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Abstract

Medical professionals review clinical narra-
tives to assign medical codes as per the Inter-
national Classification of Diseases (ICD) for
billing and care management. This manual
process is inefficient and error-prone as it in-
volves a nuanced one-to-many mapping. Re-
cent works on automated ICD coding learn
mappings between low-dimensional represen-
tations of the reports and the codes. While they
propose novel neural networks for encoding
varied types of information about the codes, it
is unclear as to what information in the medi-
cal codes is helpful for performance improve-
ment and why. Here, we compare different
ways to represent, or embed, the codes based
on their textual, structural and statistical char-
acteristics, using a single deep learning base-
line model in quantitative evaluations on dis-
charge reports from the MIMIC-III Intensive
Care Unit database. We also qualitatively anal-
yse the nature of the cases that benefit most
from the code embeddings and demonstrate
that code embeddings are important for pre-
dicting ambiguous and oblique codes.

1 Introduction

Free-text clinical narratives contain the majority
of information pertaining to patient state, disease
progression and care management. Following a
patient encounter, the text reports from the visit
are codified by representing the key diagnoses and
procedures according to the International Classifi-
cation of Diseases (ICD) system (Medicode (Firm),
1996). The resulting ICD codes are used for a
variety of diagnostic, billing, epidemiology and re-
search purposes (Bach and First, 2018; Feder et al.,
2018; Alsentzer et al., 2019).

The process of ICD coding, i.e., mapping clini-
cal text reports to ICD codes, is challenging. It in-

∗This work was done while the author was at A*STAR.

volves processing diverse domain-specific text with
large vocabulary and significant irrelevant content
to make a nuanced choice of a small set of codes
from a high-dimensional taxonomy of 15,000 ICD
codes. Hence, manual ICD coding tends to be time-
intensive, costly, and error-prone (Lang, 2007; Shi
et al., 2017; Xie and Xing, 2018), and there is great
interest in automated ICD coding methods.

Previous works on automated ICD coding have
employed conventional rule-based or machine
learning methods (Larkey and Croft, 1996; Farkas
and Szarvas, 2008; Perotte et al., 2014). Recently,
deep learning methods (Baumel et al., 2017; Xie
and Xing, 2018; Nie et al., 2018; Mullenbach et al.,
2018; Vu et al., 2020; Cao et al., 2020; Teng et al.,
2020; Yuan et al., 2020) have achieved leading-
edge performance. Of these, the best performing
deep learning approaches typically employ atten-
tion mechanisms to use representations of the ICD
codes to guide the model’s predictions. However,
the specific representations of the ICD codes used
vary from code textual descriptions (Mullenbach
et al., 2018) and code hierarchy (Vu et al., 2020;
Cao et al., 2020) to code co-occurrences (Cao et al.,
2020) and graph of medical entities associated with
codes (Teng et al., 2020; Yuan et al., 2020). Yet, it
is unclear which ICD code representation is most
effective, what types of cases would benefit from
these representations, and why.

Addressing these gaps requires comparing dif-
ferent code embeddings within one united frame-
work. We introduce a simple attention mechanism
to leverage varied statistical, textual, structural
representations of ICD codes and enhance a pre-
defined baseline clinical notes classifier. We use
discharge reports within the benchmark MIMIC-
III Intensive Care Unit database (Johnson et al.,
2016) for comparative evaluation, and perform ex-
tensive experiments to characterize effects of dif-
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Figure 1: Proposed model architecture

ferent code embeddings on prediction performance.
Quantitative results show that our proposed atten-
tion mechanism (a) enables 7-9% micro-F-1 boost
over the baseline classifier, and (b) performs at least
as accurately as more advanced two-level attention,
hyperbolic embedding or graph convolutional net-
work approaches. We further perform qualitative
analyses and show that our attention network en-
ables large improvements when the coding task is
more ambiguous or nuanced. Our approach and
findings offer practical means to enhance perfor-
mance in nuanced text classification tasks.

2 Methods

The task entails mapping a given free-text discharge
report to a set of ICD codes. This is a multi-label
text classification problem. We propose an ap-
proach for learning varied textual, structural and
statistical representations of the ICD codes (i.e.,
code embeddings), and employing them to enhance
performance of a given baseline model.

2.1 Attention to Code Embeddings

Figure 1 illustrates the architecture. We start with a
given baseline modelMB based on a convolutional
layer.MB takes word embeddings X ∈ Rde×N of
words in a given report as input and learns to gener-
ate their hidden representation H ∈ Rdc×N , where
N is the length of input medical narratives after
padding, de is the input embedding size, and dc is
the number of filters. We propose code embeddings
CL ∈ Rde×M as an auxiliary forMB , where M is
the number of ICD codes. We compute the cosine
similarity betweenX and CL, and denote the result
as h. We then compute per-label attention weights

αl as follows:

αl = SoftMax(

[
H
h

]T
µl), (1)

where [ ] indicates concatenation (denoted as H ′)
and µl ∈ Rdc+M is a vector parameter for label l.
Weights αl denote attention from the note represen-
tation to the code representation for label l and can
be used to enhance performance ofMB (e.g., as
shown in Figure 1). Then we apply the attention
weights αl to H ′ to get the final representation vl
of an input report corresponding to label l. We
also adopt the same classifier asMB , which uses a
linear layer and a sigmoid transformation, as illus-
trated in the right dotted box, where βl and bl are
the weight and bias of the classification layer for
label l, respectively. ŷl is the binary classification
probability that X belongs to l.

We set both the word embeddings for text in-
put and the code embeddings for ICD codes as
non-trainable to give the best performance. Our
proposed method introduces only a small number
of learnable parameters for labels.

2.2 Code Embeddings

Each ICD code has a unique identifier and a text
description and is structurally situated in a tree hi-
erarchy. Further, based on the reports labelled with
any given ICD code, we can obtain sample statis-
tics of the code usage. We propose to learn em-
beddings or representations that capture the above
textual, structural, and statistical characteristics of
ICD codes, as described below.

Textual code embeddings are obtained by ei-
ther (a) averaging word vectors (Mikolov et al.,
2013) of the words in the description of a code
(denoted as CE-w2v) or (b) learning the contextual
representation of the code description with BERT
(Devlin et al., 2019) (denoted as CE-BERT). For
CE-w2v, we use gensim1 to train the word vec-
tors with discharge reports. For CE-BERT, we use
Keras BERT2 uncased large model to get contextu-
alized word representations, apply max pooling to
all the word representations and then add a linear
layer for dimension reduction to get code repre-
sentations with 100 dimensions. This is integrated
end-to-end into our model.

Structural code representations leverage the

1https:
//github.com/RaRe-Technologies/gensim/
blob/develop/gensim/models/word2vec.py

2https:
//github.com/CyberZHG/keras-bert

https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/models/word2vec.py
https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/models/word2vec.py
https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/models/word2vec.py
https://github.com/CyberZHG/keras-bert
https://github.com/CyberZHG/keras-bert
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ICD tree hierarchy. We capture the parent-child
and sibling relations in triples (e.g., (401, ParentOf,
401.1) or (401.1, SiblingOf, 401.9). We then feed
the triples into a knowledge graph embedding ap-
proach such as TransR (Lin et al., 2015) (denoted
by CE-TransR).

Statistical code representations are learned
from the sample statistics between ICD codes and
the discharge reports from the training dataset. We
designate the embedding of code l as the weighted
average of word vectors, as follows:

Cl =
1

N

N∑
i=1

vwi

∑
d∈docs(l)

tf(wi, d), (2)

where the weight of a word vector vwi is propor-
tional to the sum of term frequencies of the word
in the notes that are labelled with the code l; N
indicates the size of the dataset vocabulary; docs(l)
refers to the set of notes associated with code l;
and tf(wi, d) is the function that returns the term
frequency of the word wi in document d. We apply
smoothing with increasing all word counts by one,
and denote resulting embeddings as CE-Stat.

3 Experiments

We follow the recent state-of-the-art (SOTA) ICD
coding studies and perform experiments on the
benchmark Medical Information Mart for Inten-
sive Care-III (MIMIC-III) dataset (Johnson et al.,
2016). Specifically, we implement our proposed
code embeddings (denoted as CE-xxx) atop the
popular CAML baseline (Mullenbach et al., 2018).
Note that our approach is amenable to any baseline
of choice.

Data: Like previous works (Mullenbach et al.,
2018; Vu et al., 2020), we focus on multi-label
classification task of mapping the discharge re-
ports in the MIMIC-III dataset to ICD codes. Pre-
processing details are listed in Appendix A.1. The
resultant preprocessed dataset, termed as FULL,
has over 52,700 discharge reports associated with
subsets of over 8,929 ICD codes (unlike the 8,921
ICD codes reported in prior works). We evaluated
our approach on the FULL dataset.

As our focus was to understand what information
in ICD codes enables performance improvement,
we also investigated whether and to what extent the
choice of a code subset affects performance. There-
fore, we created new subsets of MIMIC-III (termed
sub-datasets) for further evaluation. Specifically,
we selected the top k frequent ICD codes in the

FULL MIMIC-III dataset and collated the subset
of discharge reports tagged with at least one of the
top k frequent codes. We term the sub-datasets as
Top-k for k=20, 50, 100 and 300.

Finally, we also evaluated our approach on the
more widely used subselection of top-50 codes
(termed as Top-50+) (Shi et al., 2017). We note
that the Top-50+ dataset is much smaller than the
other Top-k and FULL datasets because it excludes
reports without associated diagnosis descriptions.
The detailed breakdown of the dataset sizes and
splits are showed in Appendix A.2.

Evaluations: We evaluate performance against
two baseline models (i.e.,MB): (a) CAML which
uses a per-label attention mechanism within a con-
volutional neural network (CNN) classifier and
(b) DR-CAML which uses code embeddings to
constrain the learned model parameters of CAML
(Mullenbach et al., 2018). We provide all param-
eters and model tuning details of the proposed
method in Appendix A.3. We follow prior works
and report micro-F1 to evaluate model perfor-
mance, and showcase detailed comparisons for
other common metrics. For each experiment, we
report averages from 3 independent runs.

Comparative Results on Top-k Sub-Datasets:
Table 1 shows the performance of our CE approach
compared with baselines on the 5 MIMIC-III sub-
datasets. Our CE approach (any embedding type)
outperforms the baselines in all the Top-k sub-
datasets. We observe that CE-w2v, CE-BERT and
CE-TransR lead to slightly better performance than
CE-Stat. CE also obtains comparable results on the
FULL dataset compared to the baselines. As prior
works did not focus on understanding the relation
between information in the codes and model perfor-
mance, there are no reported results on our Top-20,
Top-50, Top-100, and Top-300 datasets. Thus, we
only compared with baselines in Table 1.

We highlight that our experiments on the FULL
dataset were limited by the memory size of the
GPUs used. To address this, we reduced batch size
of our method (from 128 to 16) and also applied
a linear layer to reduce the number of dimensions
(M ) from the number of FULL codes to 50. Con-
sequently, for the FULL dataset, our CE approach
does not improve over baselines and SOTA. How-
ever, as our results indicate ability to consistently
improve over baselines for different datasets, we
posit that increasing batch size and allowing atten-
tion to focus on all the FULL codes would enable
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Data size Top-20 Top-50 Top-100 Top-300 FULL†
Baseline (CAML) 0.681 0.641 0.599 0.555 0.520

DR-CAML 0.668 0.641 0.584 0.543 0.509
CE-w2v 0.768 0.713 0.684 0.635 0.502

CE-BERT 0.775 0.710 0.689 0.622 0.518
CE-TransR 0.765 0.710 0.689 0.623 0.507

CE-stat 0.765 0.711 0.688 0.614 0.500

Table 1: Evaluation results of all data on micro-F1. The default batch size is 128, while † uses 16 as batch size due
to memory limit.

AUC F1
Model Macro Micro Macro Micro Precision@5

Yuan et al. (2020) - - - - 0.635
Teng et al. (2020) - 0.933 - 0.692 0.653
Vu et al. (2020) 0.925 0.946 0.666 0.715 0.675
Cao et al. (2020) 0.895 0.929 0.609 0.663 0.632

CE-Best 0.914 0.937 0.637 0.694 0.652

Table 2: Results on MIMIC-III for the most frequent 50 labels (Top-50+). Based on the performance, CE-Best
corresponds to CE-w2v.

our approach to perform comparably with SOTA.
Comparisons with SOTA on Top-50+: As the

Top-50+ benchmark is the common dataset eval-
uated in all SOTA works, we tabulate the results
of our proposed approach on the Top-50+ dataset
in relation to previously published SOTA results
in Table 2. We observe that our approach out-
performs all previous methods in terms of macro-
/micro-averaged F1 and AUC, except for Vu et al.
(2020) (Vu et al., 2020). The performance of Vu et
al. (2020) (Vu et al., 2020) is slightly higher than
ours, as they use a model based on bidirectional
long short-term memory (Bi-LSTM) (Hochreiter
and Schmidhuber, 1997) with a similar but more
complex attention mechanism. While we also ran
experiments with Bi-LSTMs, we found that they
tend to be computationally intensive and often did
not converge, and thus focused on the more prac-
tical CNNs. We further tried to combine code em-
beddings of different kinds (e.g. CE-w2v + CE-
TransR) to see if there is any synergistic effect, but
found that no such combination led to performance
improvement. We report results of the combination
experiments on Top-50+ in Appendix A.4.

4 Qualitative Analysis

To dissect gains of the code representations, we
performed qualitative analyses on the Top-50+ test
results.

Data Selection: For each CE embedding, we
computed the per-code micro-F1 gains over base-

line CAML, summed the gains across all the CE
embeddings, and rank-ordered the ICD codes by
total micro-F1 gain. Next, we selected the 10 codes
with the highest gains over baseline (CE� base-
line) and also the 10 codes with the least gains
over baseline (CE ≈ baseline). For the first selec-
tion (those with the highest gains over baseline),
our 4 CE methods typically improve over the base-
line. For the second selection of the 10 lowest gain
codes, CE is almost always as good as the baseline
in these cases. Specifically, out of all discharge
summaries for the second selection, the baseline
outperforms all 4 CE methods in only 0.2% of
cases and 2 out of 4 CE methods in only 1.2% of
cases. Hence, we term this second selection as “CE
≈ baseline”. For qualitative review, we randomly
sampled 5 cases corresponding to each of these 20
codes from the Top-50+ testset and obtained 100
cases.

Review Procedure: All qualitative analyses
were performed independently by two clinical re-
viewers. After analysis, the two reviewers dis-
cussed to arrive at consensus. First, for each of
the 20 codes selected, reviewers considered the
ICD coding guidelines and assessed whether they
fall into medical, procedural, or surgical categories.
Next, for each of the 100 cases selected, reviewers
read the discharge reports and marked out reports
that did not have any viable information relating
to the code assignment for exclusion from further
analysis. Second, for reports deemed viable, the
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Figure 2: Results of Qualitative Analysis

reviewers assessed whether the reports explicitly
delineated the codes (e.g., word-to-word match
with code description or synonymous mentions)
or contained information that more obliquely re-
lates to the codes (e.g., mentions which might lead
a domain expert with specialized knowledge to in-
directly infer the code). Third, reviewers further
indicated whether the mentions were sparse (1-2
circumscribed mentions) or not (several mentions
or extensive sections relating to the code). Finally,
reviewers marked out whether the reports had di-
verse expressions linking to the codes.

Qualitative Analysis Results: Figure 2 details
the results. Comparing the code characteristics, we
observe that codes where CE gains more tend to (a)
have descriptions that include “unspecified” or “not
elsewhere classified” and (b) fall into the medical
category. In contrast, codes where CE does not
gain much tend to be more procedural or surgical
in nature. Next, comparing characteristics of the
mappings between the notes and the codes, we ob-
serve that cases where CE gains more tend to have
more oblique mentions; while cases where CE does
not gain much tend to have more explicit mentions.
This suggests that code embeddings may provide
more gains in cases where the discharge reports
more obliquely correspond to the code. We detail
more in Appendix A.5 and A.6 by providing ex-
cerpts from 2 exemplar cases and also showing that
CE enables strong Micro-F1 gains on the oblique
codes (codes with descriptions including “unspec-
ified” or “not elsewhere classified”) of the FULL
dataset.

We found that the numbers of cases with sparse
mentions were similar for the cases where CE

gained more vs. less over baseline. That said, the
reviewers did observe that codes such as “Tobacco
use disorder” were largely associated with sparse
mentions and these kinds of cases were more likely
to be accurately predicted with CE than with the
baseline. We also note that the cases correspond-
ing to higher gains for CE tended to have more
diversity in expression.

5 Conclusions and Future Work

We proposed and characterized methods to lever-
age representations that capture statistical, tex-
tual, and structural properties of medical codes
for clinical report coding. We implemented the
proposed method on a simple but efficient base-
line system and demonstrated substantial perfor-
mance improvements in micro-F1. Additionally,
we performed qualitative evaluation studies to show
that our method is more useful in cases when the
code prediction task is more ambiguous or nuanced.
Future work will experiment with more general
datasets and enhancements of the attention network
to further improve performance.
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A Appendix

A.1 Data Preprocessing
We preprocess discharge reports following CAML.
By retaining a maximum of 2,500 words for each
summary, we obtain a vocabulary of about 52,000
words. We found there is a minor parsing error in
CAML data preprocessing. When CAML read di-
agnosis and procedure codes from MIMIC III PRO-
CEDURES ICD.csv and DIAGNOSES ICD.csv
using Python function pandas.read csv(), the data
type of codes used is numpy.int64. In fact, the data
type should be str. We correct this error by indi-
cating the data type. For full codes, the number of
common codes contained in our produced codes
and CAML codes is 8706. For top-50 codes, only
one code is different.

A.2 Dataset Splits and Details

Data size Top-20 Top-50 Top-100 Top-300 FULL Top-50+

Train 42,590 44,804 46,458 47,285 47,724 8,067
Dev. 1,471 1,574 1,600 1,622 1,632 1,574
Test 3,054 3,242 3,291 3,352 3,373 1,730

Table 3: Data splits details

Table 3 shows the number of discharge sum-
maries contained in the training, development and
test data for all the top-k, full and Top-50+ data.
We can see through sub-selection, Top-50+ is much
smaller than the other data.

A.3 Parameters and Model Tuning
Our code embeddings introduce extra training pa-
rameters due to the changes in attention struc-
ture. For a Top-k dataset, 2k2 more parameters
are added. For small k, this number is negligible.
For greater k, such as the FULL dataset, we add
one fully-connected layer after h to reduce the first
k in 2k2 to a fixed number, so that the number
of the introduced parameters is smaller than the
number of original parameters of CAML.

We also tuned the batch size and learning rate to
enhance performance. For top-20/50/100/300 data,
we use a fixed batch size of 128 in all our models.
For Top-50+ and FULL, we use a fixed batch size
of 16 in all our models. Due to the expensive GPU
memory cost in cosine matrix computation and
the large number of added feature maps, we add
a linear layer to reduce the size of cosine matrix.
For all datasets, we set learning rate to 0.001. For
CAML based methods, we use the settings from
(Mullenbach et al., 2018).

A.4 Detailed Evaluation on Top-50+

We report deeper analyses on the Top-50+ bench-
mark in Table 4. We first assess whether CE im-
proves performance over CAML by adding more
features to the representation of a discharge re-
port. Specifically, we add 50 filters (thus enhanc-
ing number of features) to those used in CAML
and DR-CAML, and denote the revised models as
CAML add and DR-CAML add. We observe that
the additional filters offer limited improvements in
comparison with the CE approach (any embedding).
This suggests that our CE approach may not just
be adding more features to improve performance.
Next we assess if combining the different CE em-
beddings would enable even better performance.
We experiment with several combinations of our
different code embeddings: (a) CE+WT combining
CE-w2v and CE-TransR, (b) CE+WTS combining
CE-w2v, CE-TransR and CE-Stat, and (c) CE+BTS
combining CE-BERT, CE-TransR and CE-Stat. We
observe that the combinations of CE embeddings
do not improve the performance much over individ-
ual CE embeddings. This suggests that dot product
of discharge summary representation with concate-
nation of multiple code representations may not
have synergistic effects.

AUC F1
Model Macro Micro Macro Micro P@5
CAML 0.870 0.913 0.521 0.614 0.612

DR-CAML 0.870 0.906 0.541 0.612 0.606
CAML add 0.884 0.920 0.547 0.626 0.621

DR-CAML add 0.878 0.916 0.546 0.618 0.616
CE-w2v 0.914 0.937 0.637 0.694 0.652

CE-BERT 0.913 0.936 0.638 0.692 0.651
CE-TransR 0.913 0.937 0.636 0.693 0.654

CE-Stat 0.911 0.936 0.633 0.687 0.651
CE+WT 0.914 0.937 0.640 0.693 0.647

CE+WTS 0.912 0.935 0.649 0.689 0.650
CE+BTS 0.912 0.936 0.644 0.692 0.650

Table 4: Results on MIMIC-III, 50 labels (Top-50+).
P@5 means precision at 5.

A.5 Constrained Evaluations on FULL

Method Micro-F1
CAML 0.106

DR-CAML 0.106
CE-w2v 0.169

CE-BERT 0.119
CE-TransR 0.114

CE-Stat 0.122

Table 5: Micro-F1 on Oblique Codes of Full

We look into the oblique codes in the testing data
of FULL. We select the codes of which the code
descriptions containing keywords from [“unspeci-
fied”, “not elsewhere classified”, “other”]. Table 5
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Figure 3: Illustrations of Oblique Coding Cases

shows the Micro-F1 scores of our code embed-
ding methods compared with the baseline methods.
From the table, we can see our methods perform
better on the oblique codes, especially CE-w2v.

A.6 Case Illustrations
To provide richer insight on the qualitative anal-
ysis, we provide two case illustrations, shown in
Figure 3. In both cases, the indicated ground truth
codes were missed by the baseline but predicted
correctly by our CE approach. In the first case
(i.e., code 45.13), there are synonym mentions of
“EGD” in the Major Surgical Procedure, Images,
and Brief Hospital Course subsections of the report.
However, indirect phrases on the type of endoscopy
performed in the Discharge Instructions imply that
this is specifically a case of upper gastrointestinal
endoscopy, which leads to the said code assign-
ment. In the second case (i.e., code 507.0), there
are no explicit mentions of pneumonitis with vom-
itus anywhere in the discharge report. However,
there is only one oblique mention of “aspiration”
without the word pneumonia or its equivalent. As
this code is also often termed as “aspiration pneu-
monia” in medical parlance, the oblique mention
ties down the link between the report and the said
code assignment.


