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Abstract
Multimodal fusion is a core problem for multi-
modal sentiment analysis. Previous works usu-
ally treat all three modal features equally and
implicitly explore the interactions between dif-
ferent modalities. In this paper, we break this
kind of methods in two ways. Firstly, we ob-
serve that textual modality plays the most im-
portant role in multimodal sentiment analysis,
and this can be seen from the previous works.
Secondly, we observe that comparing to the
textual modality, the other two kinds of non-
textual modalities (visual and acoustic) can
provide two kinds of semantics, shared and pri-
vate semantics. The shared semantics from the
other two modalities can obviously enhance
the textual semantics and make the sentiment
analysis model more robust, and the private
semantics can be complementary to the tex-
tual semantics and meanwhile provide differ-
ent views to improve the performance of senti-
ment analysis together with the shared seman-
tics. Motivated by these two observations, we
propose a text-centered shared-private frame-
work (TCSP) for multimodal fusion, which
consists of the cross-modal prediction and sen-
timent regression parts. Experiments on the
MOSEI and MOSI datasets demonstrate the
effectiveness of our shared-private framework,
which outperforms all baselines. Furthermore,
our approach provides a new way to utilize the
unlabeled data for multimodal sentiment anal-
ysis.

1 Introduction

Multimodal sentiment analysis is an emerging re-
search field, which aims to understand people’s sen-
timent using not only textual but also non-textual
(visual, acoustic) data. This task has attracted in-
creasing attention from the community recently, as
people have realized that non-textual clues are help-
ful for detecting sentiment and the huge demands
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Figure 1: Distinguishing the shared and private features
via cross-modal prediction.

for the identification of opinions and sentiment in
the video.

Comparing to the traditional textual sentiment
analysis(Liu, 2012), previous work demonstrates
that the other non-textual data can improve the fi-
nal performance (Chen et al., 2017; Zadeh et al.,
2018b; Sun et al., 2020). There are two reasons.
The first reason is that the three modalities can con-
vey some common semantics. In this case, these
non-textual common semantics do not provide ad-
ditional information beyond textual data, but the
repetitive information from them can strengthen the
final performance. We call them shared semantics.
The other reason is that the three modalities have
their own special semantics, which are different to
other modalities. These non-textual private seman-
tics is modality-specific and hard to be predicted
only by textual data. Thus this kind of semantics
from the non-textual modalities can help to detect
the final sentiment more accurately. We call them
private semantics.

Previous works usually don’t distinguish the
shared semantics and the private semantics but treat
each modal semantics as a whole, lacking the abil-
ity to explicitly explore the interaction between
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different modalities. In this paper, we propose a
text-centered shared-private framework for multi-
modal sentiment analysis. In this framework, the
textual modality is considered as the core modal-
ity, and we first design a cross-modal prediction
task to explicitly distinguish the shared and the pri-
vate semantics between the textual modality and
the non-textual(visual, acoustic) modality and then
propose the sentiment regression model including
the shared and private modules to fuse the textual
features with two types of non-textual features.

In order to explore the shared and private se-
mantics from non-textual modalities, we design
the cross-modal prediction task, which is like a
machine translation framework. The source is a
sequence of textual modal features and the target
is a sequence of another modal (visual or acoustic)
features. We can explore the shared and private
semantics via training two cross-modal prediction
models, textual-to-visual and textual-to-acoustic
models. In specific, as shown in Figure 1, we ap-
ply the pre-trained textual-to-visual and textual-to-
acoustic models to predict the targets. The features
of the target modality with higher prediction losses
are distinguished as private. For each word, those
putting higher attention weights on this word are
distinguished as shared.

After obtaining shared and private features, we
propose the sentiment regression model to fuse the
textual features with two types of features. The sen-
timent regression model mainly consists of three
parts, shared module, private module, and regres-
sion layer. In the shared module, each textual fea-
ture interacts with the corresponding shared fea-
tures to get the enhanced features, which are then
fed into a fusion block to obtain the final shared
representation. Meanwhile, in the private module,
the private features of each non-textual modality
are passed through the attention layer to obtain the
final private representation. Finally, we feed the
obtained representations into the regression layer
to predict the sentiment score.

We conduct experiments on two multimodal
sentiment analysis benchmarks: CMU-MOSI and
CMU-MOSEI. The experimental results show that
our model outperforms all baselines. This can
demonstrate that the shared-private framework for
multimodal sentiment analysis can explicitly use
the shared semantics between different modalities
to enhance the final performance of sentiment anal-
ysis, and meanwhile can explicitly use the private

semantics of each modality as the supplemental
clues for sentiment analysis. In addition, we can
observe that our designed cross-modal prediction
task can accurately distinguish the shared and pri-
vate non-textual semantics.

Our contributions can be concluded as follows.

1. We propose a challenging text-centered
shared-private framework for the multimodal
sentiment analysis. This framework can ef-
fectively fuse textual and non-textual features
benefitting from the unlabeled data.

2. We design a cross-modal prediction task to
explore the shared and private semantics for
each non-textual modality.

3. We achieve significant improvements from
learning the shared and private semantics from
different modalities compared to the algo-
rithms without distinguishing the shared and
private semantics.

2 Related Work

There are two lines of works conducted on multi-
modal sentiment analysis.

One is focusing on utterance-level multimodal
feature fusion. These methods use the features of
the overall utterance. For example, they first extract
the frame-level visual or acoustic features and then
average them to obtain the final features, which are
called utterance-level features. The utterance-level
textual features can be obtained by applying RNNs
for words. The obtained utterance-level features
are fed into the fusion model to get the multimodal
representation. Some models have been proposed
for effective multimodal feature fusion. Zadeh et al.
(2017) proposed Tensor Fusion to explicitly capture
unimodal, bimodal, and trimodal interactions. But
this method uses the three-fold Cartesian product to
fuse the multimodal features, which makes the time
cost very high. To address it, Liu et al. (2018) pre-
sented the Efficient Low-rank Multimodal Fusion,
which applies multimodal fusion using low-rank
tensors to accelerate the fusion process. Mai et al.
(2020) proposed a graph fusion network to model
unimodal, bimodal, and trimodal interactions suc-
cessively.

The utterance-level features mainly contain
global information, which may fail to capture local
information. Therefore, recent works are mostly
focusing on word-level multimodal feature fusion.
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And our work in this paper is also based on word-
level features. To extract word-level features, the
first step is applying force alignment to obtain the
timestamps of each word including the start time
and end time. And then following the timestamps,
the utterance is split into some video clips. Fi-
nally, word-level visual or acoustic features are
obtained by averaging the frame-level features of
the video clips. Based on word-level features, lots
of methods are proposed for performing word-level
multimodal feature fusion. Zadeh et al. (2018a)
proposed the Memory Fusion Network(MFN) to
capture the interactions across both different modal-
ities and timesteps. Inspired by the observation that
the meaning of words often varies dynamically in
different non-verbal contexts, Wang et al. (2019)
proposed the Recurrent Attended Variation Embed-
ding Network (RAVEN). This model applies the
Attention Gating module to fuse the word-level fea-
tures, which can dynamically use the non-verbal
features to shift the word embeddings. Tsai et al.
(2019) presented multimodal transformer (Mult),
which uses the cross-modal attention to capture the
bimodal interactions, motivated by the great suc-
cess of transformer in NLP(Vaswani et al., 2017).

Besides, there is a related work (Pham et al.,
2019) need to be noticed, which proposed that
translation from a source to a target modality pro-
vides a way to learn joint representations and pro-
posed the Multimodal Cyclic Translation Network
model (MCTN) to learn joint multimodal represen-
tations. Comparing to this work, our model has
a significant difference. That is we use the cross-
modal prediction task to distinguish the shared and
private non-textual features instead of training the
model as an auxiliary task. In this way, we can
obtain more useful information by deeply probing
the cross-modal prediction model.

3 Approach

In this section, we will introduce our shared-private
framework for multimodal sentiment analysis in de-
tail. In this framework, we treat the textual modal-
ity as the core, then how to explore the shared and
the private semantics of the non-textual modality
compared to the textual modality, and how to fuse
all three modal features are two important steps.
For the first step, we design a cross-modal pre-
diction task and obtain the shared and private fea-
tures of the non-textual modalities via training two
cross-modal prediction models, textual-to-visual

and textual-to-acoustic models. And for the sec-
ond step, we design a sentiment regression model
to fuse the textual features and the two types of
features.

3.1 Cross-Modal Prediction
Task Definition: The cross-modal prediction
task is formalized as follows. Given a sequence of
textual features denoted as xl = {xtl : 1 ≤ t ≤
L, xtl ∈ Rdl}, L is the length of the given sequence,
t is the timestep, and the goal is to predict the cor-
responding sequence of visual or acoustic features
denoted as xi = {xti : 1 ≤ t ≤ L, xti ∈ Rdi},
i ∈ {v, a}. Cross-modal prediction task is inspired
by the machine translation task. The inputs are the
textual features, and the generated outputs are the
non-textual (visual or acoustic) features. During
the translation from the textual modality to other
modalities, we can exploit the shared and the pri-
vate semantics of the non-textual modalities.

Prediction Model: We use the Seq2Seq model
with attention (Bahdanau et al., 2015) as our model
framework. The encoder takes the textual fea-
tures xl as inputs and outputs the hidden states
henc = {htenc : 1 ≤ t ≤ L, htenc ∈ Rdh}. The
decoder takes the previous hidden state ht−1dec and
hidden states of the encoder as inputs and predicts
the non-textual feature xti, i ∈ {v, a}, at the t
timestep. We choose the MSE as our loss func-
tion. The prediction loss values are denoted as
el→i = {etl→i : 1 ≤ t ≤ L}. The attention map of
the prediction model is denoted as mi→l. In prac-
tice, we apply LSTMs (Hochreiter and Schmid-
huber, 1997) to implement our encoders and de-
coders. After training the cross-modal prediction
models using textual-visual and textual-acoustic
paired data, we can obtain two models, textual-to-
visual and textual-to-acoustic models. We then use
the obtained models to distinguish the shared and
private features and record the results as shared and
private masks, which will be passed to the senti-
ment regression model.

Shared Mask: We propose the shared mask to
find out the shared semantics of the two kinds of
non-textual modalities. The basic assumption is
that during cross-modal prediction, if the predic-
tion model wants to generate a non-textual feature
as precisely as possible, it should pay more atten-
tion to the input textual features, that contain more
shared semantics. Based on this assumption, we de-
sign the method to obtain the shared mask. Given



4733

Visual/Acoustic

Textual

0.1 0.2 0.4 0.2 0.1

Visual/Acoustic

Textual

(1)

(2)

(3)

Visual/Acoustic

Textual

Figure 2: Obtaining the shared mask from the cross-
modal prediction model.

mi→l, i ∈ {v, a}, for each row t, we first sort the
attention weights mt,∗

i→l and then get the indexes
St of the largest Ks values. Finally, we can get the
shared mask smask, smask ∈ RL∗L. smaskt1,t2

is 1 if the t1 ∈ St2 and 0 otherwise.
To describe this method intuitively, we show this

process in Figure 2. There are three steps: (1) We
build an attention graph and the values of edges
mean the attention weights. We illustrate a part
of it for simplicity. (2) We only keep the edges
with larger values for each non-textual node and
delete others. (3) We map the graph to the shared
mask smask, smaskt1,t2 is 1 if there is a edge
between textual node t1 and non-textual node t2
and 0 otherwise. The shared mask will be passed to
the share module of the sentiment regression model
to make the model focus on the shared features.

Private Mask: In order to find out the private se-
mantics of the two kinds of non-textual modalities,
we propose the private mask. The basic assump-
tion is that the features containing modality-private
information are difficult to be predicted by textual
modality. The private mask of a given utterance
is obtained as follows. Given an utterance which
includes three modalities, textual, visual and acous-
tic, denoted as xi = {xti : 1 ≤ t ≤ L, xti ∈ Rdi},
i ∈ {l, v, a}, we first use the trained prediction
models to get the loss values, el→v and el→a. Then
we sort the loss values to obtain the indexes P of
the largest Kp values. Finally, We can get the pri-
vate mask pmask, pmask ∈ RL. pmaskt is 1
if the t ∈ P and 0 otherwise. The private mask
will be used by the private module of the sentiment

regression model to force the model to focus on
private features.

3.2 Regression
In this section, we study how to fuse the shared and
private information obtained from Section 3.1. An
illustration of our framework is given in Figure 3.

3.2.1 Input Layer
Given an utterance which includes three modalities,
textual, visual and acoustic, the extracted multi-
modal features are denoted as xi = {xti : 1 ≤ t ≤
L, xti ∈ Rdi}, i ∈ {l, v, a}. We use three LSTM
networks to encode the input multimodal features
xi, producing hi = {hti : 1 ≤ t ≤ L, hti ∈ Rdh}.

hl = LSTMl(xl)

hv = LSTMv(xv)

ha = LSTMa(xa)

(1)

3.2.2 Shared Module
The core idea of the shared module is leveraging
the shared information from non-textual modal fea-
tures to enhance the representations of words. To
achieve it, we propose the masked cross-modal at-
tention network, which can utilize the shared masks
obtained from cross-modal prediction models to fo-
cus on the non-textual shared features.

In the masked cross-modal attention network,
we first calculate the attention scores across the
non-textual representations hi, i ∈ {v, a}, for each
word. We denote the scores as sl→i.

st1,t2l→v = W2(tanh(W1([h
t1
l ;h

t2
v ]) + b1))

st1,t2l→a = W4(tanh(W3([h
t1
l ;h

t2
a ]) + b3))

(2)

where W1,W3 ∈ Rdh×2dh , W2,W4 ∈ R1×dh ,
b1, b3 ∈ Rdh are the parameters of the score func-
tions.

To focus on the shared features, we first calculate
the attention weights wl→v and wl→a using the
softmax function and mask the other features out
using the shared mask.

wt1,t2
l→v =

es
t1,t2
l→v∑L

t3=1 e
s
t1,t3
l→v

wt1,t2
l→a =

es
t1,t2
l→a∑L

t3=1 e
s
t1,t3
l→a

(3)

wl→v = wl→v ◦ smaskl→v

wl→a = wl→a ◦ smaskl→a

(4)
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Figure 3: Illustration of our shared-private framework.

We obtain the non-textual shared context vectors
cv and ca. cv, ca ∈ RL×dh .

cv = wl→vhv

ca = wl→aha
(5)

To fuse textual and non-textual shared features,
we concatenate cv, ca, and hl and feed it into the
fusion LSTM network, producing rs ∈ RL×3dh .
We further use a self-attention layer, which is de-
noted as SelfAttentionLayer, to learn the final rep-
resentation. The self-attention layer is similar to the
cross-modal attention network. We use the last step
representation of rn as the shared representation,
which is denoted as rs.

rm = LSTMfusion([cv; ca;hl])

rn = SelfAttentionLayer(rm)
(6)

3.2.3 Private Module
To enable the model to capture the unique informa-
tion contained in non-textual modalities, we design
the private module. Specifically, we use the at-
tention network to learn informative and modality-
private representations.

stv = W5h
t
v + b5

sta = W6h
t
a + b6

(7)

where W5,W6 ∈ R1×dh , b5, b6 ∈ R are the
parameters of the score functions.

We use private masks to ignore other features
and apply the softmax function to get the attention
weights.

sv = sv + (1− pmaskv) ∗ (−108)
sa = sa + (1− pmaska) ∗ (−108)

(8)

Finally, we compute the weighted sum and repre-
sent them as pv and pa, which are called the private
representations.

wt
v =

es
t
v∑L

t1=1 e
s
t1
v

wt
a =

es
t
a∑L

t1=1 e
s
t1
a

(9)

pv = wvhv

pa = waha
(10)

3.2.4 Regression Layer
We design the regression layer, which is imple-
mented by a two-layer network with ReLU activa-
tion function, to fuse the shared and private repre-
sentations.

ŷ = Wo(ReLU(Wf ([rs; pv; pa])+bf ))+bo (11)

where Wf ∈ Rdh×5dh , Wo ∈ R1×dh , bf ∈ Rdh ,
bo ∈ R.
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Table 1: Hyperparameters of our model.

Models Parameters MOSI MOSEI

Cross-Modal
Prediction

Batch Size 24 24
Max Length 50 128
Hidden Size 100 100

Epochs 40 40
Learning Rate 0.0001 0.0001

Dropout 0.5 0.5
Patience 5 10

Regression

Batch Size 24 24
Max Length 50 128
Hidden Size 100 100

Epochs 30 30
Learning Rate 0.001 0.001

Dropout 0.5 0.5
Selection Number 5 5

Patience 5 5

4 Experiments

4.1 Datasets
We conduct experiments on two public datasets,
CMU-MOSI (Zadeh, 2015) and CMU-MOSEI
(Zadeh et al., 2018b) to evaluate our proposed
model. CMU multimodal opinion-level sentiment
intensity (CMU-MOSI) consists of 93 videos col-
lected from the YouTube website. The length of
the videos varies from 2-5 mins. These videos
are split into 2,199 short video clips and labeled
with sentiment scores from -3 (strongly negative)
to 3 (strongly positive). CMU multimodal opinion
sentiment and emotion intensity (CMU-MOSEI)
consists of 23,453 annotated video utterances from
1,000 distinct speakers and 250 topics. Each utter-
ance is annotated with sentiment scores from -3
(strongly negative) to 3 (strongly positive).

The multimodal features used in our experiments
are described as follows. We use glove word em-
beddings (Pennington et al., 2014) to represent the
words. The dimension of each word embedding
is 300. We extract the visual features using Facet,
which can extract 35 facial action units (Ekman
et al., 1980; Ekman, 1992) from each frame result-
ing in a 35-dimensional vector. The acoustic fea-
tures are obtained by applying COVAREP (Degot-
tex et al., 2014), which includes 12 Mel-frequency
cepstral coefficients (MFCCs) and other low-level
features. The dimension of the acoustic feature is
74.

4.2 Evaluation Metrics
Following previous works, we take 2-class ac-
curacy(Acc), f1 score(F1), mean absolute error
(MAE), and correlation(Corr) as our evaluation

metrics. As the prediction results are real values,
we first use mean absolute error and Corr between
prediction scores and ground truths to evaluate the
models. In addition, we then map the sentiment
scores into sentiment labels and use classification
metrics, such as accuracy and f1 score, to assess
the model performance.

4.3 Training Details
The hyperparameters of our model are listed in
Table 1. In practice, we apply dropout before the
last linear layer for regularization. We use Adam
as the optimizer. The learning rate is decayed once
the validation loss stops decreasing. The Selection
Number is the number of selected shared/private
features, Ks and Kp. We take the same value for
Ks and Kp for simplicity.

4.4 Baselines
We compare our proposed model with the fol-
lowing baselines. EF-LSTM fuses the multi-
modal features by concatenating and applies an
LSTM network to get the final representation. LF-
LSTM first uses three LSTM networks to encode
three modal features and concatenates three ob-
tained representations to get the final representation.
MFN (Zadeh et al., 2018a) captures the interac-
tions across both the different modalities and time.
RAVEN (Wang et al., 2019) first combines the non-
verbal information with word representations and
then feeds the modified word representations into
an LSTM network to obtain the utterance repre-
sentation. MCTN (Pham et al., 2019) learns joint
multimodal representations by translating between
modalities. MulT (Tsai et al., 2019) uses cross-
modal transformers to fuse multimodal features.
Multimodal Routing (Tsai et al., 2020) proposes
a routing mechanism to capture the interactions be-
tween input modalities and outputs. TCSP(Base)
is our base model. The model architecture is as
same as our full model, but it doesn’t use shared
and private masks. Comparing TCSP(Base) and
TCSP(Full), we can judge whether distinguish-
ing the shared and private features of non-textual
modalities is useful.

4.5 Experimental Results
We compare our model with several baselines and
the experimental results are shown in Table 2. Com-
paring our base model with other baselines, our
base model fails to obtain the best result and un-
derperforms RAVEN and MulT for the Acc, F1
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Table 2: Experimental results on the test sets of the MOSEI and MOSI dataset. The best results are in bold. As
the Multimodal Routing model is designed for classification, we don’t report the regression metrics of it for fair
comparison.

Models MOSI MOSEI
Acc ↑ F1 ↑ MAE ↓ Corr ↑ Acc ↑ F1 ↑ MAE ↓ Corr ↑

EF-LSTM 76.0/75.3 75.9/75.2 1.020/1.023 0.603/0.608 78.4/78.2 79.5/77.9 0.642/0.642 0.641/0.616
LF-LSTM 75.3/76.8 75.1/76.7 1.046/1.015 0.600/0.625 80.3/80.6 80.8/80.6 0.606/0.619 0.676/0.659

MFN 74.5/77.4 74.4/77.3 1.036/0.965 0.607/0.632 78.1/- 79.2/- 0.640/- 0.637/-
RAVEN 76.2/78.0 76.0/76.6 1.012/0.915 0.614/0.691 81.3/79.1 81.6/79.5 0.595/0.614 0.701/0.662
MCTN 71.6/79.3 71.5/79.1 1.142/0.909 0.487/0.676 80.8/79.8 80.6/80.6 0.611/0.609 0.670/0.670
MulT 78.9/83.0 78.8/82.8 1.000/0.871 0.670/0.698 81.8/82.5 81.8/82.3 0.605/0.580 0.682/0.703

Multimodal Routing 68.5/- 68.4/- -/- -/- 76.0/81.7 75.6/81.8 -/- -/-
TCSP(Base) 79.3 79.3 0.956 0.658 80.7 80.3 0.593 0.692
TCSP(Full) 80.9 81.0 0.908 0.710 82.8 82.7 0.576 0.715

Table 3: Ablation analysis of TCSP evaluated on the test data. The best results are in bold.

Models MOSI MOSEI
Acc ↑ F1 ↑ MAE ↓ Corr ↑ Acc ↑ F1 ↑ MAE ↓ Corr ↑

TCSP 80.9 81.0 0.908 0.710 82.8 82.7 0.576 0.715
w/o Private Mask 79.9 79.8 0.930 0.663 82.2 82.1 0.576 0.710
w/o Shared Mask 79.0 79.0 0.965 0.660 82.3 82.1 0.585 0.701
w/o Both Masks 79.3 79.3 0.956 0.658 80.7 80.3 0.593 0.692

metrics on the MOSEI dataset. However, with
the help of the cross-modal prediction task, our
text-centered shared-private framework (TCSP)
achieves the best performance and outperforms all
baselines on both datasets. This can demonstrate
that the shared-private framework proposed in this
paper is effective for multimodal sentiment analy-
sis. Furthermore, it can be observed that the shared
and private features for each non-textual modal-
ity obtained from the cross-modal prediction task
can provide useful clues for the interactions be-
tween different modalities. Thus, these non-textual
shared-private features can be jointly fused with
the textual features to improve the multimodal sen-
timent analysis.

We also observe that there is a larger margin
between our full model and our base model on the
MOSI dataset. We attribute it to the small data size
of the MOSI dataset. It is insufficient for training
the base model, which makes it benefit more from
the shared and private information.

It should be noted that, in Table 2, we provide
two results for each method on each dataset. The
left result is obtained by rerunning the public codes
in the same experimental setting, which refers to
the same dataset split and the same extracted fea-
tures of three modalities. The right result is copied
from previous papers and the experimental settings
are different. To guarantee the justice, we compare
our TCSP model with the left results.

5 Analysis

5.1 Ablation Study

We conduct the ablation experiments to distinguish
the contribution of each part. As shown in Table 3,
ablating either shared mask or private mask hurts
the model performance, which indicates that both
masks are useful for the sentiment prediction. The
shared mask can enable the sentiment regression
model to get the modality-shared features result-
ing in a more robust regression model. The pri-
vate mask makes the regression model focus on
modality-private features, which provides extra in-
formation for sentiment prediction. With the help
of shared and private masks, the regression model
in the shared-private framework can fuse the tex-
tual features with two types of non-textual features
individually, which is the more effective method
for multimodal feature fusion.

5.2 Effect of Selection Number

Selection Number is the number of selected
shared/private features, Ks and Kp. We take the
same value for Ks and Kp for simplicity. We evalu-
ate our model with different selected numbers from
1 to 8 on the MOSEI dataset to quantify the effect.
The experimental results are shown in Figure 4.
We can observe that our model achieves the best
performance on the Acc and F1 metrics when the
Selection Number is 5. The possible reason is that
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too small Selection Number makes the model only
focus on few features. This could result in missing
useful information. In contrast, too large one makes
the model attend too many features, which weak-
ens the effect of masks. For this reason, selecting a
middle number could be better.

5.3 Effect of Cross-Modal Prediction Model
The cross-modal prediction task is the core of our
shared-private framework, and it has been demon-
strated that this task is effective from Table 3 and
Section 5.1. In this section, we want to further ex-
plore the effect of cross model prediction for the
final regression model.

In Figure 5, we design different cross-modal pre-
diction models trained with different proportions
(from 20% to 100%) of MOSEI data and then fuse
the obtained shared and private information into
the regression models. It should be noticed that
all regression models are trained with all data of
the MOSEI dataset. The results show that when
we use more data, the final performance is better.
And meanwhile, it can be observed that the two
kinds of prediction losses (from textual to visual
modality and from textual to acoustic modality) are

decreased when the proportion of the used data is
increased.

This can reveal that the cross-modal prediction
model trained with more data can provide more in-
formative supervision signals, which are the shared
and private masks specifically. If the performance
of cross-modal prediction model is low, it is im-
possible to teach the regression model to play the
precise role in the shared-private framework.

6 Conclusion

In this paper, we propose a text-centered shared-
private framework for multimodal sentiment analy-
sis. In this framework, we treat the textual modality
as the core and aim to use the other non-textual
modalities to help enrich the semantics of the tex-
tual modality. For each non-textual modality, we
consider two types of semantics, shared and pri-
vate, which have different functions. Shared se-
mantics can enhance the textual semantics to make
the model more robust and the private semantics
can provide extra information for more precise pre-
diction.

To distinguish these two semantics, we design a
cross-modal prediction task and record the results
as share and private masks. We further propose a
regression model utilizing the shared and private
modules to fuse the textual features with two non-
textual features. The experimental results demon-
strate that distinguishing the shared and private
non-textual semantics and explicitly modeling the
interactions between textual and two non-textual
semantics is a better way for the multimodal sen-
timent analysis than just treating each non-textual
features as a whole. The analyses show that the
regression model can benefit more from the bet-
ter cross-modal prediction model, which also indi-
cates that the cross-modal prediction process can
produce useful supervision signals only using unla-
beled data.

In future work, we plan to collect more unla-
beled data to enhance our model. In addition, we
would also like to explore other approaches using
the unlabeled data to help multimodal feature fu-
sion.
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