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Abstract

Adversarial debiasing can help to learn fairer
models. Previous work has assumed that both
main task labels and protected attributes are
available in the dataset. However, protected la-
bels are often unavailable, or only available in
limited numbers. In this paper, we propose a
training strategy which needs only a small vol-
ume of protected labels in adversarial training,
incorporating an estimation method to trans-
fer private-labelled instances from one dataset
to another. We demonstrate the in- and cross-
domain effectiveness of our method through a
range of experiments.

1 Introduction

Protected attributes such as user gender can act
as confounding variables in models, and spurious
correlations with task response variables can lead
to unfair predictions, as seen in tasks such as part-
of-speech tagging (Hovy and Sggaard, 2015), hate
speech detection (Huang et al., 2020), and senti-
ment analysis (Kiritchenko and Mohammad, 2018).

Adversarial methods are a popular method for
mitigating bias associated with protected attributes,
wherein the encoder attempts to prevent a discrimi-
nator from identifying protected attributes (Zhang
etal.,2018; Lietal., 2018; Han et al., 2021). An ad-
versarial network consists of a discriminator A and
an encoder E. Each input z; is required to be anno-
tated with both a main task label y; and protected
attribute label g;, and the discriminator identifies
protected information in the representation gener-
ated by the encoder (§; = A(h;)). The objective
of the encoder training incorporates two parts: (1)
predicting the main task label (7, = C(E(x;)));
and (2) preventing protected attributes from being
identified by the discriminator.

An important limitation of previous adversarial
debiasing work is that training instances must be an-
notated with both main task and protected labels (Li
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et al., 2018; Wadsworth et al., 2018; Zhang et al.,
2018; Wang et al., 2019; Han et al., 2021). How-
ever, sourcing protected labels can be difficult, for
reasons ranging from privacy regulations/ethical
concerns, to only a small subset of users explicitly
publicly disclosing protected attributes.

Our contributions are as follows: (1) we present
a novel way of training the main task model
and the discriminator separately, removing the
restriction that every training instance needs to be
annotated with protected labels; (2) we conduct
in-domain experiments with diminishingly small
amounts of protected-labelled data for sentiment
analysis and hate speech detection, and show
that our method can be successfully applied
with remarkably little protected data; and (3)
we present preliminary results for cross-domain
transfer of protected attributes for sentiment
analysis and POS tagging. The source code and
data associated with this paper are available at:
https://github.com/HanXudong/Decoupling_

Adversarial_Training_for_ Fair_ NLP.

2 Methodology

Adversarial Separation Training Intuitively,
adversarial supervision can be decoupled from the
main task training, i.e., the inputs used for training
the main model do not have to be annotated with
protected labels. In doing so, we attain flexibility in
being able to train the discriminator over only those
instances where we have access to the protected
attribute, as well as being able to transfer private
attributes between datasets. Following the setup of
Li et al. (2018), the optimisation objective is:
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Algorithm 1: Predictability Estimation

Input: Out of domain dataset Do = (Xo,Go),
pretrained main task model M in the target
domain, M, number of folds k£, number of
test folds at each step ¢

Output: protected label predictability scores, P

Calculate hidden representations Ho of Xo from M,

Partition Do into k equi-sized folds as {F1, ..., Fx}

Create (};) test fold combinations as T’

for i < to (¥) do
Use 15 as Fiest, remaining folds as Firain
Train M on Fiin
forall (ho,j,90,j) € Fiest do
Make prediction jo,; = M(ho,;)
Accumulate correct predictions
P(j) +=6(go.i,90.5)

O B N7 T N S

10 end
11 end
12 return P

where X is cross entropy loss, and \,q4y is a tunable
hyperparameter. The critical observation of this
work is that the two sources of data Dyyain and D,qv
need not be the same, but may overlap or be entirely
disjoint, as we explore in Section 3.

Filtering Cross-domain Data The inputs used
for discriminator training do not have to be anno-
tated with the main task label. Inspired by the
domain robustness results of Li et al. (2018) with
adversarial training, we examine cross-domain ad-
versarial learning where protected labels are un-
known for the target task in two settings: (1) senti-
ment analysis classification, and (2) part of speech
(POS) tagging. In both cases we use external race
labels from a hate speech dataset, and ignore any
protected attributes in the original dataset.
According to our experiments, one problem asso-
ciated with using cross-domain protected-labelled
data is that some protected labels may not be rel-
evant to the target domain. To address this prob-
lem, inspired by adversarial filtering (Le Bras et al.,
2020), we conduct preliminary exploration on fil-
tering cross-domain data in adversarial separation
training. This method finds out-of-domain in-
stances with the most confident predictions of the
protected label, and selects these instances to use as
a silver standard in training in-domain adversaries.
To estimate the protected label predictability of a
cross-domain instance (xo i, go,;) in the target do-
main given a trained main task model in the target
domain (M) and an estimator M (a logistic regres-
sion classifier), the protected label predictability
of each instance is estimated as shown in Algo-
rithm 1. Specifically, for folds & and test folds ¢,

the predictability of each instance is estimated n
times (i.e., by n different models) over different
training sets. n can be derived from k and ¢ as fol-
lows: n = % Note that when ¢t = 1, our
method equates to k-fold cross-validation, and the
predictability of each instance is estimated once.
We demonstrate how the estimated predictability

P can be used in Section 3.5.

3 Experiments and Analysis

In this section, we report on experiments under
two scenarios: (1) in-domain, where protected la-
belled data and main labelled data are from the
same domain; and (2) cross-domain, where pro-
tected labelled data are from a different domain to
the main task data.

3.1 GAP

A common way of measuring fairness is GAP: the
absolute difference for a metric between data sub-
sets selected by different settings of the protected
attribute. For instance, in the binary setting, we
can compare the true positive rate (TPR) for male-
vs. female-authored documents in the test set; this
difference is the TPR-GAP, and is zero for a fair
model.

3.2 In-domain: Sentiment Analysis

Data We experiment with the dataset of Blodgett
et al. (2016), which contains tweets that are either
African American English (AAE)-like or Standard
American English (SAE)-like (following Han et al.
(2021)). Each tweet is annotated with a binary
“race” label (based on AAE or SAE), and a binary
sentiment score determined by the (redacted) emoji
within it.

We use the train/dev/test splits from Han et al.
(2021) of 100k/8k/8k instances, respectively. The
full dataset is artificially balanced across the four
race—sentiment combinations. To (re)introduce
bias into the dataset, previous work has skewed
the training data to generate race—sentiment combi-
nations (AAE-happy, SAE-happy, AAE—sad, and
SAE-sad) of 40%, 10%, 10%, and 40%, respec-
tively, leaving the dev and test data unbiased.

To examine how much private labelled data is
needed, we randomly mask the protected attribute
from up to 99% of the training data.

Models We use the same model architecture
as Han et al. (2021), in the form of the fixed-
parameter DeepMoji encoder (Felbo et al., 2017)
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Figure 1: In-domain Sentiment Analysis: main task ac-
curacy and GAP with respect to the trade-off hyperpa-
rameter \.qv; shaded areas = 95% CI estimated over 5
runs.

followed by a trainable 3-layer MLP. DeeMoji con-
tains 22.4 million parameters and is pretrained over
1246 million tweets to predict one of 64 common
emojis. The discriminator for adversarial training
(for all experiments in this paper) is trained to pre-
dict the protected attribute from the hidden states
of the last hidden layer of the MLP classifier. Full
training details are provided in the Appendix.

Results We explore 4 dataset settings where
100%, 50%, 10%, and 1% of the training data is
labelled with its private attribute. We tune \,4y log-
uniformly under each data setting, using the same
case-control training strategies for all experiments
in this paper.

As shown in Figure 1, tuning \,qy results in a
series of candidate models, and there is a clear
inflection point for the TPR GAP under each data
setting, at different values of A,gy.

To compare the adversarial training performance
across different numbers of private labels, we show
the trade-off plot in Figure 2a. Each point reflects
the Accuracy and TPR GAP of a candidate model
with a given A,qy. The points for the three data set-
tings of 100%, 50%, and 10% are hard to separate,
indicating that adversarial training with only 10%
of protected labels can achieve similar results to
using protected labels for 100% of the data. Even
with 1% of private labels, debiasing is evident, but
this comes at a lower accuracy for a given TPR
GAP level.

3.3 In-domain: Hate Speech Detection

Data Our second in-domain dataset is the En-
glish Twitter hate speech detection dataset of
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Huang et al. (2020), where each tweet is labelled
with a binary hate speech label and also contains
(binary) demographic indicators for the tweet au-
thor: binary gender (female or male), location
(U.S. or other), age (older or younger than the
median), and race (white or other). We focus on
age, which has been shown to result in the great-
est model unfairness (Huang et al., 2020), and
use the train/dev/test splits of Huang et al. (2020).
Since age information is not available for all au-
thors, we downsample to get a subset of tweets
which are annotated with age, with approximately
31k/6.7k/6.7Kk in training/dev/test.

Model Huang et al. (2020) compare 4 different
model architectures for the hate speech detection
task — TF-IDF-weighted feature-based logistic
regression, convolutional neural network, an RNN
(in the form of a biGRU), and BERT (Devlin et al.,
2019) — and found the RNN model to consistently
perform best. Based on this, we use the same RNN
model, and perform debiasing on top of it.

Results Figure 2b shows the trade-off plot with
respect to hate speech detection models under sim-
ilar data conditions as our first experiment (100%,
50%, 10%, and 0.1%). Consistent with our pre-
vious observations, there is little distinguishing
100%, 50%, and 10%. In fact, when we further
decrease the proportion of protected labels, we ob-
serve that even with 0.1% of protected attributes,
the trade-off is close to the 100% model.

3.4 Cross-domain: Sentiment Analysis

Next, we turn to the cross-domain setting, in taking
protected labelled data from one domain and using
it to adversarially debias a sentiment analyser over
a different but similar domain.

Data We use the same model architecture and
sentiment analysis dataset as in Section 3.2, but
source private attributes (in the form of race) from
the hate speech dataset from Section 3.3 to train
the discriminator. Note that the race labels for the
hate speech dataset (white or other) diverge slightly
from those in the target domain (SAE or AAE).

Results Figure 3 shows the trade-off plot for
the model. To compare the cross- and in-domain
settings, we include in-domain adversarial debi-
asing results (1% data setting). Compared with
in-domain results, the trade-off for cross-domain
debiasing is worse than the 1% in-domain setting,
but substantially better than random.
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Figure 2: In-domain evaluation showing the accuracy—TPR-GAP trade-off for different fractions of protected-
labels in the training dataset. For each data setting, we evaluate predictions for \,q, settings near to that where the
model achieves its smallest development TPR GAP. Since there is strong correlation between TPR GAP and TNR

GAP, we only include TPR GAP.
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Figure 3: Cross-domain Sentiment Analysis: trade-off
plot. The blue solid line denotes baseline debiasing re-
sults, based on randomly replacing main task predic-
tions with a Bernoulli r.v. sampled from p = 0.5.

In terms of the drop in model accuracy during
debiasing, each point in Figure 3 corresponds to a
candidate model, and in this cross-domain setting,
some models (e.g., for those models with TPR-
GAP around 0.2) are able to reduce the bias by
about 50% while maintaining performance that is
close to the vanilla model. Managing the trade-off
relates to model selection and the requirements of
a given application scenario, for example, choos-
ing a model that is able to achieve at least a cer-
tain fairness level. Overall, at a given bias level,
our method doesn’t make use of any in-domain
protected labels, and consistently outperforms the
random baseline.

3.5 Cross-domain: POS tagging

As second cross-domain task, we follow Li et al.
(2018) in performing POS tagging.

Data We use three datasets for different purposes:
main task training, adversarial training, and out-of-
domain evaluation.

Following Li et al. (2018), we train a biLSTM
POS tagging model on the English Web Tree-
bank (Bies et al., 2012), comprising 13.5k POS-
tagged sentences without protected labels. To eval-
uate model performance and fairness, we use the
TrustPilot English POS-tagged dataset (Hovy and
S@gaard, 2015), consisting of 600 sentences with
both POS labels and binary author-age labels (over-
45-year-old and under-35-year-old).

To train the discriminator, we use unlabelled
TrustPilot data (Hovy, 2015), which consists of
156.5k English reviews with author-age labels.
Based on protected-label predictability estimation
(Algorithm 1), we examine 4 subsampling strate-
gies: (1) “random”, based on random-sampling; (2)
“largest leakage”, select instances with the high-
est predictability (intuitively the most biased in-
stances); (3) “smallest leakage”, select instances
where the predictability is below a majority-class
baseline; and (4) “absolute leakage”, a combination
of largest and smallest leakage where equal num-
ber of instances from the largest leakage sampling
and the smallest leakage sampling are concatenated
together.

Results We follow Li et al. (2018), in evaluat-
ing fairness via the difference in tagging accuracy
between age groups.

Figure 4 shows the trade-off plot with respect
to the 4 filtering strategies. Note that the test set
only includes 600 instances, so we explore a wider
range of the A,qy, and train 5 random initialized
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Figure 4: Cross-domain POS Tagging. The vertical line
denotes the biased model accuracy, and the horizontal
line denotes the biased model Accuracy GAP. Points in
the upper-right quadrant are preferable.

Top P Top F
Acct  GAP| || ACCT GAP|
Biased || 83.60 1.74 | 83.60 1.74
Random || 83.94 1.73 83.89 1.70
Largest 83.86 1.66 83.63 1.63
Smallest || 83.92 1.68 || 8353 1.57
Absolute || 84.18 1.75 || 83.84 1.64

Table 1: Evaluation results on the test set, median value
over 5 best models. Biased stands for the non-debiasing
model. Top P = 5 models with best performance, and
Top F = 5 models with best fairness. “1”” and ”|” indi-
cate that higher and lower performance, resp., is better
for the given metric.

models for each \,qy and take the average. Points
in the lower-right quadrant are preferable, in that
they decrease bias while increasing accuracy.

We report models of each predictability estima-
tion based sampling method, and all models from
random sampling (with respect to different Anqy).
Compared to the biased model performance and
fairness (vertical and horizontal lines, respectively),
the random sampling method does not lead to clear
improvements, while our proposed methods lead
to consistent gains.

We further compare these methods numerically
in Table 1 by selecting top 5 best models from what
has been shown in Figure 4. Specifically, we select
models with top 5 performance (largest accuracy
score) or fairness (smallest GAP) separately, and
report the median values of accuracy and GAP over
the selected models.

Largest and smallest leakage show close results

475

and are safer choices that consistently outperform
random and non-debiasing methods. Intuitively, in
a binary classification problem, instances within
the the smallest leakage group could also be in-
formative as they could be transformed to largest
leakage groups by reverting the predictions, i.e.,
go,j = 1 — M(hoy), thus using largest leak-
age sampling is similar to using smallest leak-
age sampling. Combining largest and smallest
leakage instances together, the absolute sampling
method achieves slightly better accuracy perfor-
mance than other sampling strategies and consist
better performance-fairness trade-off than the bi-
ased model.

4 Conclusion

We propose a novel training strategy for adversar-
ial debiasing which decouples the training of the
main task model and discriminator, including the
possibility of training on different data. Based on
in-domain evaluation over sentiment analysis and
hate speech detection, our method performs as well
as the standard adversarial method using only 10%
of protected labels. Furthermore, experiments in a
cross-domain setting demonstrate the potential fea-
sibility of the method in settings where protected
labels are not available.
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Ethical Considerations

This work aims to use less protected-labelled data
in adversarial debiasing. Adversarial training in
NLP can help to learn fairer models across demo-
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identified demographic attributes for adversarial de-
basing. By reducing the number of protected labels
that are needed in adversarial training, using only
self-identified characteristics becomes an effective
choice.
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Figure 5: In-domain Sentiment Analysis: main task ac-
curacy and GAP with respect to the trade-off hyperpa-
rameter \.qy; shaded areas = 95% CI estimated over 5
runs.

B Computing Infrastructure Used

¢ CPU: Intel(R) Core(TM) 19-9900K CPU
¢ GPU: NVIDIA GeForce RTX 2080 Ti
e RAM: 32 GB

C Sentiment Analysis

Models All models are trained and evaluated on
the same training/test split. The Adam optimizer is
used with learning rates of 3 x 10~ for the main
model and 3 x 107° for the sub-discriminators.
The minibatch size is set to 1024. Sentence rep-
resentations (2304d) are extracted from the Deep-
Moji encoder. The hidden size of each dense layer
is 300 in the main model, and 256 in the sub-
discriminators. We train M for 60 epochs and each
A for 100 epochs, keeping the checkpoint model
that performs best on the dev set. Running time:
35 s/epoch

Hyperparameter Range

* X from 1072 to 10*2. log uniform sampling
30 trails

D Hate Speech
Model Architecture
* hidden size, type=int, 300
* embedding size, type=int, 400

* number of classes, type=int, 2
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* adversarial level, type=int, —1 (last hidden
layer)

* learning rate, type=float, 0.00003

e number of discriminator, type=int, 1

* adv units, type=int, 256

* batch size, type=int, 512

* epoch, type=int, 100

* dropout, type=float, 0.5

* Running time: 52 s/epoch
Hyperparameter Range

+ ) from 10 to 103 based on log uniform sam-
pling over 15 trials

E POS Tagging
Model Architecture

* BATCH SIZE = 64

LEARNING RATE = le-3

EMBEDDING DIM = 50

HIDDEN DIM = 100

N LAYERS =2

BIDIRECTIONAL = True

DROPOUT =0.25

EPOCHS =50

SEED = 960925

MIN FREQ = 2

SAMPLING INDEX =10

LAMBDA = 1e-3

e dropout = 0.5

* Running time: 12 s/epoch
Hyperparameter Range

* X from 1071 to 10~® based on log uniform
sampling over 20 trials



