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Abstract
Multi-hop reasoning is an effective and ex-
plainable approach to predicting missing facts
in Knowledge Graphs (KGs). It usually adopts
the Reinforcement Learning (RL) framework
and searches over the KG to find an evidential
path. However, due to the large exploration
space, the RL-based model struggles with the
serious sparse reward problem and needs to
make a lot of trials. Moreover, its exploration
can be biased towards spurious paths that coin-
cidentally lead to correct answers. To solve
both problems, we propose a simple but ef-
fective RL-based method called RARL (Rule-
Aware RL). It injects high quality symbolic
rules into the model’s reasoning process and
employs partially random beam search, which
can not only increase the probability of paths
getting rewards, but also alleviate the impact
of spurious paths. Experimental results show
that it outperforms existing multi-hop methods
in terms of Hit@1 and MRR.

1 Introduction

Knowledge Graphs (KGs), which store facts as
triples in the form of (subject entity, relation, object
entity), benefit various NLP applications (Lan and
Jiang, 2020; Wang et al., 2019b; He et al., 2017).
However, existing KGs face with serious incom-
pleteness despite of their large scales. Therefore,
KG completion, which aims to reason missing facts
based on existing triples, has been an important re-
search area.

The past decade has witnessed the rise of
embedding-based reasoning methods on KGs (Bor-
des et al., 2013; Yang et al., 2014; Balažević et al.,
2019). However, due to their black-box nature,
these methods cannot provide interpretations for a
specific prediction (Ji et al., 2020; Sadeghian et al.,
2019). Recently, there has been growing interest
in using multi-hop reasoning to improve the inter-
pretability (Gardner et al., 2013; Rocktäschel and

Riedel, 2017). This approach usually adopts Rein-
forcement Learning (RL) to find a reasoning path
(Xiong et al., 2017; Das et al., 2018; Hildebrandt
et al., 2020). Starting from the query entity, the
RL-based model sequentially selects an outgoing
edge and transits to a new entity until it arrives at
the target.

However, due to the complexity of the KG, the
number of paths grows exponentially when the rea-
soning hop increases. Most of paths cannot arrive at
correct answers, and cannot receive a none-zero re-
ward, which is also called the “sparse reward prob-
lem” (Nair et al., 2018). Moreover, since golden
paths are not available in the training process, the
RL-based model may coincidentally reach the tar-
get via a meaningless path (i.e. spurious paths).
Take the query (Captain America, director, ?) as
an instance. Although the path (Captain America,
country, US, lives in−1, Peter Farrelly), can arrive
at the target. It is semantically inconsistent with
the query relation director and is an accidental suc-
cess. One trouble is that the RL-based model relies
heavily on rewards and reinforces the past actions
receiving high rewards regardless of their path qual-
ity. In addition, in large scale KGs, there are more
spurious paths than correct ones (Lin et al., 2018).
It is more easier for the model to discover spuri-
ous ones first other than the true and meaningful
ones. If the model finds spurious ones first, these
spurious paths will lead to a biased exploration and
induce negative influence to the reasoning process
(Guu et al., 2017; Lin et al., 2018).

Lin et al. (2018) uses shaped rewards calcu-
lated by pre-trained embedding-based models and
an action dropout mechanism to solve the above
two challenges, respectively. However, its perfor-
mance largely depends on the embedding-based
model used. In addition, embedding-based model
increases the opacity of the reasoning process. Mo-
tivated by this, we focus on the action selection
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strategy and propose RARL (Rule Aware RL), a
simple but effective model to solve the above two
challenges. RARL introduces high quality rules
as prior information about actions and explores K
paths in one episode. It selects actions from three
parts: actions matching rules, actions with high
scores, and actions randomly sampled. The former
two parts can increase the probability of reasoning
paths arriving at targets. The later one allows the
model to explore a more diverse path set and thus
avoids the model adhering to the past actions re-
ceiving high rewards, which can naturally mitigate
the impact of spurious paths.

We evaluate RARL on three benchmark datasets,
and experimental results show the effectiveness
of RARL when compared with existing multi-hop
methods.

2 Preliminaries

Let E be the set of entities and R be the set of
relations, a knowledge graph can be represented as
G = {(es, r, et)} ⊆ E ×R× E . In this paper, we
focus on the standard link prediction task. Given a
query of the form (es, rq, ?), the reasoning model
is expected to predict the correct answer et after
traversing over the graph.

2.1 The RL-based Knowledge Reasoning
Framework

Following (Das et al., 2018), when given a query
(es, rq, ?), the RL-based model can be viewed
as an agent, which interacts with the KG envi-
ronment and aims to find a reasoning path p =
(es, r1, e1, ...) to explicitly show how to conduct
reasoning. The parameters of the policy defines a
policy. At each time t, the agent selects an action
at, i.e. an outgoing edge of the current position
et, to expand the path using a policy. Here, we de-
fine At = {(r′, e′)|(et, r′, e′) ∈ G} as the possible
actions at time t. The model first uses a Long Short-
Term Memory network (LSTM) to encode the path
history into a vector ht. Then, the policy network
πθ (a two-layer feed-forward network) calculates a
distribution over all possible actions in At.

πθ(at|et) =σ(At(W2ReLU(W1[ht;et;rq]))), (1)

where et ∈ Rd and rq ∈ Rd are embeddings of et
and rq, respectively. At ∈ R|At|×2d is the stack of
all actions embeddings inAt and σ denotes the soft-
max operator. After this, the next edge is selected
via an ε-greedy action selection strategy.

A binary reward R(p) is observed after the max-
imum time step T : R(p) = 1 if the path ends at
the correct answer and 0 otherwise.

The objective of the model is to maximize the
expected reward:

J(θ) =
∑

(es,rq ,et)∈G

∑
ẑ∈P (es,rq)

R(ẑ)πθ(ẑ|es, rq), (2)

where P (es, rq) is the set of all reasoning paths
related to the given query (es, rq, ?). The optimiza-
tion is then performed by using REINFORCE al-
gorithm (Williams, 1992).

2.2 Beam Search
In the RL context, Beam Search (BS) (Sutskever
et al., 2014) stores top-K scoring partially con-
structed paths at each time step, where K is known
as the beam size. At each time t, BS extends
itself via the following process. Let us denote
the paths set held by BS at the end of time t
as Bt = {p[1:t], ..., p[K:t]}. For each path p =
(es, r1, ..., et) ∈ Bt, we first generate its candidate
paths cand(p),

cand(p) = cond(es, r1, ..., et)

= {(es, r1, ..., et, r′, e′)|(et, r′, e′) ∈ G}.
(3)

Each candidate path p ∈ cand(p) is associ-
ated with a score s(p) calculated by the policy
network. Here, s(p) = πθ((r

′, e′)|et). Further,
we take the union of these candidate paths Bt =⋃
p∈Bt

cand(p). A new beamBt+1 is generated by
picking the K top-most elements in Bt.

3 The RARL Model

As illustrated in Figure 1, the RARL model con-
sists of two parts: the KG environment and the
agent. By interacting with the environment, the
agent employs a beam search based action selec-
tion strategy and picks K actions to extend the
beam in one episode. The action selection strategy
selects actions from three parts: actions matching
rules, actions with high scores, and actions ran-
domly sampled. After the maximum time step, the
agent will receive binary rewards.

3.1 Rule Based Action Selection
In a typical KG, when the path length increases,
finding a non-zero reward is exponentially more dif-
ficult. Learning from such sparse rewards requires
lots of effective exploration. However, in the begin-
ning, due to the randomly initialized parameters,
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Figure 1: The reasoning process of RARL. Left: The KG environment. The dashed edges are part of queries and
the solid edges are observed facts. Middle: The structure of the agent. By interacting with the environment, it
picks K actions to extend the beam in one episode. Right: An illustration of the action selection strategy at time t.
It first randomly samples λK actions and then selects the remaining (1−λ)K actions using rules and probabilities.

the model chooses actions randomly and can hardly
arrive at targets. This makes the sparse reward prob-
lem even worse (Xiong et al., 2017; Hare, 2019).
Considering that rules precisely characterize a map-
ping from query relations to semantic composition
paths (Zhang et al., 2019), RARL utilizes rules
as prior information about actions to increase the
probability of paths receiving rewards, which can
also help to facilitate effective exploration.

The rules mined from KGs are in the form of
head ← body, where the head is an atom r(a, b)
and the body is in the format of: r(x0, x1) ∧ . . . ∧
r(xn, xn+1). Note that r(xi, xj) is equivalent to
the fact triple (xi, r, xj).

Given the query relation rq, RARL first se-
lects rules Rrq whose heads are identical to rq
from the rule pool. At each time step t, it
maintains a beam Bt of K paths. For each
path p = {es, r1, e1, ..., rt, et} ∈ Bt, RARL
expands its candidate paths based on the outgo-
ing edges of et. Next, for all candidate paths
in Bt, only those in which relation sequence
can match related rules from left to right are se-
lected. For instance, suppose Rrq contains only
one rule rq ← r1 ∧ r2, given two candidate paths
(es, r1, e1, r2, e2), (es, r2, e3, r3, e4), only the rela-
tion sequence in the former path can successfully
matches the rule. As a result, the former one will
be selected to generate Bt+1. If the number of can-
didate paths matching rules excesses the beam size,
RARL selects top-K paths from these paths match-
ing rules according to their scores calculated by the

policy network. If not, remaining paths not match-
ing rules are selected as a compliment. To make a
balance between actions generated by free explo-
ration and actions matching rules, RARL randomly
masks some related rules to shrink the number of
paths matching rules.

3.2 Partially Random Beam Search

To ease the impact of spurious paths, we try to
prevent the RL-based model from the obsession
of spurious paths and induce diversity during BS.
Inspired by (Guu et al., 2017), we introduces par-
tially randomness to standard BS, to fight against
the impact of spurious paths.

Like regular beam search, at time t, RARL com-
putes the set of all candidate paths Bt and sorts
them by their scores computed by the policy net-
work πθ. Instead of selecting K highest-scoring
candidate paths, RARL randomly chooses λK can-
didate paths from Bt and remaining paths are cho-
sen according to their scores. In this way, low-
scoring paths discarded in standard BS can also
have the chance to be explored. Besides, the ran-
domness can avoid the model sticking to the paths
getting rewards. In the experiment, RARL se-
lects paths with replacement when available actions
smaller than λK.

3.3 The Overall Selection Strategy

RARL selects candidate actions by three stages:
(1) Randomly sample λK actions based on the
current position; (2) Select actions matching the
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Model
UMLS WN18RR FB15K-237

Hit@1 Hits@10 MRR Hit@1 Hits@10 MRR Hit@1 Hits@10 MRR
M

ul
ti

H
op

NerualLP(Yang et al., 2017) .643 .962 .778 .376 .657 .463 - - -
MINERVA(Das et al., 2018) .728 .968 .825 .413 .513 .406 .405 .583 .468

AnyBURL(Wang et al., 2019a) .657 .966 - .431 .526 - .220 .335 -
Coper-MINERVA(Stoica et al., 2020) .778 .974 .854 .426 .510 .465 .484 .630 .536

RARL (ours) .803 .970 .866 .442 .533 .469 .516 .634 .557

E
m

be
dd

in
g DistMult(Yang et al., 2014) .821 .967 .868 .431 .524 .462 .477 .642 .535

ComplEx(Trouillon et al., 2016) .890 .992 .934 .418 .480 .437 .496 .687 .563
ConvE (Dettmers et al., 2017) .932 .994 .957 .403 .540 .449 .480 .663 .544

TuckER (Balažević et al., 2019) .822 .997 .907 .443 .526 .470 - - -

Table 1: Link prediction results on UMLS, WN18RR, and FB15K-237. Best scores among the multi-hop methods
and embedding-based methods are bold and underlined, respectively.

related rules based on the history; (3) Select ac-
tions in descending order of scores. If the number
of actions matching rules from the second stage
excesses (1 − λ)K, then RARL selects the top
(1− λ)K actions according to their scores. If not,
it continue to select actions via the third stage. The
total size of actions selected from the last two parts
are (1− λ)K.

4 Experiments

4.1 Experimental Setup
Datasets and Rules We adopt three datasets to
evaluate the performance of RARL for link predic-
tion: UMLS (Kok and Domingos, 2007), WN18RR
(Dettmers et al., 2017), and FB15K-237 (Toutanova
et al., 2015). For FB15k-237, 20 relations in the
film field are selected. Following (Niu et al., 2020),
We use AIME+ (Galárraga et al., 2015) to auto-
matically extract rules, and we limit the maximum
length of rules to 2.

Table 2 lists the statistics of rules with vari-
ous confidence thresholds mined from these three
datasets.

Model Various Confidence Thresholds
0.5 0.6 0.7 0.8 0.9

UMLS 2,154 1,678 1,159 561 170
WN18RR 5 4 3 3 3

FB15K-237 2,044 1,621 1,255 912 565

Table 2: Statistics of rules mined on the three datasets.

Hyperparameters We set the dimensions of entity
and relation embeddings within (50, 200). A three-
layer LSTM is used as the path encoder and its
hidden dimension is set in (100, 200). The λ is
set as 0.9, 0.4 and 0.7 for UMLS, WN18RR and
FB15K-237, respectively, according to the average
degree of nodes and the average number of relation
rules on each dataset.

4.2 Link Prediction Results

Table 1 summarizes the experimental results of our
proposed approach and the baselines. As shown in
Table 1, RARL achieves competitive results over
multi-hop reasoning methods. On FB15K-237,
RARL outperforms all baselines in terms of Hit@1,
Hits@10, and MRR. On WN18RR and UMLS, the
RARL achieves the best results in terms of Hit@1
and MRR. The Hit@1 results emphasize the superi-
ority of our approach in high-precision link predic-
tion and confirm the effectiveness of high quality
rules. We also notice that the emebedding-based
methods perform better on UMLS and FB15K-237
compared with multi-hop reasoning methods. One
reason is that the multi-hop reasoning methods are
more sensitive to the sparsity and incompleteness
of graphs compared with embedding-based meth-
ods. It is hard for them to find evidential paths
reaching targets via strictly searching in the KG.
While the embedding-based methods(Lin et al.,
2018; Fu et al., 2019) map entities and relations
into a unified semantic space to capture inner con-
nections, which relaxes this restriction.

4.3 Ablation Study

We perform an ablation study to look deep into the
framework of RARL. We deactivate the validity of
rule information, random mechanism from RARL.
The MRR results are summarized in Table 3. It can
be observed that removing each reasoning compo-
nent of RARL results in a significant performance
drop on UMLS and WN18RR. On FB15K-237,
removing rule information seems like to be no in-
fluence. As a result, we further conduct an analysis
experiment using w/o rule setting and found lower
results on the testing set. This performance gap
may be caused by the difference of data distribu-
tion between the testing set and the validation set.
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Besides, our ablation study shows that removing
partial randomness has a greater negative impact
on reasoning performance. This suggests that in-
creasing the exploration diversity to get more valid
path patterns is important in training stage.

UMLS WN18RR FB15K-237
RARL w/o Rule .813 .448 .551
RARL w/o Random .792 .438 .501
RARL .872 .455 .551

Table 3: Ablation study of the proposed method.

5 Conclusions

In this paper, we introduced RARL, a new RL-
based method for knowledge graph reasoning.
RARL makes use of high-quality symbolic rules
and partical random beam search jointly and effi-
ciently fights against the sparse reward and spuri-
ous path problems. Experimental results demon-
strate that RARL achieves better performance com-
pared with existing multi-hop methods in terms of
both Hit@1 and MRR.
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2020. Contextual parameter generation for knowl-
edge graph link prediction. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 3000–3008.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27:3104–3112.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing text for joint embedding of
text and knowledge bases. In Proceedings of the
2015 conference on empirical methods in natural
language processing, pages 1499–1509.
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