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Abstract

The ability to learn from limited data, or few-
shot learning, is a desirable and often critical
requirement for NLP systems. While many
existing methods do poorly at learning from
a handful of examples, large pretrained lan-
guage models have recently been shown to
be efficient few-shot learners. One approach
to few-shot learning, which does not require
finetuning of model parameters, is to aug-
ment the language model’s input with prim-
ing text which is typically constructed using
task specific descriptions and examples. In
this work, we further explore priming-based
few-shot learning, with focus on using exam-
ples as prompts. We show that presenting ex-
amples in the right order is key for general-
ization. We introduce PERO (Prompting with
Examples in the Right Order), where we for-
mulate few-shot learning as search over the set
of permutations of the training examples. We
show that PERO can learn to generalize effi-
ciently using as few as 10 examples, in con-
trast to existing approaches. While the new-
line token is a natural choice for separating the
examples in the prompt, we show that learn-
ing a new separator token can potentially pro-
vide further gains in performance. We demon-
strate the effectiveness of the proposed method
on the tasks of sentiment classification, natural
language inference and fact retrieval. Finally,
we analyze the learned prompts to reveal novel
insights, including the idea that two training
examples in the right order alone can provide
competitive performance for sentiment classi-
fication and natural language inference.

1 Introduction

The ability to learn from a few examples, or few-
shot learning, as generally understood to be pos-
sessed by humans, is a desirable property for Nat-
ural Language Processing (NLP) systems as well.
It is critical in scenarios where collecting large

amounts of data is expensive. It is also important
to enable a personalized Artificial Intelligence (AI)
experience, where a single user is expected to use
an AI agent to perform a task demonstrated through
a handful of examples.1

Pretrained language models (Devlin et al., 2019;
Liu et al., 2019; Raffel et al., 2020) have recently
been shown to be exceedingly good at several
benchmark NLP tasks (Wang et al., 2018, 2019).
Traditionally the parameters of these language mod-
els have been finetuned on task specific datasets
to achieve the aforementioned performance gains,
often requiring large amounts of data. Brown et al.
(2020) show that large pretrained language models
(GPT3) are also efficient few-shot learners. Few-
shot learning is achieved using task descriptions
and labeled examples as prompts. Remarkably,
with this priming-based approach and without need-
ing any parameter updates, GPT3 often performs
comparable to traditional finetuning-based super-
vised systems which use much larger datasets. One
could argue that the task performance achieved in
the priming-based approach measures what the pre-
trained language model has already learned. Shin
et al. (2020), operating in the same setting, use
automatically generated prompts to measure task
specific knowledge in a pretrained language model.

In this work, we further explore priming-based
few-shot learning, while focusing on using exam-
ples as prompts. The training objective for a lan-
guage model is typically the prediction of a token
given a context. There is no clear incentive to treat
a sequence of sentences in the context as equal and
conveying examples of a concept. As a result, one
could expect certain order of examples when used
as a prompt to be more favorable at providing task

1See the Introduction section of Brown et al. (2020) for
a discussion on further difficulties, relevant to the setting we
consider in this work, regarding the need of a large dataset for
every new task.
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Figure 1: Overview of PERO: Given a set of training examples, PERO searches over permutations of training ex-
amples using a genetic algorithm (Section 4.2), and optionally also learns a separator token (Section 4.3) which is
used to concatenate the training examples. Briefly, starting from a set of randomly initialized permutations, the ge-
netic algorithm step computes the fitness of each permutation for making predictions using a pretrained LM. These
fitness scores are then used for selection and subsequent breeding of new permutations using biologically inspired
operations of mutation and crossover. The separator token learning step uses the updated set of permutations and
uses gradient updates to improve the separator token. The two steps are performed iteratively for a fixed number
of epochs and the best permutation and separator token are selected using a validation set. Please see Section 4 for
details.

specific cues.
We propose PERO2 (Prompting with Examples

in the Right Order), where we formulate the prob-
lem of few-shot learning as search over permuta-
tions of training examples. We find that choos-
ing the right permutation is key to getting good
task performance. In PERO, we use a genetic al-
gorithm (Mitchell, 1998) to search over possible
permutations of training examples. The selected
examples are used for prompting publicly available
pretrained language models (Devlin et al., 2019;
Liu et al., 2019). We find that with as few as 10 ex-
amples, PERO can learn to generalize efficiently, in
contrast to existing approaches. When concatenat-
ing examples to use as a prompt, the newline token
is a natural choice as a separator token. We show
that using a learned separator token can potentially
provide further gains in performance. We evaluate
the performance of PERO on the tasks of sentiment
analysis, Natural Language Inference (NLI) and
fact retrieval.

Finally, our analysis of the learned prompts (Sec-
tion 5.5) leads to novel insights about few-shot
learning using textual prompts. For instance, us-
ing only two examples, repeated and ordered using
a learned label pattern, can provide performance

2PERO source code is available at
https://github.com/SawanKumar28/pero

comparable to and even exceeding the performance
of existing few-shot baselines which use thousands
of examples.

In summary, we make the following contribu-
tions:

1. We propose PERO, where we formulate the
problem of few-shot learning as search over
permutations of training examples, and op-
tionally a separator token. As we don’t update
the parameters of the underlying language
model, PERO serves as a probe for measur-
ing task specific knowledge in pretrained lan-
guage models.

2. We demonstrate the effectiveness of PERO
over a recent baseline on the tasks of senti-
ment analysis, NLI and fact retrieval.

3. We analyze the learned prompts and provide
novel insights about textual prompts that can
lead to good task performance in the low-data
regime. In particular, we provide an effective
recipe for one-shot learning.

We have released the source code of PERO to
aid reproducibility of the results.
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Task Template Examples
Sentiment
Classification

[Example Text] Answer: [Label Text] (1) goes to absurd length Answer: false
(2) A girl in white is dancing Answer: true

NLI “[Premise Text]” implies “[Hypothesis text]”
Answer: [Label Text]

(1) “Men are sawing logs” implies “Men are
cutting wood” Answer: true
(2) “There is no girl in white dancing” implies
“A girl in white is dancing” Answer: false

Fact retrieval [Subj] is located in [Obj]
[Subj] is a subclass of [Obj]

(1) Directors Lounge is located in Berlin
(2) gingerbread is a subclass of cookie

Table 1: Formatting used to create textual inputs for the tasks considered in this work. For sentiment classification,
positive and negative sentiments correspond to the label text of true and false respectively. For NLI, entailment
and contradiction labels correspond to the label text of true and false respectively.

2 Related Work

Pretrained Language Models using a transformer
architecture (Vaswani et al., 2017) on large unsu-
pervised corpora have recently been found to be
efficient at learning downstream tasks, providing
significant gains over existing standalone super-
vised systems, on a variety of NLP tasks (Wang
et al., 2018, 2019). There have been two major ap-
proaches to learning language models: causal lan-
guage models (CLM) and masked language models
(MLM). CLMs (Radford et al., 2018, 2019; Brown
et al., 2020) are typically trained by requiring a
language model to predict the next token given a
textual context. Masked language models (Devlin
et al., 2019; Liu et al., 2019) on the other hand
are trained by masking out a certain number of to-
kens in a textual context and requiring the language
model to predict the masked out tokens. Typically,
the parameters of the language model are then fine-
tuned using task-specific training examples. For
our experiments, we leverage publicly available
pretrained masked language models (Devlin et al.,
2019; Liu et al., 2019).

Few-shot learning using language models is
a desirable and perhaps even an expected prop-
erty of large pretrained language models, given the
large amounts of data they are typically trained
with. Brown et al. (2020) show that scaling up
language models leads to improved few-shot learn-
ing, with their best model, GPT3, being able to
achieve performance comparable to existing super-
vised systems, while using much fewer examples.
Zero-shot and few-shot learning are achieved with-
out needing parameter updates to the model but
instead by prompting the language model with task
specific description and task specific examples. In
this work, we study the impact of the order in which
examples are presented in a prompt and show that

searching over them can lead to significant gains in
few-shot performance, without needing updates to
the model parameters.3

Measuring task performance of language models
without any parameter updates can be seen as a
measure of the knowledge (either descriptive, or
procedural) that is already contained in the pre-
trained language model.

Probing knowledge contained in language
models has been of interest, given the success of
these models. Probing methods rely on creating
cloze-style manual prompts (Petroni et al., 2019),
or mining efficient natural language prompts (Jiang
et al., 2020). Shin et al. (2020) rely on training ex-
amples to learn trigger tokens which when used as
a prompt demonstrate the ability of language mod-
els to do sentiment analysis and NLI along with
knowledge based completion, without needing any
parameter updates. The learned trigger tokens how-
ever aren’t very meaningful leading to difficulty in
interpreting these results. In this work, we instead
focus on using natural language training examples
as prompts. While being more interpretable, the
prompts used in this work lead to significant gains
in performance in the low-data regime.

3 Background: Genetic Algorithm

A genetic algorithm (Mitchell, 1998) is a search
heuristic inspired by the biological process of nat-
ural selection. Briefly, it evolves a population of
candidate solutions towards increasing fitness to an
objective through biologically inspired operations
such as selection, crossover and mutation. We now
describe the key terminology:

3Note that the scope of this work is distinct from meta-
learning approaches (Hospedales et al., 2020), where the
goal is improve the learning algorithm using several learning
episodes. In contrast, we only assume a pretrained language
model and a few examples of the concept we are interested in.
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Individual A single candidate solution, c, usually
represented through a binary code but extensi-
ble to other types of codes. Generally, we will
let c be denoted by the sequence of k integers
c = (s1s2...sk).

Population A set of individuals of size NP , P =
{ci, i ∈ [NP ]}.

Fitness The measure of goodness for an individual
for the task, F (ci).

Selection An operator to select fit individuals in
a population which will be used to generate
new individuals, through crossover and muta-
tion. Better fitness leads to higher likelihood
of selection.

Crossover An operator which typically takes two
individuals c1 and c2 as inputs to produce
new individuals d1 and d2, by combining sub-
sequences from the two inputs. For example,
consider two input sequences:

c1 = (c1(1)c1(2)c1(3)c1(4))

c2 = (c2(1)c2(2)c2(3)c2(4))

A single point crossover after the second posi-
tion would lead to the individuals:

d1 = (c1(1)c1(2)c2(3)c2(4))

d2 = (c2(1)c2(2)c1(3)c1(4))

Mutation An operator which randomly flips some
elements in an input sequence. For example,
with input c = (c(1)c(2)c(3)c(4)), a typical
mutation operation would lead to the output
d = (c(1)c(2)c′(3)c(4)), where c′(3) 6= c(3).
Usually, each position is randomly altered
with a mutation probability pm.

We now present the sketch of a typical genetic
algorithm:

1. Initialize a set of individuals to form a popula-
tion P = {ci, i ∈ [NP ]}. Repeat the follow-
ing steps for Nepochs iterations.

2. Compute fitness of each individual in the pop-
ulation, F (ci), i ∈ [NP ].

3. Using the computed fitness, select individuals
which will be used to breed the next genera-
tion.

4. With pairs of selected individuals, generate
new individuals using the crossover operation.

5. Mutate the generated individuals using the
mutation operator, to create a new population
P ′.

6. Set P = P ′ and go to step 2.

4 PERO: Proposed Method

The overall architecture employed in PERO is
shown in Figure 1. We introduce the notation in
Section 4.1. We discuss how we employ a genetic
algorithm to search over permutations of training
examples in Section 4.2. We then discuss how we
augment the search heuristic to learn a task specific
separator token in Section 4.3.

4.1 Notation and Input Format
For both classification and knowledge base com-
pletion tasks, we denote a textual task input by x
and the gold label as y. We denote the pretrained
masked language model with the operator L, which
takes a sequence of input tokens to output a se-
quence of the same length containing token prob-
abilities over the token vocabulary. With tokens
(t1t2...tn), L((t1t2...tn)) = (p1p2...pn), where pi
denotes a vector of probabilities over all tokens in
the vocabulary.

For all our experiments, the input to the language
model is formatted with exactly one mask token.4

For brevity, we denote by LMask the operator which
outputs the token probability at the mask token
position.

The training data is denoted by the set of ex-
amples (xi, yi), i ∈ [Ntrain]. We denote a per-
mutation, or an ordered subset of size k of the
training data, by c = (c(1)c(2)...c(k)), where
c(j) ∈ [Ntrain].

For all tasks, we create an input text se-
quence by concatenating k examples using
a permutation c of training examples, along
with a test example xtest: “Format(xc(1),yc(1))
<Separator> Format(xc(2),yc(2)) .. <Sep-
arator> Format(xc(k),yc(k)) <Separator>
Format(xtest,mask)”, where Format(,) formats
the example text and label for a task, and <Sep-
arator> is either the new line character, or is
learned as described in Section 4.3. The formatting
details are provided in Table 1. We attempt to

4The mask token we use is the same as the one employed
in pretraining.
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use task agnostic formats and textual labels for
classification tasks to the extent possible.

4.2 Genetic Algorithm: Search over
Permutations of Examples

We employ a genetic algorithm for searching over
permutations of training examples (see Section 3
for a brief introduction to genetic algorithms). We
present the overall architecture in Figure 1.

Here, we detail how the various components and
operators of a genetic algorithm are defined for
searching over permutations of examples:

Individual An individual is defined as a vec-
tor of unique training example indices c =
(c(1)c(2)...c(k)), where c(j) ∈ [Ntrain].

Population A set of individuals.

Fitness For a given permutation of training ex-
ample indices, fitness is defined as the aver-
age cross entropy loss over training examples
when evaluated as in Figure 1. The cross en-
tropy loss is computed over the set of possible
labels for classifications tasks, and over all
tokens in the vocabulary for knowledge base
completion tasks.

Note that during search, a training example
may occur both in the prompt and as well as
the test example. This is generally not a prob-
lem as we are not finetuning the model and
do not run the risk of learning to copy. When
also training the separator token (Section 4.3),
we ensure that the test example doesn’t occur
in the prompt by dropping it from the prompt
if required.

Selection For selection, we use elitism, i.e., at
each generation of individuals, we retain a
certain percentage (elite ratio) of top perform-
ing individuals without any modifications.
The rest of the population is created through
crossover and mutation over a percentage (se-
lection size) of top performing individuals.

Crossover We perform a single point crossover,
while ensuring that the resulting individuals
contain unique indices. Given two parents c1
and c2, first a random number j is sampled
in the range [k], the length of the individuals,
to use as the crossover point. We define an
operator Firsts(v, v′) which selects the first
s elements in vector v which do not occur in

vector v′. Similarly, Lasts(v, v′) picks the last
s elements in v which do not occur in vector
v′. Denoting the subvector c(i)c(i+ 1)...c(j)
by ci:j , four new individuals are then created:

d1 = (c1:j1 Lastk−j(c2, c
1:j
1 ))

d2 = (c1:j2 Lastk−j(c1, c
1:j
2 ))

d3 = (Firstj(c2, c
j+1:k
1 )cj+1:k

1 )

d4 = (Firstj(c1, c
j+1:k
2 )cj+1:k

2 )

This modification over a straightforward
crossover ensures that the resulting individ-
uals contain unique indices.

Mutation We perform mutation on an input can-
didate by changing each position with a muta-
tion probability pm. When changed, an index
is replaced by a random choice from the other
training examples. If the new index is already
present in the input candidate, the value at that
index is swapped with the selected index.

The Genetic algorithm is run for Nepochs (see
Section 3 for the training flow). A validation set
of the same size as the train set was used to select
from the best performing individuals in each epoch.

4.3 Separator Token Learning
In addition to the search over permutations of train-
ing examples as described in the previous section,
we optionally learn a separator token to concatenate
the examples (see Figure 1).

We initialize a token embedding parameter with
the token embedding of the newline character. At
the end of each epoch of the genetic algorithm, we
use gradient updates to estimate the token embed-
ding. The training set is created using the indi-
viduals (prompts) in the population in the current
generation, and replacing the answer of the final
example with the mask token. Gradient updates
are then done by requiring the model to predict the
correct answer.

5 Experiments

In this section, we aim to answer the following
questions:

Q1 How does PERO compare with existing ap-
proaches on task performance? (Section 5.3)

Q2 How do the components of PERO, namely ge-
netic algorithm and separator token learning
affect task performance? (Section 5.4)
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Training Prompt Type P@1

Manual LAMA (Petroni et al., 2019) 31.1ˆ

Full
supervision

LPAQA(top1) (Jiang et al., 2020) 34.1ˆ
Autoprompt (Shin et al., 2020) 43.3ˆ
PERO 46.6

10
examples

Autoprompt (Shin et al., 2020) 18.9
PERO 40.3

Table 2: Summary of fact retrieval experiments: Pre-
cision @1 results on test sets are presented. ˆindicates
replicated numbers. PERO improves over the baselines
when using all training data (up to 1000 examples) and
provides significant gains when using limited training
data. This indicates that PERO is more efficient at elic-
iting knowledge from language models. Please see Sec-
tion 5.3 for details and Appendix A.2.2 for more de-
tailed results.

Q3 What aspects of PERO are important for get-
ting good performance? (Section 5.5)

The experimental setup is described in Sec-
tion 5.2, and the datasets are described in Sec-
tion 5.1.

5.1 Datasets
Sentiment Classification: We use SST2 (Socher
et al., 2013), a binary sentiment classification task.
The training data contains 67350 training, 873 vali-
dation and 1822 test examples.

NLI: We use label-balanced 2-class NLI dataset
created by Shin et al. (2020) using the SICK-E
dataset (Marelli et al., 2014). This dataset has 1289
training, 143 validation and 1427 test examples.

Fact Retrieval: We use the train, validation, and
test splits created by Shin et al. (2020) (referred to
as ‘original’ in the paper) for 41 relations. For our
experiments, we use the manual prompts created
by Petroni et al. (2019). Please see Appendix A.2.2
for relation wise prompts and training statistics.

5.2 Experimental Setup
Number of training examples: For most of our
experiments, we limit to a total of 10 training ex-
amples. We chose this number as prior work (Shin
et al., 2020) faced difficulty in enabling predictions
using only 10 training examples, usually perform-
ing close to random prediction. We create 5 sets
of size 10, chosen successively from the first 50
training examples, and report on average task per-
formance. Although our focus is few-shot learning
in the low data regime, we also present results with

more examples (the first 100 and the first 1000 ex-
amples) for reference. For model selection, we use
a label-balanced validation set (chosen from the
beginning of the corresponding validation set) of
the same size as the training data. In all cases, and
irrespective of the number of training examples, we
keep the prompt size fixed to 10 examples.

Pretrained LM: We use RoBERTa-large (Liu
et al., 2019) for all our experiments except for the
fact retrieval task where we use the bert-large-cased
model (Devlin et al., 2019) as this model has been
shown to work better for the task (Shin et al., 2020).
RoBERTa-large has 24 layers, with 16 attention
heads and a hidden size of 1024 (355M parame-
ters). Bert-large-cased uses the same architecture
as RoBERTa-large. We use the implementation of
transformer architectures provided by Wolf et al.
(2020). We use the </s> token as the default sepa-
rator token. When learning a new separator token,
we initialize the token embedding by the token
embedding of </s> token, and finetune the embed-
ding as discussed in Section 4.3.

Genetic algorithm: We run the genetic algo-
rithm for 100 epochs for classification tasks and
30 epochs for fact retrieval tasks. The population
size was fixed to 100 and the mutation probability
was set to 0.1. Elite ratio was set to 0.1, while the
selection size was fixed to 25. When training a sep-
arator token embedding, the maximum number of
training epochs for learning the embedding was set
to 10 for classification tasks and 5 for fact retrieval
tasks. Gradient updates were performed using the
AdamW optimizer (Loshchilov and Hutter, 2018)
with a learning rate of 1e− 4.

Baselines: We use Autoprompt (Shin et al.,
2020) and the traditional finetuning approach as
few-shot baselines. Please see Appendix A.1 for
hyperparameter details.

5.3 Overall Results

In this section, we present the few-shot learning
capability of PERO. For reference, we also report
results when using more data.

We present fact retrieval results (Precision@1
scores) in Table 2. Relation wise results are pro-
vided in Appendix A.2.2. When using all train-
ing data, PERO improves the overall P@1, and
is competitive or outperforms Autoprompt on all
relations. When using only 10 training examples,
PERO provides significant gains over Autoprompt
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Number of training examples 10 100 1000

Sentiment
Classification

Finetune 52.5 (2.36) 90.2 93.1
Autoprompt 52.3 (2.60) 73.5 75.1
PERO 91.2 (1.83) 93.8 94.2

NLI
Finetune 57.4 (10.65) 96.1 98.6
Autoprompt 58.6 (9.08) 76.2 86.5
PERO 81.3 (4.99) 78.5 83.2

Table 3: Summary of classification tasks: Test set label accuracies for PERO are presented for the tasks of senti-
ment classification and NLI. When using 10 examples, we also report the standard deviation across training splits.
For both tasks, PERO provides significant gains over both Autoprompt and the traditional finetuning approach,
when using 10 examples. For reference, we also present results when using more training examples. For both
tasks, PERO is competitive with Autoprompt with increasing data. Overall, the results indicate that PERO is
capable of learning to generalize with a handful of examples, in contrast to existing approaches. Please see Sec-
tion 5.3 for details. Please see Appendix A.2.1 for additional comparison between Autoprompt and PERO using
10 examples across 100 training splits.

Sentiment
Classification

NLI

PERO 91.2 81.3
PERO-Sep learning 89.3 77.5

Table 4: Impact of separator token learning Step: Av-
erage test set label accuracies with and without the sep-
arator token learning are presented for training sets of
size 10. The results indicate that the genetic algorithm
step alone provides a strong baseline, while the separa-
tor token learning step provides further gains. Please
see Section 5.4 for details.

on all relations. Overall, we show through PERO
that simple manual prompts can be combined in
relatively straightforward ways to create stronger
probes while still being interpretable.5

We present the label accuracies of PERO for
sentiment classification and NLI in Table 3. In
each case, PERO is able to generalize well when
using only 10 examples, while existing approaches
perform close to random guess ( 50%). When using
more data, PERO is competitive with Autoprompt
for both tasks, while finetuning does better than
PERO for NLI with larger training sizes. Overall,
PERO provides an efficient approach to few-shot
learning with pretrained language models.

Comparison when using larger training sizes:
The results in Table 3 also suggest the use of fine-
tuning when more data is available and the use of
PERO when there isn’t enough data for finetuning
to generalize well. The relatively low performance
of PERO with more data, especially for the NLI
task, could be due to the much larger search space

5Autoprompt’s learned tokens are sometimes relevant to
the task but generally hard to interpret.

when using more training data. Since we keep the
prompt size fixed to 10 examples, the search space
is 10! for 10 training examples and 1000!/990!
when using 1000 examples. While a better search
strategy could potentially improve PERO’s perfor-
mance when using more data, we leave that as an
interesting future work. Note, however, that the
search space complexity is determined by the num-
ber of training examples irrespective of their labels.
For example, PERO improves over the baselines
on the fact retrieval task (Figure 2), despite a much
larger number of labels.

For reference, we provide the label accuracies
when using all available training data when using
PERO, Autoprompt and finetuning respectively:
95.0, 91.4 and 96.7 for sentiment classification,
and 79.5, 87.3 and 99.1 for NLI. When compared
to the traditional fully supervised finetuning ap-
proach, PERO performs within 94.3% while us-
ing only 0.015% of the training data for sentiment
classification, and within 82.1% while using only
0.77% of the training data for NLI.

5.4 Ablation on PERO’s components

In this section, we present an ablation study to un-
derstand the role that the two components of PERO,
namely genetic algorithm and separator token learn-
ing steps play. We present the label accuracies for
sentiment classification and NLI with and with-
out the separator token learning step (indicated as
PERO-sep learning) in Table 4. The results indi-
cate that the permutation search using the genetic
algorithm step provides large gains by itself, while
the separator token learning potentially improves
it.
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Sentiment
Classification

NLI

Default fitness 89.3 77.5
Inverse fitness 78.3 58.8

Table 5: Searching for bad permutations: We use the
genetic algorithm described in Section 4 to search for
bad permutations, by inverting the definition of fitness
and report on test accuracy. Average results when using
training sizes of 10 examples are presented and con-
trasted with search using default fitness. The results in-
dicate that good permutations found by PERO are not
trivial and that choosing the right permutation is nec-
essary for generalization. Please see Section 5.5.1 for
details.

5.5 Analyzing Learned Permutations
5.5.1 Do bad solutions exist which PERO

learns to avoid?
With the same search strategy as discussed in Sec-
tion 4, we search for potentially bad permutations,
by inverting the definition of fitness. For this exper-
iment, to focus on the role of permutations, we
do not train the separator token for this experi-
ment. We present the average test set accuracies
across training splits for the best and the worst
permutations in Table 5. Additionally, we also
evaluate 100 random permutations for each train-
ing split. The mean (and standard deviation) test
accuracy across training splits and random permu-
tations was 85.6(9.08) for sentiment classification
and 67.9(8.99) for NLI.

The results indicate that PERO’s learned per-
mutations provide significant gains over other per-
mutations constructed using the same examples.
Selecting the right permutation, therefore, is impor-
tant for generalization.

5.5.2 How many examples does PERO need
for good performance?

One could see a permutation learned by PERO as
a combination of a label pattern (the sequence of
labels corresponding to the sequence of examples)
and particular examples of the respective labels.
To understand the importance of the learned label
pattern, we search for pairs of examples, one ex-
ample for each label6, and repeat them using the
learned label pattern. The examples are selected
from within the set of examples in the learned per-
mutation. We present the accuracy with the origi-
nal permutation and the best and worst accuracies

6Learning from one example per class is usually referred
to as one-shot learning.

Accuracies on SST2 dev set using only 2 examples
Label sequence PERO-10 Best-2 Worst-2
----++++-- 91.4 91.5 81.2
-++----+-- 81.1 89.5 66.5
++++---+++ 81.4 85.5 53.9
---+++++-- 91.5 87.4 69.3
----++++-- 91.4 90.8 74.9

Table 6: Evaluating learned label patterns with one
example per label: Best and worst accuracies obtained
when using only two examples (one unique example
per label) are compared with the accuracy of PERO
with 10 distinct examples for the same label pattern
(denoted by PERO-10). The best accuracy possible
with two distinct examples is competitive with PERO-
10. The results indicate that learned label patterns are
useful for generalization, along with the choice of se-
lected examples. Please see Section 5.5.2 for details.

Sentiment
Classification

NLI

Proposed
1-shot

Worst 56.2 56.3
Best 90.6 84.5

10
examples

Finetune 52.5 57.4
Autoprompt 52.3 58.6

PERO 91.2 81.3

Table 7: One-shot learning: Best and worst test set
label accuracies with one-shot learning using training
example pairs obtained from the first 10 training exam-
ples are presented. The best possible accuracies with
the proposed one-shot learning approach is competitive
with PERO using 10 examples, while improving over
finetuning and Autoprompt using 10 examples. Please
Section 5.5.3 for details.

when using only two training examples in Table 6.
Remarkably, two examples alone, when selected
well, can go a long way towards good performance.

Additionally, using the learned label pattern pro-
vides at least a 10 point improvement in accuracy
when compared with a sequence without repeti-
tions (details omitted). This indicates a potential
recipe for one-shot learning which we discuss next.

5.5.3 Can insights gained from this work lead
to one-shot learning recipes?

To answer this question, we provide an example
one-shot learning (one training example per class)
algorithm which greedily grows a prompt sequence.
In contrast to Section 4, we don’t use an additional
validation set to select a good prompt sequence. We
update the definition of fitness to prevent it from
being biased towards one class by defining it to
be the minimum and not the average of the cross
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SST-2

Best
(Acc: 90.6 )

-ve sentiment: on the worst revenge-of-the-nerds clichés the filmmakers could dredge up
+ve sentiment: demonstrates that the director of such hollywood blockbusters as patriot games
can still turn out a small , personal film with an emotional wallop .

Worst
(Acc: 56.2)

-ve sentiment: remains utterly satisfied to remain the same throughout
+ve sentiment: of saucy

Table 8: Example training pairs for one-shot learning corresponding to the best and worst test set accuracies for
sentiment classification. Please see Section 5.5.3 for details.

entropy loss over the training examples. This is
equivalent to minimizing the negative probability
of the least probable target label.

Following Section 5.5.2, we allow an example
to be repeated in a prompt sequence. Setting the
maximum possible length of the prompt sequence,
i.e., number of (potentially repeated) examples in
the prompt sequence to lmax, the algorithm then is
comprised of the following steps:

1. Initialize an empty prompt, c = ()

2. Create all possible prompts, P , formed by in-
serting exactly one example to c. If we denote
the length of c as lc and the number of la-
bels as Nlabels, the size of the set is given by
NP = (lc + 1) ∗Nlabels.

3. Compute the fitness of prompts in P .

4. Select prompt c′ ∈ P with the best fitness.

5. Set c′ = c and go to step 2 if lc < lmax.

We now discuss the results of using this one-
shot learning approach over the tasks of sentiment
classification and NLI. In each case, we consider
the first 10 examples in the training set and create
all possible training example pairs for one-shot
learning, selecting one example from each class.
This leads to 24 training example pairs in each
case. We set the max length lmax to 10, and ensure
that the prompt sequence is label-balanced at each
step. We summarize the results in Table 7. The
results indicate that the proposed algorithm is an
effective approach to one-shot learning. In Table 8,
we show the training examples corresponding to
the best and worst cases for the task of sentiment
classification. While there is indication that more
representative examples (such as longer examples)
are more informative and thus more useful for one-
shot learning, we leave a more thorough analysis
as interesting future work.

6 Conclusion

In this paper, we propose PERO, a promising ap-
proach for few-shot learning, where we formulate
learning as search over permutations of training
examples, and optionally a separator token. We
show the effectiveness of PERO for few-shot learn-
ing on the tasks of sentiment classification, NLI
and fact retrieval tasks. We demonstrate that PERO
provides an interpretable and a more accurate way
to probe the knowledge contained in pretrained lan-
guage models. Our analysis of the learned prompts
reveals novel insights and cues for further research
on few-shot learning, including one-shot learning.
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A.1.2 Finetuning Experiments
For the finetuning experiments, following the rec-
ommended settings for small datasets by Mosbach
et al. (2020), we trained models for 20 epochs, us-
ing AdamW (Loshchilov and Hutter, 2018), with
learning rate linearly increasing to 2e − 5 in the
first 10% epochs and then linearly decreasing to 0.
The experiments were conducted on the same splits
as PERO.

A.1.3 Training Time
Training time for PERO was approximately 3 hours
for each experiment in the case of classification
tasks, and approximately 30 minutes for each ex-
periment of fact retrieval tasks.

A.1.4 Computing Infrastructure
We used Nvidia’s GeForce GTX 1080 Ti GPUs
for all our models. Each experiment was run on a
single GPU.

A.1.5 Data
The experiments were done in the evaluation frame-
work of Shin et al. (2020) who provide instructions
for downloading the corresponding data splits at
https://github.com/ucinlp/autoprompt.

Here, we provide more details on the classifica-
tion datasets used. Details on the fact retrieval data
are presented in Section A.2.2.

Sentiment Classification: We used the SST-2
dataset, the binarized version of the sentiment clas-
sification dataset created by Socher et al. (2013).
The training examples are constructed using movie
review excerpts collected from rottentomatoes.

com website, and labels obtained using Amazon
Mechanical Turk’s crowdsourcing platform. The
percentage of examples labeled with positive senti-
ment in train, validation and test sets are 55.78%,
50.92% and 49.64% respectively. The number of
examples labeled with positive sentiment in the
training sets of size 10 used in the work are 4, 3,
7, 5 and 4. See Section 5.2 for selection and other
details.

NLI: We use the label-balanced 2-class NLI
dataset created by Shin et al. (2020) using the
SICK-E dataset (Marelli et al., 2014). The dataset
was created using sentences from the 8K Im-
ageFlickr data set7 and the SemEval 2012 STS

7http://nlp.cs.illinois.edu/
HockenmaierGroup/data.html

Number of training examples 10

Sentiment
Classification

Autoprompt 54.73 (4.72)
PERO 91.81 (1.87)

NLI Autoprompt 62.31 (8.23)
PERO 78.61 (6.73)

Table 9: Additional results on classification tasks: Test
set label accuracies (and standard deviation) for Auto-
Prompt and PERO are presented for the tasks of senti-
ment classification and NLI across 100 training splits
of size 10.

MSRVideo Description data set8. Labels were ob-
tained using Amazon Mechanical Turk’s crowd-
sourcing platform. The number of examples la-
beled with entailment relation in the training sets
of size 10 used in the work are 4, 3, 5, 6 and 5. See
Section 5.2 for selection and other details.

A.2 Additional Results
A.2.1 Sentiment Classification
With the experimental setup described in Section 5,
we performed additional comparison between Au-
toprompt and PERO by creating 100 training splits
of size 10, chosen successively from the first 1000
training examples in each dataset. We report on the
average (and standard deviation) test accuracy with
Autoprompt and PERO in Table 9.

A.2.2 Fact Retrieval
We present relation wise training details and
LAMA (Petroni et al., 2019) prompts which we
used for our experiments along with the detailed
relation wise test results in Table 10.

A.3 Validation Set Results
In this section, we provide the validation set results
omitted from the main text.

For sentiment classification, PERO’s accuracy
on validation set with 10, 100 and 1000 examples
respectively are 91.2%, 93.8% and 94.1%. For
NLI, PERO’s accuracy on validation set with 10,
100 and 1000 examples respectively are 81.3%,
78.5% and 83.2%. The validation set accuracy
of PERO-Sep learning which was trained on 10
training examples was 91.2% for sentiment classi-
fication and 79.4% for NLI.

For fact retrieval. the average P@1 was 48.95
when using all training data, and 42.56 when using
only 10 training examples.

8http://www.cs.york.ac.uk/
semeval-2012/task6/index.php?id=data

https://github.com/ucinlp/autoprompt
rottentomatoes.com
rottentomatoes.com
http://nlp.cs.illinois.edu/ HockenmaierGroup/data.html
http://nlp.cs.illinois.edu/ HockenmaierGroup/data.html
http://www.cs.york.ac.uk/semeval-2012/ task6/index.php?id=data
http://www.cs.york.ac.uk/semeval-2012/ task6/index.php?id=data
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Relation, Manual Prompt (LAMA) (#train) Full data set Size 10 dataset

LAMA LPAQA Auto
Prompt

PERO
Auto
Prompt

PERO

P1001, [X] is a legal term in [Y] (1000) 70.47 72.75 82.45 84.88 71.50 79.00
P101, [X] works in the field of [Y] (864) 9.91 5.32 12.79 18.25 3.60 11.32
P103, The native language of [X] is [Y] (1000) 72.16 72.16 82.09 81.88 23.40 76.64
P106, [X] is a [Y] by profession (1000) 0.63 0 14.72 14.30 0.60 6.78
P108, [X] works for [Y] (376) 6.79 5.74 8.62 8.09 1.80 7.57
P127, [X] is owned by [Y] (548) 34.79 32.46 35.95 47.89 13.90 39.13
P1303, [X] plays [Y] (1000) 7.59 18.02 15.38 23.71 15.10 16.23
P131, [X] is located in [Y] (1000) 23.27 22.81 37.46 39.95 12.00 30.58
P136, [X] plays [Y] music (1000) 0.75 16.76 55.42 55.42 9.30 55.81
P1376, [X] is the capital of [Y] (310) 73.93 59.83 40.17 56.84 26.10 55.81
P138, [X] is named after [Y] (856) 61.55 59.69 66.05 72.40 18.20 70.26
P140, [X] is affiliated with the [Y] religion
(445)

0.63 59.83 75.26 63.00 49.30 61.02

P1412, [X] used to communicate in [Y] (1000) 65.02 64.71 71.21 74.20 49.80 74.01
P159, The headquarter of [X] is in [Y] (1000) 32.37 35.57 35.47 39.71 10.20 28.67
P17, [X] is located in [Y] (1000) 31.29 35.48 52.15 59.14 17.20 56.56
P176, [X] is produced by [Y] (1000) 85.64 81.67 87.78 87.88 55.20 82.46
P178, [X] is developed by [Y] (560) 62.84 59.12 66.72 67.23 29.50 52.30
P19, [X] was born in [Y] (1000) 21.08 20.87 19.92 22.56 6.50 17.80
P190, [X] and [Y] are twin cities (895) 2.41 1.91 2.31 2.61 1.00 2.63
P20, [X] died in [Y] (1000) 27.91 27.91 31.16 32.53 11.90 30.62
P264, [X] is represented by music label [Y]
(1000)

9.56 10.26 43.82 38.46 9.90 28.76

P27, [X] is [Y] citizen (1000) 0 41.51 46.69 48.96 25.80 46.63
P276, [X] is located in [Y] (1000) 41.5 41.5 44.11 48.38 20.80 42.50
P279, [X] is a subclass of [Y] (1000) 30.74 14.75 54.93 63.28 22.40 51.95
P30, [X] is located in [Y] (1000) 25.44 18.56 70.36 79.69 43.80 73.23
P31, [X] is a [Y] (1000) 36.66 36.66 51.95 53.90 15.40 45.55
P36, The capital of [X] is [Y] (1000) 62.16 62.16 60.6 63.44 14.70 63.36
P361, [X] is part of [Y] (1000) 23.61 31.44 17.7 41.09 1.70 7.96
P364, The original language of [X] is [Y] (1000) 44.51 43.93 48.48 53.04 16.60 44.02
P37, The official language of [X] is [Y] (311) 54.55 56.83 62.63 67.29 13.00 57.12
P39, [X] has the position of [Y] (1000) 7.96 16.14 30.72 37.33 23.10 33.50
P407, [X] was written in [Y] (1000) 59.18 65.22 68.42 72.63 41.80 66.50
P413, [X] plays in [Y] position (1000) 0.53 23.74 41.7 41.70 19.10 41.70
P449, [X] was originally aired on [Y] (1000) 20.89 9.08 34.39 35.19 15.90 28.06
P463, [X] is a member of [Y] (679) 67.11 57.33 54.22 65.78 25.10 39.20
P47, [X] shares border with [Y] (1000) 13.67 13.34 19.52 15.84 5.30 14.51
P495, [X] was created in [Y] (1000) 16.5 32.23 36.63 40.37 9.90 37.51
P527, [X] consists of [Y] (1000) 11.07 10.55 25.61 27.66 3.30 23.77
P530, [X] maintains diplomatic relations with
[Y] (927)

2.81 3.92 3.11 3.41 0.90 2.21

P740, [X] was founded in [Y] (1000) 7.59 13.68 13.89 15.71 8.80 9.25
P937, [X] used to work in [Y] (1000) 29.77 39.1 38.36 44.23 13.80 39.81

Table 10: Fact retrieval Precision @1. PERO outperforms or matches Autoprompt for all except one relation
when using all training data. With 10 examples, PERO performs significantly better than the Autoprompt for all
relations. Please see Section 5.3 in the main text for details.


