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Abstract

Simultaneous speech-to-text translation is
widely useful in many scenarios. The con-
ventional cascaded approach uses a pipeline of
streaming ASR followed by simultaneous MT,
but suffers from error propagation and extra la-
tency. To alleviate these issues, recent efforts
attempt to directly translate the source speech
into target text simultaneously, but this is much
harder due to the combination of two separate
tasks. We instead propose a new paradigm
with the advantages of both cascaded and end-
to-end approaches. The key idea is to use
two separate, but synchronized, decoders on
streaming ASR and direct speech-to-text trans-
lation (ST), respectively, and the intermediate
results of ASR guide the decoding policy of
(but is not fed as input to) ST. During training
time, we use multitask learning to jointly learn
these two tasks with a shared encoder. En-to-
De and En-to-Es experiments on the MuST-
C dataset demonstrate that our proposed tech-
nique achieves substantially better translation
quality at similar levels of latency.

1 Introduction

Simultaneous speech-to-text translation incremen-
tally translates source-language speech into target-
language text, and is widely useful in many cross-
lingual communication scenarios such as interna-
tional travels and multinational conferences. The
conventional approach to this problem is a cas-
caded one (Arivazhagan et al., 2020; Xiong et al.,
2019; Zheng et al., 2020b), involving a pipeline of
two steps. First, the streaming automatic speech
recognition (ASR) module transcribes the input
speech on the fly (Moritz et al., 2020; Wang et al.,
2020), and then a simultaneous text-to-text transla-
tion module translates the partial transcription into
target-language text (Oda et al., 2014; Dalvi et al.,

* See our translation examples and demos at
https://littlechence. github.io/SimulST-demo/simulST-demo.html.

mingboma@baidu.com

i — -

(@) unstable results
cascaded @ @ @
wait-2 I_tﬁ /,/% &

(D) i — e o b

— wait-k
wait-

: @\ @ @\ A eee policy

streaming speech input

streaming speech input

wait-k
policy

streaming speech input

Ren et al,. 2020
Ma et al, 2020 (ab)

(©

wait-k
policy

Figure 1: Comparison between (a) cascaded pipeline,
(b) direct simultaneous ST, and (c) our ASR-assisted
simultaneous ST. In (a), streaming ASR keeps revis-
ing some tail words for better accuracy, but causing ex-
tra delays to MT. Method (b) directly translates source
speech without using ASR. Our work (c) uses the inter-
mediate results of the streaming ASR module to guide
the decoding policy of (but not feed as input to) the
speech translation module. Extra delays between ASR
and MT are reduced in direct translation systems (b—c).

2018; Ma et al., 2019; Zheng et al., 2019a,b, 2020a;
Arivazhagan et al., 2019).

However, the cascaded approach inevitably suf-
fers from two limitations: (a) error propagation,
where streaming ASR’s mistakes confuse the trans-
lation module (which are trained on clean text),
and this problem worsens with noisy environments
and accented speech; and (b) extra latency, where
the translation module has to wait until streaming
ASR’s output stabilizes, as ASR by default can
repeatedly revise its output (see Fig. 1).

To overcome the above issues, some recent ef-
forts (Ren et al., 2020; Ma et al., 2020b,a) attempt
to directly translate the source speech into target
text simultaneously by adapting text-based wait-k
strategy (Ma et al., 2019). However, unlike simulta-
neous translation whose input is already segmented
into words or subwords, in speech translation, the
key challenge is to figure out the number of valid
tokens within a given source speech segment in or-
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der to apply the wait-k policy. Ma et al. (2020b,a)
simply assume a fixed number of words within
a certain number of speech frames, which does
not consider various aspects of speech such as dif-
ferent speech rate, duration, pauses and silences,
all of which are common in realistic speech. Ren
et al. (2020) design an extra Connectionist Tempo-
ral Classification (CTC)-based speech segmenter
to detect the word boundaries in speech. However,
the CTC-based segmenter inherits the same short-
coming of CTC, which only makes local predic-
tions, thus limiting its segmentation accuracy. On
the other hand, to alleviate the error propagation,
Ren et al. (2020) employ several different knowl-
edge distillation techniques to learn the attentions
of ASR and MT jointly. These knowledge distilla-
tion techniques are complicated to train and it is an
indirect solution for the error propagation problem.

We instead present a simple but effective solu-
tion (see Fig. 2) by employing two separate, but
synchronized, decoders, one for streaming ASR
and the other for End-to-End Speech-to-text Trans-
lation (E2E-ST). Our key idea is to use the interme-
diate results of streaming ASR to guide the decod-
ing policy of, but not feed as input to, the E2E-ST
decoder. We look at the beam of streaming ASR
to decide the number of tokens within the given
source speech segment. Then it is straightforward
for the E2E-ST decoder to apply the wait-k pol-
icy and decide whether to commit a target word or
to wait for more speech frames. During training
time, we jointly train ASR and E2E-ST tasks with
a shared speech encoder in a multi-task learning
(MTL) fashion to further improve the translation
accuracy. We also note that having streaming ASR
as an auxiliary output is extremely useful in real
application scenarios where the user often wants to
see both the transcription and the translation. En-
to-De and En-to-Es experiments on the MuST-C
dataset demonstrate that our proposed technique
achieves substantially better translation quality at
similar level of latency.

2 Preliminaries

We formalize full-sentence tasks (ASR, MT and
ST) using the sequence-to-sequence framework,
and the streaming tasks (simultaneous MT and
streaming ASR) using the test-time wait-k method.

Full-Sentence Tasks: ASR, NMT and ST The
encoder first encodes the entire source input into a
sequence of hidden states; in NMT, the input is a

sequence of words, x = (x1, x2, ..., T, ), While in
ASR and ST, we use s to denote the input speech
frames. A decoder sequentially predicts target lan-
guage tokens y = (y1, 42, ..., Yn) in NMT and ST
or transcription z in ASR, conditioned on all en-
coder hidden states and previously committed to-
kens. For example, the NMT model and its param-
eters OME are defined as:

4
pran(y | ; 081) = thlp(yt | %, y<t; Oh)

AMT * | . gMT
Ora = argngaX H pran(y” | x; Ogun )
o

full (x,y*)eD
Similarly, we can obtain the definitions for ASR
(pran(z | s; OQISIR)) and ST (prn(y | s; stu?l)). Our
model was learned from scratch in this work, but it
can be improved with pre-training methods (Zheng
et al., 2021; Chen et al., 2020).

Simultaneous MT and Streaming ASR In
streaming decoding scenarios, we have to predict
target tokens conditioned on the partial source in-
put that is available. For example, the test-time
wait-k method of Ma et al. (2019) predicts each
target token y; after reading source tokens x<;
using a full-sentence NMT model:

Qtzarg;naxpwait-k(yt | X<iph, V< 000) (1)
t

Intuitively speaking, wait-k only commits a new
target word on receiving each new source word
after an initial k£ source words waiting. Similarly, in
the case of streaming ASR, we could define 2; with
growing speech chunks s; that are fed gradually.

3 Direct Simultaneous Translation with
Synchronized Streaming ASR

In text-to-text simultaneous translation, the input
stream is already segmented. However, when we
deal with speech frames as source inputs, it is not
easy to determine the number of valid tokens within
certain speech segments. Therefore, to better guide
the translation policy, it is essential to detect the
number of valid tokens accurately within low la-
tency. Different from the sophisticated design of
speech segmenter in Ren et al. (2020), we propose
a simple but effective method by using a synchro-
nized streaming ASR and using its beam to deter-
mine the number of words within certain speech
segments. Note that we only use streaming ASR for
source word counting, but the translation decoder
does not condition on any of ASR’s output.
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Figure 2: Decoding for synchronized streaming ASR
and E2E-ST. Speech signals are fed into the encoder
chunk by chunk. For each new-coming speech chunk,
we look at the current streaming ASR beam (B) to de-
cide the translation policy. See details in Algorithm 1.

3.1 Streaming ASR-Guided Simultaneous ST

As shown in Fig. 2, at inference time, the speech
signals are fed into the ST encoder by a series of
fixed-size chunks §j;.;; = [S1, ..., 8i], where w =
|Si| can be chosen from 32, 48 and 64 frames of
spectrogram. As a result of the CNN encoder, there
is down sampling rate r (e.g., we use r = 4), from
spectrogram to encoder hidden states. For example,
when we receive a chunk of 32 frames, the encoder
will generate 8 more hidden states. In conventional
streaming ASR, the number of steps of beam search
is the same as the number of hidden states.

We denote Bj to be the beam at time step j,
which is an ordered list of size of b, and it expands
to the next beam B with the same size:

Bo =[(<s>, pran (<> | 50; 0))]
B; :topb(next(Bj_l,j))
next(B, j) ={{(z 0 zj, p- P (2j | S<r(),%:0)) |
(z,p) € B,z; € V}

where top®(-) returns the top b candidates, and
next(B, j) expands the candidates from the previ-
ous step to the next step. Each candidate is a pair
(z,p), where z is the current prefix and p is the
accumulated probability from joint score between
an external language model, CTC and ASR proba-
bilities, ﬁﬁl?lR. We denote the number of observable
speech chunks at j step as 7(j) = [j * r/w]. And
vice versa, for each new speech chunk, ASR beam
search will advance for w/r steps.

Note CTC often commits empty tokens € due
to empty speech frames, and the lengths of differ-
ent hypotheses within beam of streaming ASR are

7 beam search

[ 2 3 4 5 6 ,
step index
A B—>C* D——E—>s >< F
2 G§H><IX é J ><-X ;% K
3 MM ANE—o /M. P—Q
Figure 3: An example of streaming ASR beam search
with beam size 3. LCP is shaded in red (¢cp(B7) =3);

SH is highlighted in bold (¢su(B7) =5). We use o to
represent empty outputs in some steps caused by CTC.

beam

In

hypotheses

Algorithm 1 Streaming ASR-guided Simultaneous ST

1: Input: speech chunks §j;.7); k; ¢~ (B;); streaming de-
coding models: pi| and pask
Initialize: ASR and ST indices: j =t =0; B = By
fori=1~1T do > feed speech chunks
repeat w/r steps > do ASR beam search w /7 steps
B + top®(nexzt(B, 7)); j++ > ASR beam search
while ¢ (B) — k > tdo
G414 Pomick Wer1 | Spuiv1), Y<e; Oan)
yield giy1; t++ > commit translation to user

> new tokens?

RN AR

quite different from each other. To take every hy-
pothesis into consideration, we design two policies
to decide the number of valid tokens.

* Longest Common Prefix (LCP) uses the length
of longest shared prefix in the streaming ASR
beam as the number of valid tokens within given
speech. This is the most conservative strategy,
which has similar latency to cascaded methods.

* Shortest Hypothesis (SH) uses the length of
shortest hypothesis in the current streaming ASR
beam as the number of valid tokens.

More formally, let ¢ (B) denote the number of
valid tokens in the beam B under policy 7:

dLcp(B) = max{i | 37, 5.t.¥(z,c) € B,z<;=7'}
bsu(B) = min{la] | (z,¢) € B}

For example in Fig. 3, ¢1.cp(B7) =3, ¢su(B7)=5.
Also note that ¢y cp(B) < ¢su(B) for any beam B,
and that both policies are monotonic, i.e. ¢(Bj) <
¢x(Bj41) for m € {LCP,SH} and all j.

Note we always feed the entire observable
speech segments into ST for translation, and
streaming ASR-generated transcription is not used
for translation, so LCP might have similar latency
with cascaded methods but the translation accuracy
is much better because more information on the
source side is revealed to the translation decoder.

As shown in Algorithm 1, during simultaneous
ST, we monitor the value of ¢ (B;) while speech
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Figure 4: We use full-sentence MTL framework to
jointly learn ASR and ST with a shared encoder.

ASR decoder

chunks are gradually fed into system. When we
have ¢.(B) — k > t where t is the number of
translated tokens, the ST decoder will be triggered
to generate one new token as follows:

Ut = argmax Pyaick (Yt | S[1:r () Y<ts 65h) (2
Yt

3.2 Joint Training between ST and ASR

Different from existing simultaneous translation so-
lutions from (Ren et al., 2020; Ma et al., 2020b,a),
which make adaptations over vanilla E2E-ST archi-
tecture as shown in gray line of Fig. 4, we instead
use simple MTL architecture which performs joint
full-sentence training between ST and ASR:
O On = argmax [T pli(v* | s:650)
eg{l?oalis(s,y*,z*)eD
P (2 | 8:050°)
For ASR training, we use hybrid CTC/Attention
framework (Watanabe et al., 2017). Note that we
train ASR and ST MTL with full-sentence fash-
ion for simplicity and training efficiency, and only
perform wait-k decoding policy at inference time.
Also, 651, and O25R share the same speech encoder.

4 Experiments

We conduct experiments on English-to-German
(En—De) and English-Spanish (En—Es) transla-
tion on MuST-C (Di Gangi et al., 2019). We em-
ploy Transformer (Vaswani et al., 2017) as the basic
architecture and LSTM (Hochreiter and Schmidhu-
ber, 1997) for LM. For streaming ASR decoding
we use a beam size of 5. Translation decoding is
greedy due to incremental commitment.

Raw audios are processed with Kaldi (Povey
et al., 2011) to extract 80-dimensional log-Mel
filterbanks stacked with 3-dimensional pitch fea-
tures using a 10ms step size and a 25ms window
size. Text is processed by SentencePiece (Kudo
and Richardson, 2018) with a joint vocabulary size
of 8K. We take Transformer (Vaswani et al., 2017)
as our base architecture, which follows 2 layers
of 2D convolution of size 3 with stride size of 2.
The Transformer model has 12 encoder layers and
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Figure 5: Translation quality v.s. latency. The dots
on each curve represents different wait-k policy with
k=1,3,5,7 from left to right respectively. Baseline* re-
sults are from Ma et al. (2020b). k=inf is full-sentence
decoding for ASR and translation. test-k denotes test-
ing time wait-k. We use a chunk size of 48.

6 decoder layers. Each layer has 4 attention head
with a size of 256. Our streaming ASR decoding
method follows Moritz et al. (2020). We employ
10 frames look ahead for all experiments. For LM,
we use 2 layers stacked LSTM (Hochreiter and
Schmidhuber, 1997) with 1024-dimensional hid-
den states, and set the embedding size as 1024. LM
are trained on English transcription from the cor-
responding language pair in MuST-C corpus. For
the cascaded model, we train ASR and MT models
on Must-C dataset respectively, and they have the
same Transformer architecture of our ST model.
Our experiments are run on 8 1080Ti GPUs. And
the we report the case-sensitive detokenized BLEU.

Translation quality against latency In order to
clearly compare with related works, we evaluate
the latency with AL defined in Ma et al. (2020b)
and AP defined in Ren et al. (2020). As shown in
Fig. 5, for En—De, results are on the dev set to
be consistent with Ma et al. (2020b). Compared
with baseline models, our method achieves much
better translation quality with similar latency. To
validate the effectiveness of our method, we com-
pare our method with Ren et al. (2020) on En—Es
translation. Their method does not evaluate the
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chunk index | 1 2 3 4 5 6 end
Gold transcript | can I be honest SIL Idon’t SIL
Gold translation | Darf ich ehrlich sein ? Ich nicht .
Streaming ASR can [ be on this I don 't
simul-MT wait-3 Kann ich da sein ? Ich nicht .
SH wait-3 Kann ich ehrlich sein ? Ich nicht .
LCP wait-3 Kann ich ehrlich sein ? Ich nicht .

Figure 6: An example from the dev set of En—De translation. In the cascaded approach (streaming ASR + simul-
MT wait-3), the ASR error (“on this” for “honest”) is propagated to the MT module, causing the wrong translation
(“da”). Our methods give accurate translations (“ehrlich”’) with better latency (esp. for the SH policy, the output
of “diese Frage” is synchronous with hearing “that question”). “SIL” denotes silence in speech.

224
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Figure 7: Translation quality against latency. Each
curve represents decoding with wait-k policy,
k=1,3,5,7 from left to right. The dashed lines and
hollow markers indicate the latency considering the
computational time. The chunk size is 48.

plausibility of the detected tokens, so it has a more
aggressive decoding policy which results in lower
latency. However, our method can still achieve bet-
ter results with slightly lower latency. Besides that,
our model is trained in full-sentence mode, and
only decodes with wait-k at inference time, which
is very efficient to train. Our test-time wait-k could
achieve similar quality with their genuine wait-k
(i.e., retrained) models which are very slow to train.
When we compare with their test-time wait-k, our
model significantly outperforms theirs.

We further evaluate our method on the test set
of En—De and En—Es translation. As shown in
Fig. 7, compared with the cascaded model, our
model has notable successes in latency and trans-
lation quality. To verify the online usability of our
model, we also show computational-aware latency.
Because our chunk window is 480ms, and the la-

Model En—De En—Es
w=32 w=48 w=64 w=32 w=48 w=64
LCP 17.31 17.54 17.95 21.94 21.92 22.36
— LM 14.60 15.66 1591 18.54 19.15 19.95
— LM & AD  13.76 14.82 15.26 17.42 18.06 19.32
SH 16.04 15.82 15.87 20.45 20.18 19.84
— LM 13.76 14.01 13.84 17.31 17.21 17.78
— LM & AD  10.44 11.25 11.65 13.61 14.27 14.62

Table 1: BLEU score of wait-1 decoding with different
chunk sizes and ASR scoring functions. AD denotes
ASR Decoder. LM denotes Language Model.

tency caused by the computation is smaller than
this window size, which means that we can finish
decoding the previous speech chunk when the next
speech chunk needs to be processed, so our model
can be effectively used online.

Fig. 6 demonstrates that our method can effec-
tively avoid the error propagation and obtain better
latency compared to the cascaded model.

Effect of chunk size and joint decision Table 1
shows that the results are relatively stable with var-
ious chunk sizes. It can be flexible to balance the
response frequency and computational ability. We
explore the effectiveness of ASR joint scoring, and
observe that the translation quality drops a lot with-
out LM. Without LM and AD, our token recogni-
tion approach is similar to the speech segmentation
in Ren et al. (2020), which implies that their model
is hard to segment the source speech accurately,
leading to unreliable translation decisions for ST.

5 Conclusion

We proposed a simple but effective ASR-assisted
simultaneous E2E-ST framework. The streaming
ASR module can guide (but not give direct input to)
the wait-k policy for simultaneous translation. Our
method improves ST accuracy with similar latency.
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