/pdf/1910.01108.pdf
https://arxiv.org/abs/2005.07683
https://arxiv.org/abs/2005.07683
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441

Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4323-4332, Hong Kong, China. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, undefine-
dukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. In Proceedings of the 31st Inter-
national Conference on Neural Information Process-
ing Systems, page 6000-6010, Red Hook, NY, USA.
Curran Associates Inc.

T. Verelst and T. Tuytelaars. 2020. Dynamic convolu-
tions: Exploiting spatial sparsity for faster inference.
In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2317-2326.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353-355, Brussels, Belgium.
Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

Ji

—_

Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. DeeBERT: Dynamic early exiting
for accelerating BERT inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2246-2251, On-
line. Association for Computational Linguistics.

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei,
and Ming Zhou. 2020. BERT-of-theseus: Com-
pressing BERT by progressive module replacing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7859-7869, Online. Association for Computa-
tional Linguistics.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.
In Advances in Neural Information Processing Sys-
tems.

4823

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1109/CVPR42600.2020.00239
https://doi.org/10.1109/CVPR42600.2020.00239
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://papers.nips.cc/paper/2020/hash/d4dd111a4fd973394238aca5c05bebe3-Abstract.html
https://papers.nips.cc/paper/2020/hash/d4dd111a4fd973394238aca5c05bebe3-Abstract.html

