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Abstract

Understanding linguistics and morphology of
resource-scarce code-mixed texts remains a
key challenge in text processing. Although
word embedding comes in handy to support
downstream tasks for low-resource languages,
there are plenty of scopes in improving the
quality of language representation particularly
for code-mixed languages. In this paper, we
propose HIT, a robust representation learn-
ing method for code-mixed texts. HIT is
a hierarchical transformer-based framework
that captures the semantic relationship among
words and hierarchically learns the sentence-
level semantics using a fused attention mech-
anism. HIT incorporates two attention mod-
ules, a multi-headed self-attention and an outer
product attention module, and computes their
weighted sum to obtain the attention weights.
Our evaluation of HIT on one European (Span-
ish) and five Indic (Hindi, Bengali, Tamil, Tel-
ugu, and Malayalam) languages across four
NLP tasks on eleven datasets suggests signif-
icant performance improvement against var-
ious state-of-the-art systems. We further
show the adaptability of learned representation
across tasks in a transfer learning setup (with
and without fine-tuning).

1 Introduction

India is the second most populated country in the
world, where ∼ 1.36 billion people speak in over
200 different languages. Among them, the top
five languages (Hindi, Bengali, Telegu, Tamil, and
Malayalam) covers ∼ 93%of the entire population
with more than 26% of them being bilingual (as
per Wikipedia). Moreover, a significant propor-
tion of them (Singh et al., 2018a) use code-mixed
languages to express themselves in Online Social
Networks (OSN).

Code-mixing (CM) is a linguistic phenomenon
in which two or more languages are alternately

used during conversation. One of the languages
is usually English, while the other can be any re-
gional language such as Hindi (Hindi + English→
Hinglish), Bengali (Bengali + English→ Benglish),
Spanish (Spanish + English → Spaniglish), etc.
Their presence on social media platforms and in
day-to-day conversions among the people of a
multi-lingual communities (such as Indians) is over-
whelming. Despite the fact that a significant popu-
lation is comfortable with code-mixed languages,
the research involving them is fairly young. One of
the prime reasons is the linguistic diversity, i.e., re-
search on any language often fails to adapt for other
distant languages, thus they need to be studied and
researched separately. In recent years, many orga-
nizations have identified the challenges and have
put in commendable efforts for the development of
computational systems in regional monolingual or
code-mixed setups.

Traditionally, the NLP community has studied
the code-mixing phenomenon from a task-specific
point of view. Recently, a few studies (Pratapa
et al., 2018; Aguilar and Solorio, 2020) have started
learning representations for code-mixed texts for
semantic and syntactic tasks. While the former has
showcased the importance of multi-lingual embed-
dings from CM text, the latter has made use of a hi-
erarchical attention mechanism on top of position-
ally aware character bi-grams and tri-grams to learn
robust word representations for CM text. Carrying
over the same objective, in this paper, we intro-
duce a novel HIerarchically attentive Transformer
(HIT) framework to effectively encode the syntac-
tic and semantic features in embeddings space. At
first, HIT learns sub-word level representations em-
ploying a fused attention mechanism (FAME) –
an outer-product based attention mechanism (Le
et al., 2020) fused with standard multi-headed self-
attention (Vaswani et al., 2017). The intuition of
sub-word level representation learning is supple-
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mented by the lexical variations of a word in code-
mixed languages. The character-level HIT helps
in representing phonetically similar word and their
variations to a similar embedding space and ex-
tracts better representation for noisy texts. Subse-
quently, we apply HIT module at word-level to in-
corporate the semantics at the sentence-level. The
output of HIT is a sequence of word representations,
and can be fed to the architectures of any down-
stream NLP tasks. For the evaluation of HIT, we
experiment on one classification (sentiment classi-
fication), one generative (MT), and two sequence-
labelling (POS tagging and NER) tasks. In total,
these tasks span to eleven datasets across six code-
mixed languages – one European (Spanish) and five
Indic (Hindi, Bengali, Telugu, Tamil, and Malay-
alam). Our empirical results show that representa-
tions learned by HIT are superior to existing multi-
lingual and code-mixed representations, and report
state-of-the-art performance across all tasks. Ad-
ditionally, we observe encouraging adaptability of
HIT in a transfer learning setup across tasks. The
representations learned for a task is employed for
learning other tasks w/ and w/o fine-tuning. HIT
yields good performance in both setups for two
code-mixed languages.
Main contributions: We summarize our contribu-
tions as follow:
• We propose a hierarchical attention transformer

framework for learning word representations of
code-mixed texts for six non-English languages.

• We propose a hybrid self-attention mechanism,
FAME, to fuse the multi-headed self-attention
and outer-product attention mechanisms in our
transformer encoders.

• We show the effectiveness of HIT on eleven
datasets across four NLP tasks and six languages.

• We observe good task-invariant performance of
HIT in a transfer learning setup for two code-
mixed languages.

Reproducibility: Source codes, datasets and other
details to reproduce the results have been made
public at https://github.com/LCS2-IIITD/

HIT-ACL2021-Codemixed-Representation.

2 Related Work

Recent years have witnessed a few interesting work
in the domain of code-mixed/switched representa-
tion learning. Seminal work was driven by bilin-
gual embedding that employs cross-lingual transfer
to develop NLP models for resource-scarce lan-

guages (Upadhyay et al., 2016; Akhtar et al., 2018;
Ruder et al., 2019). Faruqui and Dyer (2014) in-
troduced the BiCCA embedding using bilingual
correlation, which performed well on syntactical
tasks, but poorly on cross-lingual semantic tasks.
Similarly, frameworks proposed by Hermann and
Blunsom (2014) and Luong et al. (2015) depend on
projecting the words of two languages into a single
embedding space.

However, as demonstrated by Pratapa et al.
(2018), bilingual embedding techniques are not
ideal for CS text processing and should be replaced
by multi-lingual embeddings learnt from CM data.
The transformer-based Multilingual BERT (De-
vlin et al., 2019) embedding has been demon-
strated (Pires et al., 2019) to possess impressive
cross-lingual model transfer capabilities. Also, the
XLM model (Conneau and Lample, 2019) has also
shown the effects of cross-lingual training for low-
resource and CM language tasks.

Another school of thought revolves around sub-
word level representations, which can help to cap-
ture variations found in CM and transliterated text.
Joshi et al. (2016) proposed a CNN-LSTM based
model to learn the sub-word embeddings through
1-D convolutions of character inputs. They showed
that it resulted in better sentiment classification
performance for CM text. On top of this intu-
ition, attention-based frameworks have also been
proven to be successful in learning low-level rep-
resentations. The HAN (Yang et al., 2016) model
provides the intuition of hierarchical attention for
document classification, which enables it to differ-
entially attend to more and less important content,
at the word and sentence levels. In another work,
Aguilar and Solorio (2020) proposed CS-ELMo for
code-mixed inputs with similar intuition. It utilizes
the hierarchical attention mechanism on bi-gram
and tri-gram levels to effectively encode the sub-
word level representations, while adding positional
awareness to it.

Our work builds on top of these two earlier
works to push the robustness of code-mixed repre-
sentations to higher levels. However, the main dif-
ference between existing studies and HIT is the in-
corporation of outer-product attention-based fused
attention mechanism (FAME).

3 Proposed Methodology

In this section, we describe the architecture of
HIT for learning effective representations in code-

https://github.com/LCS2-IIITD/HIT-ACL2021-Codemixed-Representation
https://github.com/LCS2-IIITD/HIT-ACL2021-Codemixed-Representation
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Figure 1: Hierarchical Transformer along with our novel FAME mechanism for attention computation.

mixed languages. The backbone of HIT is trans-
former (Vaswani et al., 2017) and Hierarchical At-
tention Network (HAN) (Yang et al., 2016). HIT
takes a sequence of words (a code-mixed sentence)
S = 〈w1, w2, ..., wN 〉 as input and processes each
word wi using a character-level HIT to obtain
sub-word representation Ssb = 〈sb1, sb2, ..., sbN 〉.
The character-level HIT is a transformer encoder,
where instead of computing multi-headed self-
attention only, we amalgamate it with an outer-
product attention mechanism (Le et al., 2020) as
well. The intuition of outer-product attention is to
extract higher-order character-level relational sim-
ilarities among inputs. To leverage both attention
mechanisms, we compute their weighted sum using
a softmax layer. Subsequently, we pass it through
the typical normalization and feed-forward layers
to obtain the encoder’s output. A stacking of lc
encoders is used. In the next layer of the hierarchy,
these sub-word representations are combined with
positional and rudimentary embeddings of each
word and forwarded to the word-level HIT’s en-
coder. Finally, the output of word-level HIT is fed
to the respective task-specific network. The hier-
archical nature of HIT enables us to capture both
character-level and word-level relational (syntactic
and semantic) similarities. A high-level schema of
HIT is shown in Figure 1.

3.1 Fused Attention Mechanism (FAME)
FAME extends the multi-headed self-attention
(MSA) module of a standard transformer by includ-
ing a novel outer-product attention (OPA) mech-
anism. Given an input x, we use three weight

matrices, W self
Q ,W self

K , and W self
V , to project the

input to Query (Qself ) , Key (Kself ), and Value
(V self ) representations for MSA, respectively. Sim-
ilarly for OPA we useW outer

Q ,W outer
K , andW outer

V

for the projecting x to Qouter,Kouter and V outer.
Next, the two attention mechanisms are learnt in
parallel, and a weighted sum is computed as its
output. Formally, H = α1 · Zself ⊕ α2 · Zouter,
where Zself and Zouter respectively are the outputs
of multi-headed self attention and outer-product at-
tention modules, and α1 and α2 are the respective
weights computed through a softmax function.

Multi-Headed Self Attention. The standard
transformer self-attention module (Vaswani et al.,
2017) computes a scaled dot-product between the
query and key vectors prior to learn the attention
weights for the value vector. We compute the out-
put as follows:

Zself = softmax

(
Qself ·KselfT

√
dk

)
V self

=

N∑
i

softmax

(
q · ki√
dk

)
vi, ∀q ∈ Qself

where N is the sequence length, and dk is the di-
mension of the key vector.

Outer-Product Attention. This is the second at-
tention that we incorporate into FAME. Although
the fundamental process of OPA (Le et al., 2020)
is similar to the multi-headed self-attention compu-
tation, OPA differs in terms of different operators
and the use of row-wise tanh activation instead of
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softmax. To compute the interaction between the
query and key vectors, we use element-wise mul-
tiplication as opposed to the dot-product in MSA.
Subsequently, an element-wise tanh is applied be-
fore computing the outer-product with the value
vector. The intuition is to exploit fine-level asso-
ciations between the key-scaled query and value
representations in a code-mixed setup. Similar to
the earlier case, we define OPA as:

Zouter =
N∑
i

tanh

(
q � ki√
dk

)
⊗ vi,∀q ∈ Qouter

where � is the element-wise multiplication, and ⊗
is the outer-product.

3.2 Task-specific Layers
As we mention earlier, HIT can be adapted for vari-
ous NLP tasks including sequence labelling, clas-
sification, or generative problems. In the current
work, we evaluate HIT on part-of-speech (POS) tag-
ging, named-entity recognition (NER), sentiment
classification, and machine translation (MT). We
mention their specific architectural details below.

For the sentiment classification, we apply a Glob-
alAveragePooling operation over the token embed-
dings to obtain the sentence embeddings. Addition-
ally, we concatenate extracted statistical features
along with the embeddings before feeding into the
final classification layer. We use tf-idf (term fre-
quency–inverse document frequency) vectors for
{1, 2, 3}-grams of words and characters extracted
from each text. We hypothesize that these statisti-
cal features contain sufficient information to get rid
of any handcrafted features like the ones suggested
by Bansal et al. (2020). Finally, a softmax activa-
tion function is used for the prediction. Similarly,
for POS tagging and NER, the corresponding la-
bels for each of the token’s embedding is obtained
through a softmax activated output. In case of MT,
we use an encoder-decoder framework where both
the encoder and the decoder are based on the HIT
framework.

4 Experiments, Results, and Analyses

In this section, we furnish the details of chosen
datasets, our experimental results, comparative
study, and necessary analyses.

4.1 Datasets
We evaluate 11 publicly available datasets across 4
tasks in 6 code-mixed languages. For POS tagging,

Tasks Lang Train Test Total #Labels#Sent #Token #Sent #Token

POS

Hi* 1191 6575 148 2300 1489 14
Te* 1,585 7,190 198 2,927 1,982 52
Be* 500 4,108 62 631 626 39
Sp 27,893 11,897 4,298 3,866 36,489 17

NER Hi* 1663 9,397 207 3,272 2,079 7
Sp 33,611 52,680 10,085 23,787 53,781 19

Sentiment

Hi* 3,103 9,005 387 3,191 3,879 3
Ta 11,335 27,476 3,149 10,339 15,744 4
Ma 4,851 16,551 1,348 6,028 6,739 4
Sp 12,194 28,274 1,859 7,822 15,912 3

MT En (Src)
248,330

84,609
2,000

5,314
252,330 -

Hi (Tgt) 108,442 5,797

Table 1: Dataset statistics. Star(∗) signifies 90-10 ratio.

we employ Hindi, Telugu, Bengali, and Spanish,
whereas, we evaluate Hindi and Spanish datasets
for NER. Similarly, in sentiment classification, we
incorporate Hindi, Tamil, Malayalam, and Spanish
code-mixed sentences. Finally, for machine trans-
lation, we use a recently released Hindi-English
code-mixed parallel corpus. A brief statistics of all
datasets is presented in Table 1.
• POS tagging: We use the Hindi-English code-
mixed POS dataset provided by Singh et al.
(2018b). It was collected from Twitter and has 1489
sentences. Each token in the sentence is tagged
with one of the 14 tags1. The Bengali and Tel-
ugu datasets are collected from ICON-2016 work-
shop2. The instances are the social-media mes-
sages, collected from Twitter, Facebook and What-
sApp, and have 1982 and 626 sentences in Telugu
and Bengali, respectively. These two datasets fol-
low Google universal tagset (Petrov et al., 2011)
and contain 52 and 39 tags respectively. For Span-
ish, we use Linguistic Code-switching Evaluation
(LinCE) POS dataset (AlGhamdi et al., 2016) con-
sisting of more that 35k sentences with 14 tags.
• Sentiment classification: We explore the

Hinglish sentiment classification dataset developed
by Joshi et al. (2016). The dataset contains 3879
Facebook public posts comprises of 15% negative,
50% neutral, and 35% positive samples. We fur-
ther consider two sentiment classification datasets
for Dravidian languages viz. Tamil and Malayalam
(Chakravarthi et al., 2020), containing 15744 and
6739 instances respectively with four sentiment
labels – positive, negative, neutral, and mixed feel-
ings. Additionally, we use SemEval-2020 (Patwa
et al., 2020) dataset for Spanish code-mixed sen-
timent classification. It supports a classic 3-way
sentiment classification.
• Named-entity recognition: For NER, we em-

1We furnish the details of tagset in the appendix
2http://amitavadas.com/Code-Mixing.

html

http://amitavadas.com/Code-Mixing.html
http://amitavadas.com/Code-Mixing.html
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Model Hindi Tamil Malayalam Spanish
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

BiLSTM 0.916 0.901 0.909 0.502 0.428 0.451 0.653 0.588 0.612 0.429 0.431 0.428
Subword-LSTM 0.905 0.907 0.905 0.503 0.418 0.426 0.577 0.592 0.581 0.445 0.437 0.432
HAN 0.915 0.906 0.908 0.490 0.411 0.439 0.639 0.611 0.634 0.449 0.439 0.440
ML-BERT 0.919 0.914 0.909 0.260 0.310 0.280 0.600 0.630 0.610 0.451 0.419 0.437
CS-ELMO 0.921 0.903 0.909 0.515 0.432 0.459 0.666 0.623 0.642 0.429 0.453 0.431
HIT 0.956 0.914 0.915 0.499 0.451 0.473 0.710 0.628 0.651 0.502 0.454 0.460
(-) Atnouter 0.933 0.911 0.913 0.520 0.448 0.455 0.718 0.624 0.655 0.463 0.440 0.445
(-) char-level HIT 0.903 0.887 0.901 0.504 0.418 0.432 0.659 0.605 0.627 0.448 0.438 0.433

Table 2: Performance of HIT on sentiment classification. Best scores are highlighted in bold.

ploy Hindi (Singh et al., 2018c) and Spanish
(Aguilar et al., 2018) datasets with 2079 and 52781
sentences, respectively. In Hindi, the labels are
name, location, and organization. The Spanish
dataset has six additional labels – event, group,
product, time, title, and other named entities.
•Machine Translation: We utilize a recently de-
veloped Hindi-English code-mixed parallel corpus
for machine translation (Gupta et al., 2020) com-
prising more than 200k sentence pair. For experi-
ments, we transliterate all Devanagari Hindi text.

4.2 Baselines

POS tagging, NER & sentiment classification:
� BiLSTM (Hochreiter and Schmidhuber, 1997):
It is a weak baseline with two conventional BiL-
STM layers. For POS and NER, we additionally
incorporate a CRF layer for the final classification.
� HAN (Yang et al., 2016): We adapt the Hierar-
chical Attention Network (HAN) for our purpose.
The subword embedding is computed at the first
level of attention network followed by a word-level
attention at the second level. Recently, Bansal
et al. (2020) also adopted HAN for code-mixed
classification. � ML-BERT (Devlin et al., 2019):
We fine-tune multilingual BERT (Devlin, 2019).
� CS-ELMo (Aguilar and Solorio, 2020): It is
one of state-of-the-arts on code-mixed languages.
It uses pre-trained ELMo (Peters et al., 2018) to
transfer knowledge from English to code-mixed
languages. � Subword-LSTM (Joshi et al., 2016):
It is a hybrid CNN-LSTM model. A 1D convolu-
tion operation is applied for the subword represen-
tation. Subsquently, the convoluted features are
max-pooled and fed to an LSTM. Since this system
disregards word boundaries in a sentence, we use
it for sentiment classification only.

Machine translation: For machine translation,
we evaluate HIT against GFF-Pointer (Gupta
et al., 2020), a gated feature fusion (GFF) based

approach to amalgamate the XLM and syntactic
features during encoding and a Pointer generator
for decoding. Furthermore, we also incorporate
three other baselines for comparison – Seq2Seq
(Sutskever et al., 2014), Attentive-Seq2Seq (Bah-
danau et al., 2014) and Pointer Generator (See
et al., 2017).

4.3 Experimental Setup

For each experiment, we use a dropout = 0.1 in
both transformer block and the task specific layers.
Categorical cross-entropy loss with Adam (η =
0.001, β1 = 0.9, β2 = 0.999) optimizer (Kingma
and Ba, 2014) is employed in all experiments. We
train our models for maximum 500 epochs with an
early-stopping criteria having patience = 50. We
additionally use a learning rate scheduler to reduce
learning rate to 70% at plateaus with a patience
of 20 epochs. All models are trained with batch-
size= 32.

4.4 Experimental Results

We compute precision, recall, F1-score for POS,
NER, and sentiment classification, whereas, BLEU,
METEOR, and ROUGE scores are reported for the
machine translation task.

Sentiment classification: As shown in Table 2,
HIT obtains best F1-scores across all languages.
For Hindi, three baselines (BiLSTM, ML-BERT,
and CS-ELMo) obtain the best F1-score of 0.909,
where HIT yields a small improvement with 0.915
F1-score. In comparison, we observe an improve-
ment of 1.4% for Tamil, where HIT and the best
baseline (CS-ELMo) report 0.473 and 0.459 F1-
scores, respectively. We observe the same pat-
tern for Malayalam and Spanish as well – in both
cases, HIT obtains improvements of 0.9% and
2.0%, respectively. For Malayalam, HIT reports
0.651 F1-score, whereas CS-ELMo reports 0.642
F1-score. In case of Spanish, HAN turns out to
be the best baseline with 0.440 F1-score. Com-
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Model Hindi Telugu Bengali Spanish
Pr. Re. F1 Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

BLSTM-CRF 0.821 0.913 0.782 0.595 0.747 0.572 0.842 0.851 0.817 0.704 0.836 0.680
HAN 0.802 0.879 0.815 0.693 0.701 0.684 0.811 0.823 0.818 0.497 0.629 0.527
ML-BERT 0.833 0.884 0.847 0.802 0.762 0.771 0.793 0.815 0.807 0.853 0.808 0.802
CS-ELMO 0.885 0.961 0.910 0.831 0.790 0.775 0.873 0.851 0.847 0.740 0.835 0.729
HIT 0.918 0.955 0.919 0.815 0.749 0.762 0.841 0.855 0.853 0.871 0.822 0.825
(-) Atnouter 0.893 0.948 0.914 0.839 0.793 0.786 0.839 0.852 0.845 0.859 0.813 0.820
(-) char-level HIT 0.686 0.922 0.708 0.629 0.758 0.626 0.802 0.830 0.819 0.723 0.796 0.732

Table 3: Performance of HIT on POS tagging. Best scores are highlighted in bold.

Model Hindi Spanish
Pr. Re. F1 Pr. Re. F1

BLSTM-CRF 0.622 0.781 0.579 0.581 0.659 0.603
HAN 0.721 0.767 0.695 0.615 0.679 0.644
ML-BERT 0.792 0.779 0.714 0.652 0.623 0.643
CS-ELMO 0.815 0.780 0.735 0.683 0.668 0.671
HIT 0.829 0.788 0.745 0.695 0.671 0.684
(-) Atnouter 0.821 0.767 0.732 0.669 0.663 0.668
(-) char-level HIT 0.556 0.815 0.528 0.498 0.664 0.539

Table 4: Performance of HIT on NER.

paratively, HIT achieves 0.460 F1-score. The
last two rows of Table 2 report ablation results
– a) excluding outer-product attention (Atnouter)
from HIT; and b) excluding sub-word embeddings
(character-level HIT). In all cases, the absence of
sub-word embeddings yields negative effect on the
performance; hence, suggesting the effectiveness
of character-level HIT in the architecture. On the
other hand, omitting outer-product attention de-
clines F1-scores in 3 out of 4 cases – we observe
a margin improvement of 0.04 points for Malay-
alam. In summary, HIT attains state-of-the-art per-
formance across all four datasets, whereas, the best
baseline (CS-ELMo) reports 1.2% lower scores on
average.

POS tagging: Table 3 shows the comparative
results for POS tagging in Hindi, Telugu, Bengali,
and Spanish. Similar to sentiment classification, we
observe that HIT attains best F1-scores across three
datasets (0.625% better on average). It achieves
0.919, 0.762, 0.853, and 0.825 F1-scores for Hindi,
Telugu, Bengali, and Spanish, respectively. In com-
parison, CS-ELMo yields best F1-scores among
all the baselines across three datasets viz. Hindi
(0.910), Telugu (0.775), and Bengali (0.847). For
Spanish, ML-BERT obtains the best baseline F1-
score of 0.802. From ablation, we observe the
negative effect on performance by removing either
the outer-product attention or character-level HIT
for the majority of the cases.

NER: The performance of HIT for NER is also
in-line with the previous two tasks, as show in

Model B R M
Seq2Seq† 15.49 35.29 23.72
Attentive-Seq2Seq† 16.55 36.25 24.97
Pointer Generator† 17.62 37.32 25.61
GFF-Pointer† 21.55 40.21 28.37
Transformer 21.83 42.19 27.89
HIT 28.22 51.52 29.59
(-) Atnouter 25.95 49.19 27.63

Table 5: Performance of HIT encoder-decoder on En-
Hi Translation (B: BLEU, R: Rouge-L and M: ME-
TEOR). † Values are taken from Gupta et al. (2020).

Table 4. As mentioned earlier, we evaluate HIT
for Hindi and Spanish datasets. In both cases, we
observe ≥ 1% improvement in F1-score, in com-
parison with the best baseline (CS-ELMo).

In all three tasks, CS-ELMo is arguably the most
consistent baseline. Together with the state-of-
the-art performance of HIT, we regard the good
performance to the subword-level contextual mod-
elling – both systems use contextual representa-
tional models (ELMo and Transformer) to encode
the syntactic and semantic features. Moreover, the
FAME module in HIT assists in improving the per-
formance even further.

Machine Translation: Finally, Table 5 reports
the results for the English to Hindi (En-Hi) ma-
chine translation task. For comparison, we also
report BLEU, METEOR, and ROUGE-L scores
for four baseline systems – Seq2Seq (Sutskever
et al., 2014), Attentive-Se2Seq (Bahdanau et al.,
2014), Pointer Generator (See et al., 2017), and
GFF-Pointer (Gupta et al., 2020). For all three
metrics, HIT reports significant improvement (1-9
points) over the state-of-the-art and other baselines.
GFF-Pointer obtains 21.55 BLEU score, while the
other baselines yield BLEU scores in the range
[15− 17]. In comparison, HIT obtain 28.22 BLEU,
an extremely convincing result. Similarly, HIT re-
ports 51.52 ROUGE and 29.59 METEOR scores,
respectively.
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Fine-tune Target Tasks
PoS NER Sentiment

So
ur

ce
Ta

sk
s PoS w/o

0.919
0.702 0.890

w/ 0.578 0.863

NER w/o 0.924
0.745

0.885
w/ 0.873 0.893

Sentiment w/o 0.936 0.729
0.871

w/ 0.928 0.691

(a) Hindi code-mixed

Fine-tune Target Tasks
PoS NER Sentiment

So
ur

ce
Ta

sk
s PoS w/o

0.825
0.710 0.417

w/ 0.656 0.419

NER w/o 0.881
0.648

0.473
w/ 0.663 0.446

Sentiment w/o 0.918 0.969
0.445

w/ 0.732 0.687

(b) Spanish code-mixed

Table 6: Transfer learning models. Code-mixed word representations, learned for a (source) task, is utilized for
building models for other (target) tasks of same language w/ and w/o fine-tuning. We highlight the cases in bold
where transfer learning achieves better performance than original base HIT.

Pos Neg Neu
Pos 0.85 0.05 0.10
Neg 0.03 0.87 0.10
Neu - 0.02 0.98

(a) Sentiment

B-Per I-Per B-Loc I-Loc B-Org I-Org O
B-Per 0.85 0.01 - - - - 0.14
I-Per 0.03 0.87 - - - - 0.10
B-Loc - - 0.91 0.02 0.02 0.05
I-Loc - 0.08 0.85 - - 0.07
B-Org 0.02 0.02 - - 0.82 - 0.14
I-Org - - - - - 0.71 0.29
O - - - - 0.47 - 0.53

(b) NER

Table 7: Confusion matrices (in %) for sentiment and
NER on Hindi code-mixed dataset3.

4.5 Effects of Transfer Learning across Tasks

One of the core objectives of representation learn-
ing is that the learned representation should be
task-invariant – the representations learned for one
task should also be (near) effective for other tasks.
The intuition is that the syntactic and semantic fea-
tures captured for a language should be indepen-
dent of the tasks, and if it does not comply, the
representation can be attributed to capture the task-
specific feature, instead of linguistic features. To
this end, we perform transfer learning experiments
with (w/) and without (w/o) fine-tuning. Since
we have only one dataset for Tamil, Telugu, Ben-
gali, and Malayalam, we choose Hindi and Spanish
code-mixed datasets (POS, NER, and sentiment
classification) for the study. Table 6 reports results
for both code-mixed languages. For each case, we
learn HIT’s representation on one (source) task and
subsequently utilize the representation for the other
two tasks (targets). Moreover, we repeat each ex-
periment with and without fine-tuning HIT.

For Hindi code-mixed, we do not observe the

Input Gold Prediction
HIT CS-ELMo

1
Org: safal videsh yatra ke liye badhai ho sir

Pos Pos NeuTrans: Congratulations on the successful foreign trip sir

2
Org: desh chodo pahaley yeh media ko change karo ... !! ?

Neu Neg NegTrans: Leave the country, first change the media

(a) Sentiment

In
pu

t Org: @gurmeetramrahim {dhan dhan satguru}Per tera hi aasra #ms-
gloveshumanity salute 2 {msg}Org <url>
Translated: @gurmeetramrahim we depend on you
{dhan dhan satguru}Per #msgloveshumanity salute 2 {msg}Org <url>

Pr
ed

ic
tio

n HIT: @gurmeetramrahim {dhan dhan satguru}Per tera hi aasra #ms-
gloveshumanity salute 2 msg <url>
CS-ELMo: @gurmeetramrahim {dhan dhan satguru}Per tera hi aasra #ms-
gloveshumanity salute 2 {msg}Org <url>

(b) NER

Table 8: Error Analysis on Hindi code-mixed dataset.

positive effect of transfer learning for NER. It
could be because of the limited lexical variations
of named-entities in other datasets. However, we
obtain the best F1-score (0.936) for POS tagging
in a transfer learning setup with sentiment classifi-
cation. Similarly, for the sentiment classification
as target, we observe performance improvements
with both POS and NER as source tasks. In Span-
ish, we also observe increment in F1-scores for all
three tasks. We attribute these improvements to the
availability of more number of sentences for HIT
to leverage the linguistic features in both Hindi and
Spanish.

4.6 Error Analysis

In this section, we analyze the performance of HIT
both quantitatively and qualitatively. At first, we
report the confusion matrices3 for Hindi NER and
sentiment classification in Table 7. In both cases,
we observe the true-positives to be significant for
all labels. Furthermore, we also observe the false-
positives to be extremely low (except for ‘B-Org’

3Confusion matrices and more error cases for other tasks
are presented in the appendix.
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(a) Original input. (b) Perturbed input.

Figure 2: Interpretation of Hindi code-mixed sentiment prediction (a) Grad-CAM (Selvaraju et al., 2019) analysis
of original text; (b) Grad-CAM of perturbed text (‘badhaaii’); For both case, the word-level and char-level atten-
tion plots are shown.The impact of the word ‘badhai’ on the overall prediction is shown through gradients and
attention heatmaps. The representation learning of phonetically similar word (e.g., ‘badhaaii’) is also noticeable
in the perturbed case. It signifies that HIT is flexible to the spelling variations, a common feature in code-mixed
environment.

in NER) for majority of the cases – suggesting
very good precision in general. The major contribu-
tion in error is due to the neutral and other classes
in sentiment and NER, respectively. In sentiment
analysis, 10% of the positive and negative labels
each were mis-classified as neutral. Similarly in
NER, we observe that the organization entities (B-
Org & I-Org) and other classes confuse with each
other in a significant number of samples. It may be
due to the under-represented (∼ 13%) organization
entities in the dataset.

We also perform qualitative error analysis of
HIT and CS-ELMo. Table 8 reports the results for
the NER and sentiment classification tasks3. For
the first example in sentiment classification, HIT
accurately predicts the sentiment labels as positive;
however in comparison, CS-ELMo mis-classifies
it as neutral. For the second example, both HIT
and CS-ELMo wrongly predict the sentiment as
neutral. One possible reason could be the presence
of the negatively-inclined word chodo (leave) in the
sentence. For NER, the sentence has two entities
(one person and one organization). While HIT
correctly identifies ‘dhan dhan satguru’ as person,
it could not recognize ‘msg’ as organization. On
the other hand, CS-ELMo correctly identifies both.

Furthermore, we take the first example of senti-
ment analysis (from Table 8) to get the insight of
HIT. It is not hard to understand that the most posi-
tive vibe is attributed by the phrase ‘badhai ho sir’
(congratulations sir). To validate our hypothesis,
we use a gradient based interpretation technique,
Grad-CAM (Selvaraju et al., 2019), which uses

gradients of neural networks to show the effect of
neurons on the final output. Due to hierarchical
and modular nature of HIT, we are able to extract
the intermediate word level representations learnt
by the character-level HIT and compute the gra-
dient of loss of the actual class considering these
representations. The magnitude of gradient shows
the impact of each word on the final output. Figure
2a shows the word-level and character-level gradi-
ent maps for the original input. We can observe
that HIT attends to the most important component
in both cases. For word-level, it highlights the
positive phrase ‘liye badhai’ (congratulations on).
Moreover, character-level HIT attends to the two
syllables ‘b’ and ‘dh’ in the word ‘badhai’ (congrat-
ulation). It suggests that both the word-level and
character-level components are capable of extract-
ing important features from inputs. Furthermore,
to check the robustness, we investigate HIT on a
perturbed input. In the previous example, we tweak
the spelling of the most important word ‘badhai’ to
‘badhaaii’ (an out-of-vocabulary word considering
the dataset). Figure 2b shows similar patterns in the
perturbed input case as well. It signifies that HIT
identifies the phonetic similarity of the two words
and is flexible to the spelling variants, a common
feature in code-mixed environment.

4.7 HIT’s Performance on Monolingual Data

In this section, we outline the performance of HIT
for monolingual and low-resource settings. We con-
sider the sentiment classification dataset curated by
Akhtar et al. (2016), containing 5417 transliterated
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Model Hi Sentiment Magahi POS
Pr. Re. F1 Pr. Re. F1

BiLSTM 0.619 0.533 0.554 0.594 0.804 0.626
HAN 0.602 0.528 0.551 0.729 0.857 0.649
ML-BERT 0.604 0.556 0.576 0.757 0.867 0.708
CS-ELMO 0.593 0.520 0.542 0.771 0.884 0.759
HIT 0.641 0.629 0.635 0.783 0.913 0.775

Table 9: Performance of HIT on monolingual tasks.
Best scores are highlighted in bold.

Hindi reviews with 4 sentiment labels - positive,
negative, neutral, and conflict. We also utilize a Ma-
gahi POS dataset (Kumar et al., 2012), annotated
with 33 tags from the BIS-tagset 4. We report the
performance of HIT and other baselines on these
two datasets in Table 9. For the Hindi sentiment
classification task, we observe that HIT yields an
F1-score of 0.635, which is better than CS-ELMo
and ML-BERT by 9.3% and 5.9%. Also, for Mag-
ahi POS, HIT reports the best F1-score of 0.775 –
increaments of +2.1% and +9.5% over CS-ELMo
and ML-BERT, respectively. These results suggest
that HIT is capable of handling monolingual and
low-resource texts in an efficient manner.

4.8 Learnable Parameters and Power Usage
We conduct all our experiments on 1 Tesla T4 GPU.
In Table 10, we report the total trainable param-
eters for HIT and other baselines. We observe
that HIT requires a comparable number of parame-
ters. For instance, in the Hindi-English sentiment
analysis task (sequence classification), HIT has
a total ~2.7M trainable parameters, while other
baselines such as, CS-ELMo, HAN, Subword-
LSTM, and BiLSTM require ~2.9M , ~2.7M ,
~2.1M , and ~2.8M parameters, respectively. ML-
BERT has a whopping ~179.2M parameters. Sim-
ilarly, in Hindi-English POS tagging, the num-
ber of parameters for HIT is comparable (or
even lesser) – HIT: ~1.4M , CS-ELMo: ~2.4M ,
HAN: ~1.4M , BiLSTM-CRF: ~1.5M , ML-BERT:
~177.9M . We observed similar distribution for
other tasks/languages as well.

We further note that HIT is significantly more
efficient than the current SOTA models as it takes
13 s/epoch to train which is significantly lower
than CS-ELMo (18 s/epoch), HAN (14 s/epoch),
and ML-BERT (172 s/epoch), while it takes a bit
more time compared to BiLSTM (12 s/epoch) and
Subword-LSTM (7 s/epoch). We also computed
the amount of power consumption for training HIT

4https://thottingal.in/blog/2019/09/
10/bis-pos-tagset-review/

Tasks Model # Params(M) Train Time(s/ep)

Se
nt

im
en

t CS-ELMo 2.9 18
HAN 2.7 14
BiLSTM 2.8 12
ML-BERT 179.2 172
HIT 2.7 13

PO
S

CS-ELMo 2.4 4
HAN 1.4 3
BiLSTM-CRF 1.5 2
ML-BERT 177.9 114
HIT 1.4 2

Table 10: Parameters and Runtime: Number of train-
able parameters and training runtime (second/epoch)
for the Hi-En PoS and sentiment classification tasks.

for a maximum 500 epochs. Following the guide-
lines of Strubell et al. (2019), we estimate a total
power consumption of 0.383 kWh and equivalent
CO2 emission of 0.365 pounds.

5 Conclusion

In this work, we present HIT – a hierarchical
transformer-based framework for learning robust
code-mixed representations. HIT contains a novel
fused attention mechanism, which calculates a
weighted sum of the multi-headed self attention
and outer-product attention, and is capable of cap-
turing relevant information at a more granular level.
We experimented with eleven code-mixed datasets
for POS, NER, sentiment classification, and MT
tasks across six languages. We observed that HIT
successfully outperforms existing SOTA systems.
We also demonstrate the task-invariant nature of
the representations learned by HIT via a transfer
learning setup, signifying it’s effectiveness in learn-
ing linguistic features of CM text rather than task-
specific features. Finally, we qualitatively show
that HIT successfully embeds semantically and pho-
netically similar words of a code-mixed language.
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A Appendix

A.1 Semantic Understanding of Languages
In this section, we study the semantic relationships
between different Indic languages. We calculate
the proportion of common words in Table 11 be-
tween different language pairs to understand the
multilingualism in India. We observe that Ben-
gali code-mixed texts have the highest proportion
of English words 32% as compared to other lan-
guages. Moreover, 50% of all Bengali words are
also present in the Hindi CM texts, although 58%
of those words are English. We observe that users
using Hindi CM texts use very few words taken
from other languages. On the other hand, a signifi-
cant proportion of Bengali and Telugu CM words
are common in other languages, although, majority
of them are English. The two Dravidian languages,
Tamil and Malayalam, show a very distinctive be-
havior. They share very little linguistic similarity
with other Indic languages. On the other hand,
10% of all Tamil words are used in Malayalam and
17% of all Malayalam words are used in Tamil.
Moreover, this sharing is not driven by English, as,
only 27% of these words are English, which is the
lowest proportion among all other language pairs.
Being originate from a similar root and having a
phonetic resemblance makes Tamil and Malayalam
sister languages5. Similar observations are also
made from the word representation lens. We use
t-SNE (Van der Maaten and Hinton, 2008) plots
to embed HIT’s representations onto a 2-D space
for interpretability (Fig 3). Although, the embed-
dings are well clustered based on the languages, we
can easily figure out the semantically similar words
across languages embedded onto a similar space.
Furthermore, Fig 3(b) shows that pronouns (e.g.,

‘aap’) in Tamil, Telegu and Hindi are embedded
onto a similar space with Bengali words ‘aamar’,

‘aamay’. Although each of these representations are
learned on separate models on separate datasets, the
robustness of the underlying hierarchical represen-
tation enables our model to capture cross-lingual
semantics from noisy code-mixed texts. We can
attribute these observations to the relatedness of
Indic languages on a socio-cultural basis.

A.2 Datasets
We report all available POS tags in Table 12.

5https://royalsocietypublishing.org/
doi/10.1098/rsos.171504
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Figure 3: t-SNE visualization (a) of all words; (b) of
selected pronouns. Overlapping clusters show how se-
mantically similar words from different languages are
embedded onto a similar space.

A.3 Confusion Matrices and Error Analysis

We report the confusion matrices to show the label-
wise performance for the sentiment classification,
PoS tagging and NER in Tables 5, 4, and 6, respec-
tively.

We similarly perform qualitative analysis on the
MT task where our model shows superior perfor-
mance as compared to the baselines. In example
1 of Table 13 (d), HIT translates the English text
‘‘Licencing and import policies were liberalise” to
“Licencing aur policies liberal the |”. Although this
prediction has very low BLEU score when eval-
uated against the target, this example shows an
interesting observation. The overall translation is
a contextually meaningful sentence in Hindi. Fur-
ther HIT translates the phrase ‘were liberalise’ to

‘liberal the’. In Hindi, ‘the’ represents past tense.
Another interesting observation is the ability of
HIT to copy texts from source to predicted text.
Even without having an explicit copying mecha-
nism (See et al., 2017), HIT is able to understand

https://royalsocietypublishing.org/doi/10.1098/rsos.171504
https://royalsocietypublishing.org/doi/10.1098/rsos.171504
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Target Language
Hindi (English) Malayalam (English) Tamil (English) Bengali (English) Telegu (English) Spanish (English)

So
ur

ce
L

an
gu

ag
e Hindi 1.00 (0.16) 0.02 (0.41) 0.04 (0.39) 0.02 (0.58) 0.02 (0.57) 0.07 (0.62)

Malayalam 0.14 (0.41) 1.00 (0.06) 0.17 (0.27) 0.03 (0.71) 0.05 (0.57) 0.07 (0.64)
Tamil 0.15 (0.39) 0.10 (0.27) 1.00 (0.07) 0.03 (0.69) 0.05 (0.56) 0.07 (0.64)
Bengali 0.50 (0.58) 0.16 (0.58) 0.23 (0.69) 1.00 (0.32) 0.21 (0.71) 0.36 (0.72)
Telegu 0.36 (0.57) 0.15 (0.57) 0.29 (0.56) 0.12 (0.71) 1.00 (0.22) 0.28 (0.65)
Spanish 0.12 (0.62) 0.02 (0.64) 0.03 (0.64) 0.02 (0.72) 0.03 (0.65) 1.00 (0.11)

Table 11: Proportion of words in source language in the target language.

Lang POS tags
Hindi (14) X, VERB, NOUN, ADP, PROPN, ADJ, PART, PRON, DET, ADV, CONJ, PART_NEG, PRON_WH,

NUM
Bengali (39) N_NN, V_VM, RD_PUNC, N_NNP, PSP, PR_PRP, JJ, RB_AMN, CC, QT_QTF, DM_DMD, RP_RPD,

@, RD_RDF, V_VAUX, DT, PR_PRQ, #, RP_NEG, E, $, RB_ALC, N_NNV, PR_PRL, N_NST, RP_INJ,
RD_SYM, DM_DMR, RP_INTF, PR_PRF, DM_DMQ, QT_QTO, U, QT_QTC, PR_PRC, RD_ECH,
QY_QTO, Ã°Å¸Ëœ, ∼

Telugu (52) N_NN, N_NNP, RD_RDF, RD_PUNC, V_VM, JJ, @, PSP, PR_PRP, RP_INJ, DT, RB_AMN, CC, $, U,
E, #, N_NNV, &, PR_PRQ, V_VAUX, RD_PUNC", ∼, RD_RDFP, QT_QTF, RD_UNK, DM_DMD,
RP_RPD, RB_ALC, DM_DMQ, RD_ECH, N_NST, acro, PR_PRL, QT_QFC, RP_RDF, PR_PRC, r,
RD_SYM, RD_RDFF, psp, PR_PRF, QT_QTP, RD_P/UNC, PR_PPR, PR_RPQ, RPR_PRP, RP_INTF,
-

Spanish (17) VERB, PUNCT, PRON, NOUN, DET, ADV, ADP, INTJ, CONJ, ADJ, AUX, SCONJ, PART, PROPN,
NUM, UNK, X

Table 12: POS tagsets for different datasets.
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Figure 4: Confusion matrices of HIT on POS tasks. Due to high cardinality of output classes, we do not report for
Bengali and Telugu.

the key phrases that co-occur in both Hindi and
English, like, numeric and proper nouns and copies
these tokens while generating. This shows how our
model can also be used in conditional generation
of texts. It also ends the sentence with |, which is a
common punctuation widely used as a full stop in
Hindi texts.
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Figure 5: Confusion matrices of HIT on sentiment tasks.
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Figure 6: Confusion matrices of HIT on NER.
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Input Sys Prediction

1
Org: #surgicalstrike_X #pakistan_X will_V not_Neg sleep_N
in_ADP peace_N tonight_N ._X khamoshi_V toofan_V ke_ADP
aane_V ki_ADP aahat_N to_P nahi_Neg

A #surgicalstrike_X #pakistan_X will_V not_part_Neg sleep_N
in_ADP peace_N tonight_N ._X, khamoshi_V toofan_V ke_ADP
aane_V ki_ADP aahat_N to_P nahi_part_neg

Translated: #surgicalstrike #pakistan will not sleep in peace
tonight. Does this silence signify that a storm is approaching

B #surgicalstrike_X #pakistan_X will_V not_part_Neg sleep_N
in_ADP peace_N tonight_N ._X, khamoshi_V toofan_V ke_N
aane_V ki_ADP aahat_ADP to_P nahi_part_Neg

2
Org: minimum_N cincuenta_Num mil_Num por_ADP per-
sona_N ._Punct

A minimum_N cincuenta_Num mil_Num por_ADP persona_N
._Punct

Translated: minimum fifty thousand per person . B minimum_N cincuenta_Num mil_Num por_ADP persona_N
._Punct

(a) PoS

Input Sys Prediction

1
Org: @gurmeetramrahim {dhan dhan satguru}Per tera hi
aasra #msgloveshumanity salute 2 {msg}Org <url>

A @gurmeetramrahim {dhan dhan satguru}Per tera hi aasra #ms-
gloveshumanity salute 2 msg <url>

Translated: B @gurmeetramrahim {dhan dhan satguru}Per tera hi aasra #ms-
gloveshumanity salute 2 {msg}Org <url>

2
Org: ste {sábado}T ime nuestras alumnas en
{imagen modeling}Org by {la gatita}Per reciben la visita
de {monic abbad}Per , joven . . . <url>

A ste {sábado}T ime nuestras alumnas en imagen modeling by la
gatita reciben la visita de {monic}Per abbad , joven . . . <url>

Translated: This saturday our students in image modeling by
the kitten receive a visit from young monic abbad

B ste {sábado}T ime nuestras alumnas en imagen modeling by la
gatita reciben la visita de {monic abbad}Per , joven . . . <url>

(b) NER

Input Gold Prediction
A B

1
Org: safal videsh yatra ke liye badhai ho sir

Pos Pos NeuTrans: Congratulations on the successful foreign trip sir

2
Org: nunca pensé que " bruh " me frustraría tanto

Neu Neu NegTrans: I never thought that "bruh" would frustrate me so much

3
Org: desh chodo pahaley yeh media ko change karo ... !! ?

Neu Neg NegTrans: Leave the country, first change the media

(c) Sentiment

1
Source: Licencing and import policies were liberalise
Reference: license tatha import ki policies ko udar banaya
gaya
HIT: Licencing aur policies liberal the |

2
Source: This fact is based on possibility
Reference yah fact possibility par aadharit hai |
HIT: yah fact possibility par aadharit hai

(d) MT

Table 13: Error Analysis. System A denotes HIT and B denotes CS-ELMO.


