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Abstract

We present a new probing dataset named

PROST: Physical Reasoning about Objects

Through Space and Time. This dataset con-

tains 18,736 multiple-choice questions made

from 14 manually curated templates, covering

10 physical reasoning concepts. All questions

are designed to probe both causal and masked

language models in a zero-shot setting. We

conduct an extensive analysis which demon-

strates that state-of-the-art pretrained models

are inadequate at physical reasoning: they are

influenced by the order in which answer op-

tions are presented to them, they struggle when

the superlative in a question is inverted (e.g.,

most ↔ least), and increasing the amount of

pretraining data and parameters only yields

minimal improvements. These results provide

support for the hypothesis that current pre-

trained models’ ability to reason about physi-

cal interactions is inherently limited by a lack

of real world experience. By highlighting

these limitations, we hope to motivate the de-

velopment of models with a human-like under-

standing of the physical world.

1 Introduction

In the context of natural language processing (NLP),

Bender and Koller (2020) provides a working defi-

nition of “understanding” as the ability to recover

the communicative intent from an utterance. To

achieve this, one must be able to query a set of

concepts that is aligned with the speaker’s own un-

derstanding. An example of such alignment is our

interaction with the physical world. This experi-

ence, shared by all humans, provides a common

set of concepts to rely on in communication. For

example, the reader can map the phrase I dropped

my pint glass to a set of relevant experiences and

generate a mental depiction of the scene. Further,

∗*Email has no accent, but includes the hyphen

A) glass B) pillow C) coin D) pen

A person drops a glass, a pillow, a coin, and a pen from a balcony. 
The [MASK] is most likely to break.

Figure 1: An example question from PROST.

the reader can also use their knowledge of gravity

and the properties of a pint glass to reason about

potential outcomes: the pint glass will fall toward

the ground and will likely break on impact.

Children grab, push, and play with the objects

around them to form concepts about the world they

live in even before learning to talk (Hespos and

Spelke, 2004). These concepts are then linked with

words to enable communication, eventually pro-

viding the necessary grounds for concepts and lan-

guage to co-develop (Bloom, 2002; Gelman, 2009).

In contrast, current language models (LMs) are not

exposed to real-world experiences, making them in-

capable of grounding language (Bisk et al., 2020a).

We hypothesize that this lack of experience im-

pedes their ability to both understand an utterance

relating to the physical world and their ability to

reason about its implications.

In order to investigate our hypothesis, we create

PROST: Physical Reasoning of Objects Through

Space and Time, a probing dataset to evaluate the

ability of pretrained LMs to understand and rea-

son about the physical world. PROST consists of

multiple-choice cloze-style questions covering 10
basic concepts: direction, mass, height, circum-

ference, stackable, rollable, graspable, breakable,

slideable, and bounceable. Importantly, PROST is

designed to avoid models succeeding in unintended
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ways. First, PROST provides no training data, so

as to probe models in a zero-shot fashion. This

prevents models from succeeding through spurious

correlations between training and test data and en-

courages success through a true understanding of

and reasoning about the concepts at hand. Second,

we manually write templates for all questions in

an effort to prevent models from having seen the

exact same sentences in their training data. Finally,

it focuses on a small set of well defined, objective

concepts that only require a small vocabulary. This

allows researchers to focus more on the quality of

training data rather than the size of it.

Contributions We make two contributions: 1)

We introduce PROST, a dataset with 18, 736 cloze-
style questions created from 14 manually written
templates, covering 10 physical reasoning tasks. 2)
We conduct an extensive analysis which demon-

strates that state-of-the-art pretrained models are

inadequate at physical reasoning. More specifi-

cally, they are influenced by the order in which

answer options are presented to them, they struggle

when the superlative in a question is inverted (e.g.,

most ↔ least), and increasing the amount of pre-

training data and parameters only yields minimal

improvements. The dataset and code is available at

github.com/nala-cub/prost.

2 Related Work

Evaluation of Reasoning Abilities As pre-

trained models are excelling on many NLP tasks,

more work is being done on understanding their

abilities. A subset of this work focuses on physical

reasoning. PIQA (Bisk et al., 2020b) tests physical

commonsense, with concepts ranging from hard

shell tacos to separating egg yolks. In order to suc-

ceed on PIQA through reasoning, a model would

need to be able to understand thousands of human

experiences. In contrast, PROST provides a first

step towards grounded understanding and reasoning

by focusing on a few simple concepts. Bakhtin et al.

(2019) provides a set of 2D puzzles that involve

placing a new object in a scene to accomplish a goal.

This research also focuses on simple physics, how-

ever there is no language component. Clark et al.

(2018) and Kembhavi et al. (2017) both provide a

large set of grade school multiple-choice questions,

including some that could be solved with reason-

ing. However both provide corresponding material

where the solution can be found, relying more on

information retrieval than a general understanding

and reasoning about the world.

Another set of reasoning-based benchmarks fo-

cuses on common sense reasoning. SWAG and

its extension hellaSWAG evaluate commonsense

natural language inference (Zellers et al., 2018,

2019). Sap et al. (2019) tests commonsense rea-

soning about social situations. However, common-

sense reasoning is often subjective and requires un-

derstanding of complex human–human interactions

involving social and societal norms. In contrast,

physical reasoning is based on objective and well

defined constructs.

Other datasets (Forbes and Choi, 2017; Elazar

et al., 2019; Goel et al., 2019) focus on object–

attribute comparison. However, they compare con-

cepts at a word level rather than sentence level

and use a large training set to create an engineered

object–attribute comparison model. It is difficult

to see how these models could generalize to other

forms of reasoning.

Moreover, all the above datasets follow a

pretraining-agnostic identically distributed (PAID)

paradigm (Linzen, 2020), making them susceptible

to models that can leverage unintended correlations

between the training and test sets.

Zero-Shot LM Probes Similar to PROST, sev-

eral recent benchmarks have circumvented the con-

cern of identically distributed training and test sets

by probing models in a zero-shot manner. Petroni

et al. (2019) queries masked LMs (MLMs) for fac-

tual knowledge using templates in the format of

Dante was born in [MASK]. Talmor et al. (2020)

use a similar format to probe six concepts ranging

from age comparison to taxonomy conjunction. Et-

tinger (2020) uses this format to show that BERT

robustly retrieves hypernyms, but fails to under-

stand negation. Lin et al. (2020) probe numerical

commensense in both MLMs and traditional LMs.

Warstadt et al. (2020) measures traditional LMs’

sense of grammatical acceptability by comparing

sentence probabilities.

Grounded Language Environments PROST

investigates if pretrained models show a lack of

understanding of the physical world which could

result from learning language without ground-

ing. While not used for pretraining, a number of

multi-modal environments have been developed

to ground language. Shridhar et al. (2020)’s AL-

FRED builds on other vision-and-language nav-

igation environments (Gordon et al., 2018; Reg-

https://github.com/nala-cub/prost
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neri et al., 2013; Zhu et al., 2017; Anderson et al.,

2018), and enables grounding of language instruc-

tion to actions, behaviours, and objects. BABYAI

(Chevalier-Boisvert et al., 2019) and BABYAI++

(Cao et al., 2020) provide an environment to ground

simple language in a gridworld. Additionally, other

work has explored grounding language in simula-

tions or the real world (Hill et al., 2020; Lynch

and Sermanet, 2020). While they provide impor-

tant resources to ground language, little emphasis is

placed on the language modules themselves. They

are often trained tabulae rasae, learning language

for a singular purpose and missing out on the syntax

and coverage learnt during pretraining;1 language is

only ever an input, and no analysis has been done on

how language understanding evolves as the agent

learns to succeed on different tasks.

3 PROST

PROST consists of 18, 736 cloze-style multiple-

choice questions designed for probing a LM’s phys-

ical reasoning ability. They cover 10 basic con-

cepts: direction, mass, height, circumference, stack-

able, rollable, graspable, breakable, slideable, and

bounceable. We choose these concepts because

they are well defined, easily learned by interacting

with the world, and are useful concepts for any em-

bodied agent. The questions are constructed from

14 manually written templates. Each template fol-
lows one of three different formats: the first for-

mat is specific to the set of questions pertaining

to directions; the second format is used to gauge

the relative attributes—specifically mass, height,

and circumference—of objects; and the third for-

mat targets the affordances of objects—specifically

whether an object is stackable, rollable, graspable,

or breakable, and whether a surfaces is slideable

or bounceable2. We use CheckList (Ribeiro et al.,

2020) to obtain the questions from our templates.

We show all templates in Table 1 and explain them

in detail below. We end this section by describing

the objects featured in PROST.

Direction Templates We use two templates to

generate questions which probe understanding of

direction. The first focuses on cardinal directions.

The second uses a set of four manually crafted ques-

1An exception is Lynch and Sermanet (2020), which incor-
porates modern LMs and provides impressive generalizability.
However, they too only use language as an input and do not
analyze how language understanding evolves.

2Bounceable here refers to providing an elastic collision.

tions to probe understanding of how gravity affects

the directions of a ball throughout its trajectory.

Due to their similarity, we count these four ques-

tions as a single template. The direction templates

create a total of 16 questions.

Attribute Templates The second set of tem-

plates probe the models’ ability to reason about

relative mass, height, and circumference of com-

mon objects. For each of these three concepts we

create a set of six objects that are easily ordered

by their respective attributes. A context is first pre-

sented with up to four of the six objects to prime

the models with the range of possible choices. This

is followed by a prompt that probes the model to

select one of the objects based on the object’s mass,

height, or circumference. By inverting the superla-

tive in the prompt (e.g., longest↔ shortest), we can

probe the model’s ability to identify both the object

with the highest attribute value and the object with

the lowest attribute value from the set of choices.

We permute through all objects and all orders. Each

of the three attributes are tested using two templates

that share the same set of objects. Each template

produces 6P4 ∗ 2 = 720 questions, meaning each
attribute is probed using 1440 questions.

Affordance templates The remaining templates

target an understanding of object affordances. For

each affordance—stackable, rollable, graspable,

breakable, slideable, and bounceable— we collect

a set of five objects with and five objects without

that affordance. Again, we first provide a short

context that contains each of the four possible ob-

jects. We then provide a prompt that requires the

model to select the only object either with or with-

out the affordance. We include all permutations of

objects where there is exactly one correct answer.

These templates produce 5P1 ∗ 5P3 ∗ 4 ∗ 2 = 2400
questions for each of the six affordances.

Objects in PROST All possible values for the

placeholders in our templates are shown in Table 3.

For affordances, we display objects in two groups:

those with and without each affordance. For at-

tributes, objects are sorted by increasing order, e.g.,

for mass, leaf is the lightest object and microwave

is the heaviest object. Each object in PROST is

selected to be single-token compatible for a wide

range of vocabularies to enable easy probing of

MLMs. We validate the order of our attribute ob-

jects and the group membership for our affordance

objects by collecting judgments from 9 human val-
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Category Qs. Template

Directs. 1 12 C: A person is walking {north/east/south/west}. They turn {left/right/around}.
Q: They are now walking [MASK].
O: A) north B) east C) south D) west

Directs. 2a 1 C: A person drops a ball.
Q: Immediately after leaving the person’s hand, the ball is moving toward the [MASK].

Directs. 2b 1 C: A person throws a ball straight into the air.
Q: Immediately after leaving the person’s hand, the ball is moving toward the [MASK].

Directs. 2c 1 C: A person throws a ball straight into the air.
Q: Immediately after reaching the highest point in it’s trajectory, the ball is moving toward the [MASK].

Directs. 2d 1 C: A person drops a ball. The ball then bounces off the ground.
Q: Immediately after bouncing off the ground, the ball is moving toward the [MASK].
O: A) ground B) sky C) left D) right

Mass 1 720 C: A(n) {mass_obj1}, a(n) {mass_obj2}, a(n) {mass_obj3}, and a(n) {mass_obj4} moving at identical
speeds each collide with a static hockey puck.

Q: The puck hit by the [MASK] slides the {shortest/longest} distance.
Mass 2 720 C: A(n) {mass_obj1} and a(n) {mass_obj2} are placed on either end of a perfectly balanced seesaw.

Q: The side of the seesaw with the [MASK] moves {up/down}.
O: A) {mass_obj1} B) {mass_obj2} C) {mass_obj3} D) {mass_obj4}

Height 1 720 C: Four balls are dropped. The first is dropped from the height equivalent of a {height_obj1}, the
second is dropped from the height equivalent of a {height_obj2}, the third is dropped from the height
equivalent of a {height_obj3}, and the fourth is dropped from the height equivalent of a {height_obj4}.

Q: The ball dropped from the height of the [MASK] takes the {longest/shortest} amount of time to fall.
Height 2 720 C: There are four staircases. The first staircase leads to the top of a {height_obj1.}, the second staircase

leads to the top of a {height_obj2.}, the third staircase leads to the top of a {height_obj3.}, and the
fourth staircase leads to the top of a {height_obj4.}.

Q: The staircase leading to the top of the [MASK] is the easiest/hardest to walk up.
O: A) {height_obj1} B) {height_obj2} C) {height_obj3} D) {height_obj4}

Circumf. 1 720 C: Four people are walking at identical speeds. The first walks around a {circ_obj1}, the second walks
around a {circ_obj2}, the third walks around a {circ_obj3}, and the fourth walks around a {circ_obj4}.

Q: The [MASK] takes the {longest/shortest} amount of time to walk around.
Circumf. 2 720 C: A person paints a circle around a {circ_obj1}, a {circ_obj1}, a {circ_obj1}, and a {circ_obj1}.

Q: The circle around the [MASK] takes the {most/least} amount of paint.
O: A) {circ_obj1} B) {circ_obj2} C) {circ_obj3} D) {circ_obj4}

Stackable 2400 C: A person is trying to stack {stack}, {no stack1}, {no stack2}, and {no stack3}.
Q: The [MASK] are the {easiest/hardest} to stack.
O: A) {stack} B) {no stack1} C) {no stack2} D) {no stack3}

Rollable 2400 C: A person is trying to roll a(n) {roll}, a(n) {no roll1}, a(n) {no roll2}, and a(n) {no roll3}.
Q: The [MASK] is the {easiest/hardest} to roll.
O: A) {roll} B) {no roll1} C) {no roll2} D) {no roll3}

Graspable 2400 C: A person is trying to move a pile of {break}, a pile of {no break1}, a pile of {no break2}, and a pile
of {no break3} from one side of a room to the other using only one hand.

Q: The [MASK] is the {most/least} likely to break.
O: A) {break} B) {no break1} C) {no break2} D) {no break3}

Breakable 2400 C: A person drops a {break}, a {no break1}, a {no break2}, and a {no break3} from a balcony.
Q: The [MASK] is the {most/least} likely to break.
O: A) {grasp} B) {no grasp1} C) {no grasp2} D) {no grasp3}

Slideable 2400 C: A person is sliding four bricks across four hard surfaces. The first surface is covered with {slide},
the second surface is covered with {no slide1}, the third surface is covered with {no slide2}, and the
fourth surface is covered with {no slide3}.

Q: The surface covered with [MASK] is the {hardest/easiest} for the brick to slide across.
O: A) {slide} B) {no slide1} C) {no slide2} D) {no slide3}

Bounceable 2400 C: A person is trying to bounce a rubber ball. They drop a first ball onto {bounce}, a second ball onto
{no bounce1}, a third ball onto {no bounce2}, and a fourth ball onto {no bounce3}.

Q: The ball dropped onto[MASK] bounces the {most/fewest} times.
O: A) {bounce} B) {no bounce1} C) {no bounce2} D) {no bounce3}

Table 1: All templates in PROST. C: = Context, Q: = Question, O: = Options. {} indicate placeholders. The

objects can be found in Table 3. The rest of the placeholders show their possibilities in the braces themselves.

[MASK] indicates the position of the blank that the models need to fill. See Section 3 for more information.

NOTE: The number of objects with and without the affordances are swapped when the superlative is inverted.
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Model Type Input Target

Decoder (context) They are now walking 〈O〉. Max probability for each sentence input to the model

Encoder (context) They are now walking 〈M〉. Max probability for the masked token.

T5 (context) They are now walking 〈X〉. 〈X〉 south 〈Y〉

UnifiedQA
Which way are they walking now? \n (A) north south
(B) south (C) east (D) west \n (context)

Table 2: Overview of the task preprocessing for different architectures evaluated. In all methods, the context

remains unchanged and is “A person is walking west. They turn left.”

idators. The validators obtained a 100% agreement

on the object ordering, and 94.6% agreement on

the object group membership.

Attributes

Attribute Objects

mass leaf, coin, egg, apple, brick, microwave
height book, microwave, table, car, house, mountain
circ book, microwave, table, car, house, mountain

Affordances

Affordance Objects

stack books, blocks, boxes, coins, plates
no stack balls, bottles, eggs, flowers, lamps

roll apple, ball, bottle, egg, can
no roll book, box, block, mirror, microwave

grasp balls, blocks, books, bottles, flowers
no grasp flour, rice, salt, snow, sugar

break bottle, egg, glass, mirror, plate
no break ball, coin, pen, pillow, shirt

slide ice, frost, grease, oil, soap
no slide carpet, concrete, grass, gravel, rubber

bounce asphalt, brick, concrete, rubber, steel
no bounce carpet, foam, grass, leaves, snow

Table 3: Objects used in the templates.

4 Models

Using PROST, we probe three types of transformer-

based models (Vaswani et al., 2017): decoder mod-

els, encoder models, and encoder-decoder models.

Each model has slightly different formatting re-

quirements, which we show in Table 2. For each

model type, we probe a range of different sizes to

investigate the effects of scaling. We use Hugging-

face’s (Wolf et al., 2020) pretrained models, see

Table 4 for the full set.

Decoder Models We analyze OpenAI’s GPT-1

(Radford et al., 2018) and GPT-2 (Radford et al.,

2019). Both are based on a transformer decoder

architecture and trained on a traditional language

modeling objective. We run these models over

Model Params (M) Data (GB)

GPT 116.5 2

GPT-2 B 124.4 40
M 354.8 40
L 774.0 40
XL 1557.6 40

BERT B 110.1 13
L 336.2 13

RoBERTa B 124.7 160
L 355.4 160

ALBERT V2 B 11.8 160
L 17.8 160
XL 59.0 160
XXL 223.2 160

T5 S 60.5 170
B 222.9 170
L 737.7 170
3B 2851.6 170

Table 4: Summary of models evaluated on PROST.We

list the amount of pretraining data as the size of the un-

compressed text corpus used.

each question four times, each time with a different

choice replacing the [MASK] token. Following

Warstadt et al. (2020), we select the sentence with

the highest probability.

Encoder Models We analyze BERT (uncased)

(Devlin et al., 2018), RoBERTa (Liu et al., 2019),

and ALBERT (Lan et al., 2020), which are all based

on transformer encoders. BERT is trained onMLM

and next sentence prediction and uses static mask-

ing, RoBERTa is trained on MLM with dynamic

masking, and ALBERT uses whole-word n-gram
masking. For probing, we filter out all but the four

answer choices from the output vocabulary and se-

lect the token with the highest probability as the

model’s decision.

Encoder-decoder Models We also include re-

sults for T5 (Raffel et al., 2020). T5 is trained

using a span corruption objective, in which spans

of the input sequence are randomly replaced with
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a single unique mask token. During pretraining,

span lengths are chosen randomly with an average

length of three. To keep our results consistent with

the other models, we restrict the span length to one

token. We find that two of the options for sliding

surfaces, namely ice and frost, violate our single-

token constraint. To avoid any unfair comparison

between answers that differ in token lengths and fol-

lowing previous work (Goldberg, 2019), we chose

to omit presenting the results for T5 on the sliding

concept.

Finetuned Conditional LMs To better under-

stand the limitations of text-only training, we addi-

tionally evaluate UnifiedQA (Khashabi et al., 2020).

UnifiedQA is a pretrained QA model, built off T5,

and finetuned on SQuad 1.1, SQuaD 2.0, Narra-

tiveQA, RACE, ARC, OpenBookQA,MCTest, and

BoolQ (Rajpurkar et al., 2016, 2018; Kočiský et al.,

2018; Lai et al., 2017; Clark et al., 2018; Mihaylov

et al., 2018; Richardson et al., 2013; Clark et al.,

2019). We format all of our templates to fit their

multiple-choice question answering format and use

their provided scoring metrics to select the models’

answers.3

5 Results

The per model and per concept results are

shown in Table 5. For concepts with more

than one template—direction, mass, height, and

circumference—we average across templates to get

the concept’s score. We can see that, on average,

ALBERT-V2-XL performs best, with an accuracy

of 31.8%4, and GPT-2 performs worst, with an ac-

curacy of 23.6%. We note that random guessing

would yield an accuracy of 25%. Furthermore, ev-
ery model underperforms random guessing on at

least one concept. Since PROST is trivially solv-

able for humans, this supports our hypothesis that

pretrained models are unable to perform physical

reasoning anywhere close to human performance.

Comparing across all concepts, we see that di-

rection obtains the highest average accuracy with

46.8%. The second best accuracy is observed for
the mass attribute with 36.5%. The concepts mod-
els struggle the most with are the slideable and

bounceable affordances, both with an average ac-

curacy of 19.9%.

3https://github.com/allenai/unifiedqa
4Note: as detailed in Section 4, T5 and UnifiedQA are

not being evaluated on sliding. We therefore disregard their
average accuracy.

6 Analysis

Object Order in Context For the concepts that

use objects, all four choices are listed in each ques-

tion’s context. PROST contains all permutations

with regards to their ordering. This enables us to

directly look at the effect of the correct answer’s

position within the context on the models’ accuracy.

These results shown in Table 6.

We see that models have a strong tendency to

select either the first or the last item seen in the con-

text. The largest difference is found for T5, with an

accuracy of 52.4% for objects at position 1 and an

accuracy of only 1.9% for objects at position 3. We

note that a proper understanding of the questions,

as most humans would have, would be robust to

the order in which the choices are presented. This

further underlines that state-of-the-art models do

not perform human-like physical reasoning.
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Figure 2: Scaling effect of models on accuracy. Circles

size represents number of parameters.

Superlative Inverses By inverting the superla-

tive in a question, we are able to probe a mirrored

version of the question. For example, for attributes,

this would require the model to identify the lightest

object instead of the heaviest object, or, for affor-

dances, it would require the model to identify the

not stackable object instead of the stackable ob-

ject. We call these mirrored versions superlative

inverses. A true understanding of the questions in

https://github.com/allenai/unifiedqa
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Model Direction Mass Height Circum. Stack Roll Grasp Break Slide Bounce Macro Average

GPT 46.7 40.1 24.3 22.8 28.2 27.9 19.6 22.7 14.6 14.4 26.1

GPT2 43.3 31.4 22.0 18.8 26.2 20.3 17.9 22.5 16.9 17.0 23.6
M 48.3 34.1 21.6 21.6 25.5 23.7 24.9 27.8 22.5 18.5 26.8
L 46.7 33.1 25.4 27.0 25.5 26.9 20.6 21.8 21.3 15.6 26.4
XL 46.7 34.2 25.8 26.3 31.1 36.3 29.4 26.7 23.7 20.5 30.1

BERT B 40.0 32.9 27.5 25.6 20.9 26.1 23.3 28.0 18.2 13.0 25.5
L 70.0 38.8 19.4 17.5 21.3 19.2 26.7 19.5 15.9 18.6 26.7

RoBERTa B 46.7 36.9 25.8 23.5 34.5 19.3 25.4 45.0 20.9 11.4 28.9
L 66.7 43.4 33.8 22.7 22.7 22.2 29.4 23.8 22.7 25.5 31.3

ALBERT V2 B 21.7 35.4 30.2 26.0 25.2 32.5 35.3 22.8 15.3 22.9 26.7
L 41.7 38.2 31.9 27.5 23.3 29.7 34.0 24.5 23.4 22.1 29.6
XL 46.7 38.7 42.0 37.4 30.2 28.2 37.1 17.8 25.3 14.3 31.8

XXL 68.3 33.8 28.1 24.5 29.4 23.4 21.2 30.2 17.5 22.1 29.8

T5 S 20.0 36.5 29.8 25.2 25.0 25.9 25.4 25.0 — 30.2 27.0∗

B 40.0 37.0 32.6 23.8 25.0 23.4 25.2 25.6 — 37.8 30.1∗

L 46.7 35.7 30.7 27.6 31.8 23.0 34.0 25.2 — 22.7 30.8∗

3B 46.7 39.6 35.6 29.8 34.7 31.5 35.6 33.8 — 12.5 33.3∗

UnifiedQA S 0.0 34.2 34.8 30.3 24.4 29.0 28.8 27.1 — 31.0 26.6∗

B 0.0 17.8 33.3 22.3 25.5 34.9 27.9 36.5 — 45.7 27.1∗

L 83.3 17.2 49.5 47.3 23.5 28.4 27.5 43.6 — 32.6 39.2∗

3B 63.3 37.8 55.2 66.9 31.2 35.2 24.8 81.4 — 24.8 46.7∗

Task Average 46.3 36.5 28.6 25.2 27.1 25.9 27.4 26.0 19.9 19.9 28.5

Table 5: Macro average for each concept and overall for each model on PROST. The best accruacy for general

pretrained-only models is displayed in bold. Note that the task average does not include UnifiedQA.

Model
Position Accuracy

1 2 3 4

GPT 27.0 24.3 7.6 38.6
GPT-2 29.9 23.1 8.1 42.0
BERT 28.4 24.3 5.7 38.2
RoBERTa 39.0 28.7 11.2 30.0
ALBERT V2 32.5 25.8 9.7 44.2
T5 52.4 21.1 1.9 35.2
UnifiedQA 41.0 27.7 18.8 51.9

Position Average 35.7 25.0 9.0 40.0

Table 6: Accuracy across the correct answer’s position

in the context.

PROST should be robust to this kind of inversion.

However, Table 7 shows all models perform better

on one of the two versions. Of the probed models,

GPT-2 is the most unbalanced, averaging 30.6%

higher for one version over the other.

Data and Model Scaling Figure 2 shows each

model’s accuracy as a function of the number of

its parameters. Unlike for many modern bench-

marks, where increasing the number of parameters

or training data provides significant benefits (Tal-

mor et al., 2020; Wang et al., 2018), PROST does

not see much improvement from such scaling. We

observe some improvements with T5-3B outper-

forming T5-small, but this 6.6% increase requires a

48x increase in parameters and T5-small still outper-

forms T5-3B on one task. Moreover, some models

break this trend: ALBERT’s XL version outpe-

forms its XXL counterpart and GPT-2 M outper-

forms GPT-2 L. While previous work has revealed

the impressive scaling laws of transformer-based

architectures (Kaplan et al., 2020), PROST high-

lights the importance of relevant and informative

training. As physical reasoning is not an ability that

humans acquire via text, even substantially more

open domain textual data is unlikely to lead to more

than marginal improvements.

The Limits of Text-based Training To our

knowledge, UnifiedQA is the most qualified model

to succeed on our task, having been finetuned on a

significant amount of relevant text data. While this

additional data does provide benefits on PROST, it

still falls short, with the best performing model we

tested only achieving a 46.7% accuracy. Addition-

ally, from Tables 6 and 7, it still lacks the robust-

ness of proper understanding. This emphasizes that

models are unlikely to obtain human-like reasoning

from text-based training alone. Rather, PROSTmo-

tivates exposing models to concepts through multi-

ple modalities that mirror a human’s experience.
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Model Mass Height Circum. Stack Roll Grasp Break Slide Bounce Macro Average

GPT 9.4 2.2 14.0 35.9 43.0 22.7 13.3 9.8 10.1 17.8

GPT-2 19.2 24.3 1.1 16.1 5.1 12.1 31.9 24.9 15.8 16.7
M 31.2 12.9 21.5 12.7 20.2 7.8 49.9 33.3 9.2 22.1
L 25.8 24.2 25.4 5.6 16.7 18.4 24.6 28.2 23.7 21.4
XL 43.5 6.7 1.5 56.1 51.5 36.3 31.5 15.8 32.4 30.6

BERT B 5.0 40.0 2.5 12.3 15.4 3.1 44.9 12.2 11.2 16.3
L 19.2 21.5 5.8 1.8 3.4 4.2 17.2 9.5 30.4 12.6

RoBERTa B 4.7 4.0 6.5 55.0 13.8 27.8 89.6 21.8 15.8 26.5
L 31.0 24.7 26.8 9.7 21.1 33.2 31.5 33.9 33.2 27.2

ALBERT V2 B 4.7 31.0 7.9 14.8 14.4 66.4 2.3 7.2 1.5 16.7
L 0.6 11.9 23.6 30.0 36.8 52.2 6.9 28.7 13.2 22.7
XL 9.4 0.7 8.5 19.5 8.1 31.0 10.9 8.2 20.6 13.0
XXL 18.1 2.9 18.5 4.2 12.2 2.0 37.2 16.3 11.3 13.6

T5 S 8.3 12.9 13.5 0.0 3.9 0.8 3.1 — 1.8 5.5

B 8.7 26.9 5.8 0.0 0.2 0.5 3.1 — 26.2 8.9
L 5.0 20.3 1.7 7.5 22.6 10.5 37.7 — 0.5 13.2
3B 16.1 12.2 0.7 9.2 8.8 5.1 34.7 — 24.9 14.0

UnifiedQA S 46.9 5.4 19.7 2.8 34.5 31.0 39.0 — 9.3 23.6
B 19.2 19.2 4.3 24.6 30.4 10.4 4.9 — 49.5 20.3
L 18.5 28.5 26.2 18.6 28.1 41.6 7.9 — 48.1 27.2
3B 8.2 46.2 36.1 6.8 1.8 0.7 13.4 — 26.4 17.5

Task Average 15.3 16.4 10.9 17.1 17.5 19.7 27.7 19.2 16.6 17.6

Table 7: Absolute difference in accuracy between a question and its superlative inverse.
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Figure 3: Analysis of the performance of UnifiedQA

3B on PROST throughout PIQA finetuning. The left

and right Y axis represent Accuracy on the PIQA dev

set and Macro accuracy on PROST respectively. We

finetune for 100K steps, and compute metrics every 2k

steps. Annotations correspond to the checkpoints with

the best performance on PIQA and PROST. Note that

PIQA has two answer choices, while PROST has 4.

Comparing PROST and PIQA Due to their

shared focus on text-based physical reasoning,

PROST and PIQA share similarities. To test if mod-

els trained on PIQA are able to carry over any con-

cepts to PROST, we further finetune a UnifiedQA

model on PIQA and evaluate it on PROST. The

results, shown in Figure 3, indicate that training a

model on PIQA is detrimental to its performance

on PROST. While PIQA and PROST share a few

conceptual similarities, they differ in terms of for-

mat, style, and vocabulary. We thus hypothesize

that current models learn more about these surface-

level differences than the conceptual similarities

underpinning the questions. We further highlight

two key differences between the two datasets:

• PROST probes models in a zero-shot fash-

ion, whereas PIQA provides training and test

sets of identically distributed examples. This

makes it possible for models on PIQA to an-

swer successfully using spurious correlations

rather than physical reasoning.

• PIQA (Bisk et al., 2020b) covers an exten-

sive range of objects and challenging physical

concepts. Bisk et al. (2020a) argues that ex-

perience is a prerequisite for understanding.

It is hard to imagine how to expose a model

to experiences ranging from egg yolk sepa-

ration to making a pillow out of a garbage

bag. In contrast, PROST provides a clear set

of well defined concepts and objects that a

model could potentially experience.
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7 Discussion

Our experiments show that all the models we anal-

ysed fail to demonstrate a robust understanding

of physical reasoning. Beyond performing poorly

across every concept, they are easily influenced by

changing the order of the objects in a question’s

context and by superlative inverses. Moreover, our

analysis indicates that these issues are not likely

to be solved simply by increasing the amount of

model parameters or training data. All this evidence

supports Bender and Koller (2020)’s and Bisk et al.

(2020a)’s theory that experience is a prerequisite

of understanding.

A number of other reasoning benchmarks have

been solved to some extent by a large finetuned

model. UnifiedQA (11B parameters), based on

T5 (Raffel et al., 2020), achieved 81.4% on ARC

(Clark et al., 2018); and UNICORN5 (11B parame-

ters), also based on T5, achieved a 93.9% accuracy

on hellaSWAG (Zellers et al., 2019). While all

these models are larger and are trained onmore data,

our results force us to ask the question whether they

perform well because these additional parameters

and data have imbued the models with an ability

to reason, or if they succeed by finding subtle un-

intended correlations in the data. This forces us to

look more closely at how models succeed, and not

just the accuracy they achieve. Tools like Check-

List (Ribeiro et al., 2020) can aid in this endeavor

by demonstrating how robust models are to changes

in the distribution of the data.

How to Use this Probe PROST is intended to

help analyze any model that can be deployed in a

text-only setting. However, we maintain that multi-

modal data is necessary to experience the concepts

in PROST, and that these experiences are likely a

crucial step in succeeding on this dataset. One way

that multi-modal models could prepare for this type

of text-only evaluation is through multi-task train-

ing, where one of the tasks is only conditioned on

text. Such an approach has already been considered:

Brown et al. (2020) propose an extension to their

CLIP model which is trained on multiple modalities

in a multi-task fashion. Because of the templated

nature of PROST, its exact format can be adapted

to match specific styles of language training, as we

do for T5 and UnifiedQA.

PROST’s language-only approach is motivated

by two reasons. First, we believe that true multi-

5leaderboard.allenai.org/hellaswag/submissions/public

modal models should be able to function on any

subset of their modalities. We note that humans

can easily interact with text-only inputs (e.g., a text

message) while still learning from and interacting

with other modalities. Second, it enables the com-

parison of models trained using different modali-

ties or domains. For example, we believe compar-

ing how language understanding modules evolve

when trained on vision-and-language navigation

compared to visual question answering would pro-

vide invaluable insights.

Limitations We caution that achieving a high ac-

curacy on PROST does not necessarily guarantee

that a model is able of physical reasoning. It is

likely easy to succeed on this benchmark if one

were to intentionally trainmodels on similar enough

sentences or a subset of PROST itself. We hope

that the community will use this dataset in the in-

tended way: in a zero-shot setting to probe models

which have been trained on data not specifically

collected to succeed on PROST.

8 Conclusion

We present a probing dataset called PROST, which

is designed to test a model’s ability to reason about

the physical world. Our experiments show that

current state-of-the-art pretrained models lack the

ability to reason about physical interactions. Fur-

ther, all models struggle when the order of options

is changed and when questions are inverted, both

things that would not confuse humans. Lastly, our

analysis shows that these issues are unlikely to be

solved by simply scaling models. Our results high-

light the need to look beyond text-based pretraining

and to provide models with the necessary experi-

ences for human-like understanding of the physical

world.
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