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Abstract

Dialogue policy learning, a subtask that deter-
mines the content of system response genera-
tion and then the degree of task completion,
is essential for task-oriented dialogue systems.
However, the unbalanced distribution of sys-
tem actions in dialogue datasets often causes
difficulty in learning to generate desired ac-
tions and responses. In this paper, we pro-
pose a retrieve-and-memorize framework to
enhance the learning of system actions. Spe-
cially, we first design a neural context-aware
retrieval module to retrieve multiple candidate
system actions from the training set given a di-
alogue context. Then, we propose a memory-
augmented multi-decoder network to gener-
ate the system actions conditioned on the can-
didate actions, which allows the network to
adaptively select key information in the can-
didate actions and ignore noises. We conduct
experiments on the large-scale multi-domain
task-oriented dialogue dataset MultiWOZ 2.0
and MultiWOZ 2.1. Experimental results show
that our method achieves competitive perfor-
mance among several state-of-the-art models
in the context-to-response generation task.

1 Introduction

Task-oriented dialogue systems communicate with
users through natural language conversations to
accomplish a wide range of tasks such as restau-
rant and flight bookings. Recent years have seen a
rapid growth of interest in building task-oriented di-
alogue systems (Budzianowski et al., 2018). Such
systems are usually decomposed into several sub-
tasks, including natural language understanding
(Gupta et al., 2018), dialogue state tracking (Zhong
et al., 2018), system actions (dialogue policy) pre-
diction, and response generation (Wen et al., 2015;
Chen et al., 2019; Zhao et al., 2019), where sys-
tem actions can be viewed as a semantic plan of
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I can help you with that. What is your price range?

There are 4 that meet your criteria. Is there a price 
range you are interested in?

Can you give me more information about the 
type of hotel you would like ?

I need to book a hotel in the east that 
has 4 stars.

SystemUser

I need to book a hotel in the east that 
has 4 stars.

I need to book a hotel in the east that 
has 4 stars.

hotel-request-price

hotel-inform-choice 
hotel-request-price

hotel-request-type

system actions #1

system actions #2

system actions #3

Figure 1: An example of the one-to-many prop-
erty,where there are multiple appropriate system ac-
tions and responses given the same dialogue context.

response generation. One of the main challenges
for context-to-response generation in task-oriented
dialogue systems comes from the intrinsic one-
to-many property in conversations. As shown in
Figure 1, there can be multiple valid system ac-
tions for the same dialogue context, which means
that multiple satisfactory system responses can
be generated correspondingly. However, in most
collected dialogue datasets, each dialogue context
has only one reference, which leads to an unbal-
anced distribution of system actions and responses
in multi-domain dialogue datasets (Zhang et al.,
2020). Models trained on such unbalanced datasets
tend to overfit high-frequency system actions and
underfit low-frequency ones.

One line of work focuses on the representation
of system actions, which alleviates the unbalanced
problem to a certain extent. Chen et al. (2019) re-
construct system actions into a compact graph rep-
resentation. Zhao et al. (2019) treat system actions
as latent variables and use reinforcement learning



448

to optimize them. Wang et al. (2020b) model sys-
tem actions prediction as a sequence generation
problem by treating system actions as a sequence
of tokens. On the other hand, Zhang et al. (2020)
explicitly modeling the one-to-many property to
enrich system action diversity through a rule-based
multi-action data augmentation. Specifically, they
treat system actions that follow the same dialogue
state as alternative valid actions and train them to-
gether with the reference system action. However,
their data augmentation framework has two short-
comings. First, it enforces a rigid mapping between
dialogue state and system actions. Dialogue state,
which consists of information such as belief state
and user actions, is not flexible enough to represent
the whole dialogue context and thus limits the di-
versity of the mapped system actions. Second, they
treat the mapped system actions as gold references
during training which may force the model to fit
noise in the mapped system actions and ultimately
hinder the quality of the generated system actions.

To address the above limitations, we propose to
model the one-to-many property more effectively
by retrieving multiple candidate system actions and
selectively taking the candidates into considera-
tion when generating system action. We design a
retrieve-and-memorize framework that consists of
a context-aware neural retrieval module (CARM)
and a memory-augmented multi-decoder network
(MAMD). Specifically, the context-aware retrieval
module uses a pre-trained language model to con-
vert the dialogue history as well as belief state into
a context representation of each sample. Multiple
candidate system actions are retrieved based on the
distances between the context vector and the rep-
resentations of other samples in the latent space.
These retrieved candidate actions are more diverse
and consistent with the dialogue context since they
are obtained based on a more holistic represen-
tation. Instead of treating the candidates impar-
tially with the gold references, we encode them
into a memory bank and the memory-augmented
multi-decoder network can dynamically attend to
the memory bank during system actions generation.
Additionally, we employ a random sampling mech-
anism where during training, the memory bank is
filled with randomly sampled system actions with a
probability, which allows the model to learn to dis-
tinguish the quality of the candidates and adaptively
adjust its dependence on the candidate actions.

We evaluate our model on MultiWOZ

(Budzianowski et al., 2018), a large-scale multi-
domain dataset for task-oriented dialogue systems.
Extensive experiments and analyses are conducted
to demonstrate the effectiveness of our model, and
the results show that it significantly outperforms
the baseline model. Our main contributions are
summarized as follows:

• We propose a context-aware retrieval module
that can retrieve multiple appropriate system
actions given a dialogue context.

• We propose a memory-augmented multi-
decoder network that can generate system ac-
tions based on multiple candidate actions.

• Our model outperforms several state-of-the-
art baselines on a large-scale multi-domain
dataset for task-oriented dialogue systems.

2 Related Work

One line of research focuses on the representation
of system actions. A typical approach to encod-
ing system actions is by concatenating the one-hot
representation at each level of actions into a flat vec-
tor (Wen et al., 2015; Budzianowski et al., 2018).
Such sparse representations make the learning of
system actions difficult. To overcome the sparsity
issue, Chen et al. (2019) compact the one-hot vector
representation based on the intrinsic hierarchical
structures of system actions, and apply hierarchi-
cal disentangled self-attention to generate system
response. Zhao et al. (2019) treat system actions
as latent variables and use reinforced learning (He
et al., 2016) to optimize them. Recently, Wang
et al. (2020b) propose a co-generation framework
to generate system actions and response sequen-
tially, which achieves a new state of the art in the
context-to-response task. Our proposed framework
adopts the idea of modeling belief state and system
actions (Wang et al., 2020b; Liang et al., 2020) as
sequences and generates the belief state, system
action, and response sequentially to make better
use of the intermediate supervision.

Another line of research uses data augmentation
to expand the training data. Gao et al. (2020) use
the paraphrase technique (Li et al., 2019; Wang
et al., 2019) to generate user utterances and then
expand the training set with the augmented user
utterances. Zhang et al. (2020) augment system
actions with a mapped dialogue state, which con-
sists of belief state, user action, turn domain, and
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database search result. Such mapping is rule-based
and requires user actions for the construction of dia-
logue state, which takes extra annotations. Both of
the above approaches treat the augmented samples
as equivalent to the gold ones, which may force
the model to fit noises in the augmented data. In
this paper, we focus on a better neural retrieval
method for the alternative system actions, and in-
stead of directly training on the augmented actions,
we encode them in a memory bank as auxiliary
information.

3 Methodology

To frame the problem of dialogue policy learning,
we useXt = {U1, .., Ut−1, Rt−1, Ut} to denote the
dialogue history at turn t of a multi-turn conversa-
tion, where Ui = u1u2, ...umi and Ri = r1r2...rni

are the i-th user utterance and system response, re-
spectively. Following previous works (Zhang et al.,
2020; Liang et al., 2020), we convert the belief
state and system actions from a list of triples to se-
quences. For example, the belief state “restaurant-
food-Chinese,restaurant-price-expansive” is con-
verted to “restaurant [food] Chinese [price] expan-
sive”, and the system actions “restaurant-inform-
price,restaurant-inform-phone” are converted to
“restaurant [inform] price phone”. We use Bt =
b1b2...bp and At = a1a2...aq to represent the cur-
rent belief state and system action, respectively.
Our goal is to generate system actions At and sys-
tem response Rt of turn t based on the dialogue
context Xt and belief state Bt.

We employ a retrieve-and-memorize framework
to generate the system response. First, we use a
context-aware retrieve module to retrieve multiple
proper candidate system actions from the training
set. Then, we encode the candidate actions into a
memory bank and propose a memory-augmented
module to enhance the action generation.

3.1 Context-Aware Retrieval Module

In order to retrieve alternative system actions that
are more comprehensive and context-aware, we uti-
lize the powerful pre-trained language model BERT
(Devlin et al., 2019) to obtain distributed represen-
tations of the dialogue context. We search in the
training corpus for system actions with similar dis-
tributed representations and retrieve them as alter-
native candidate actions. Concretely, we combine
the dialogue history Xt = {U1, .., Ut−1, Rt−1, Ut}

Context Encoder

Belief State Decoder

System Action 
Decoder

Response Decoder

푈�푅���

퐵���

퐵�

Memory
Encoder

DB�
퐴�, 퐴�, …, 퐴�

퐴�

푅�

푈�, 푅�, … , 푅���, 푈�
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Figure 2: An overview of the proposed model.

and belief state Bt as dialogue context and feed the
concatenated dialogue context into a pre-trained
BERT encoder:

H =BERT([CLS]⊕Bt ⊕ [SEP ]⊕Xt), (1)

where ⊕ is the concatenation operator, [CLS]
is a special token that precedes every input se-
quence of BERT, and [SEP ] is a special token
used to separate different parts of the input se-
quence. The BERT model encodes the input di-
alogue context into a sequence of hidden states
H = {hCLS , h1, ..., hL}. We use hCLS to rep-
resent the distributed representation of dialogue
context, since hCLS is expected to capture the in-
formation of the whole sequence. Then we use L2

distance to measure the similarity between the dis-
tributed representations of different dialog contexts:

L2(h
CLS
i , hCLSj ) = ||hCLSi − hCLSj ||2. (2)

Based on the L2 distance, k most similar dialogue
contexts are selected from the training set, and the
corresponding system actions constitute a candi-
date actions set {Ā1, Ā2, ..., Āk}.
Pre-training Task Directly applying hCLS from
BERT without fine-tuning or further pre-training
may not result in desired dialogue context represen-
tations that correlate well with system actions. A
good dialogue contextual representation should sat-
isfy the property that dialogue contexts with similar
semantics are close to each other in the represen-
tation space. Therefore, we further pre-train the
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BERT model with an actions prediction task:

p(y|Bt, Xt) = classifier(hCLS), (3)

where y ∈ RD is a one-hot label of system actions
(Chen et al., 2019), D is the dimension of the label
space, and classifier is a simple linear classifier.

3.2 Memory-Augmented Multi-Decoder
Network

We propose a memory-augmented multi-decoder
network that jointly generates belief state, system
actions, and system response while having access
to a memory bank when generating the system ac-
tion. Given the retrieved candidate system actions,
we encode these candidates into the memory bank
and enhance the generation of system actions by
querying the memory bank during decoding.
Encoding Module We use Bidirectional GRUs
(Chung et al., 2014) as our encoders. First, we en-
code the current user utterance, the previous system
response and the previous belief state separately
into hidden states:

Hu = Encoder(Ut),

Hpre r = Encoder(Rt−1),

Hpre b = Encoder(Bt−1),

(4)

Then, another encoder is used to encode the candi-
date system actions into memory bank:

Mt = EncoderM (Ā1 ⊕ Ā2 ⊕ ...⊕ Āk), (5)

where Mt = {m1, ...,mk}.
Belief State Generation The belief stateBt of turn
t is generated based on the current user utterance
Ut, previous system response Rt−1 and previous
belief state Bt−1. The generation of Bt at each
time step τ can be formulated as follows:

sτ = Attn(hτ−1, Hu, Hpre r, Hpre b),

cτ = [sτ ⊕ e(bτ−1)],
p(bτ |b1:τ−1), hτ = Decb(cτ , hτ−1, Hpre b),

(6)

whereAttn1 is an attention function, e(bτ−1) is the
embedding of the previous token, hτ−1 is the hid-
den state from the last decoding step, and h0 = 0.
Decb

1 is the belief state decoder augmented with
copy mechanism (Gu et al., 2016), which can copy
tokens from the previous belief state. p(bτ |b1:τ−1)
is a distribution over vocabulary. We use cross

1Please refer to the appendix for more details.
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Figure 3: Generation of system actions at time step τ .

entropy between ground truth and the output distri-
bution Lb(θ) as the loss of belief state generation.
We collect the hidden states Hb = {h0, h1, ..., hp}
of each step to feed them into the action decoder.
Memory-Augmented Action Generation As
shown in Figure 3, the system action At of turn
t is generated based on not only the dialog history
and the current belief state, but also the memory
bank which encodes the retrieved candidate system
actions. For the generation of At, at each time step,
we first compute the state sτ :

sτ = Attn(hτ−1, Hu, Hpre r, Hb). (7)

Then, we use the hidden state hτ−1 to query the
encoded candidate system actions memory Mt:

aiτ = tanh(W [hτ−1 ⊕mi]),

ατ = Softmax(aτ ),

vτ =
∑k

i=1
αiτmi,

(8)

where W are learnable parameters and vτ contains
information from the memory. Now we incorporate
vτ into the generation process:

cτ = [sτ ⊕ e(aτ−1)⊕ e(DBt)⊕ vτ ],

p(aτ |a1:τ−1), hτ = Deca(cτ , hτ−1, Hb),
(9)

where e(aτ−1) is the embedding of the previ-
ous token, e(DBt) is the embedding of the
database search result which indicates the num-
ber of matched entities. Deca is the action decoder
augmented with copy mechanism. The cross en-
tropy La(θ) between the output distribution and
ground truth is the loss of actions generation. We
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collect the hidden states Ha = {h0, h1, ..., hq} as
well to feed it into the system response decoder.
Random Sampling Though the retrieved candi-
date system actions are considered to be of high
quality and suitable given the dialogue context, we
would still like our model to avoid taking those
candidates for granted and developing excessive
dependence on them. To this end, during training,
the memory bank is filled with randomly sampled
system actions with a probability p, and retrieved
candidates with a probability (1− p). This allows
the model to learn to distinguish good candidates
from bad candidates.
Response Generation Lastly, we generate the sys-
tem response conditioned on the hidden states of
user utterance Hu, belief state Hb and system ac-
tions Ha with the response decoder Decr:

sτ = Attn(hτ−1, Hu, Hb, Ha),

cτ = [sτ ⊕ e(rτ−1)],
p(rτ |r1:τ−1), hτ = Decr(cτ , hτ−1, Hb),

(10)

The response generation loss Lr(θ) is the cross
entropy between the output and ground truth.
Objective Function The final objective function is
the sum of belief state loss, actions generation loss
and response generation loss:

L(θ) = Lb(θ) + La(θ) + Lr(θ) (11)

4 Experiments

4.1 Dataset and Metrics

We conduct our experiments primarily on Multi-
WOZ 2.0 (Budzianowski et al., 2018). It consists
of 8438 dialogues spanning several domains and
topics. Each of the test and validation sets con-
tains 1000 dialogues. As for automatic evaluation,
we use Inform Rate and Success Rate to evalu-
ate dialogue task completion. The former mea-
sures whether the system has provided a proper
entity and the latter measures whether it has an-
swered all the requested attributes (Budzianowski
et al., 2018). Besides, BLEU (Papineni et al., 2002)
is used to measure the fluency of generated re-
sponses. To measure the overall quality, we com-
pute a combined score by (Inform+Success)×0.5+
BLEU (Mehri et al., 2019).

4.2 Implementation Details

Our model is trained on a 12 GB Nvidia GeForce
RTX 2080 Ti with a batch size of 80. Our im-

plementation2 is based on PyTorch (Paszke et al.,
2019). We pre-trained the BERT model based on
the open-source library Transformers (Wolf et al.,
2020). The dimension of word embeddings is 50
and the hidden size is 100. We use one-layer Bidi-
rectional GRUs (Chung et al., 2014) as context
encoders and three GRUs augmented with copy
mechanism as decoders. The candidate actions are
encoded by another Bidirectional GRU. We use
Adam (Kingma and Ba, 2015) optimizer with a
learning rate of 0.007. We use greedy search to de-
code system actions and beam search with a beam
size of 5 to decode system responses. We use the
ground truth belief states for a fair comparison with
other baselines. We train our model for 60 epochs
and select the best model on the validation set, and
then evaluate it on the test set to get the final results.

4.3 Baselines

We compare our full model MAMD with several
baselines on MultiWOZ 2.0: SC-LSTM (Wen et al.,
2015), LaRL (Zhao et al., 2019), HDSA (Chen
et al., 2019) , DAMD (Zhang et al., 2020), PARG
(Gao et al., 2020), SimpleTOD (Hosseini-Asl et al.,
2020), MarCo (Wang et al., 2020b), UBAR (Yang
et al., 2020), HDNO (Wang et al., 2020a), LAVA
(Lubis et al., 2020). Especially, SC-LSTM and
HDSA treat system actions as one-hot vectors, and
LaRL, HDNO, LAVA treats them as latent vari-
ables. Besides, HDSA uses BERT to predict sys-
tem actions. DAMD, PARG, SimpleTOD, MarCo,
and UBAR treat belief state, system actions as
sequences and generate them along with system
response. Besides, DAMD (aug) means DAMD
using rule-based multi-action data augmentation
to augment the system actions. Similar to HDSA,
MarCo also uses BERT to predict system actions.

4.4 Overall Results

As shown in Table 1, our model significantly out-
performs the baseline model DAMD in Inform
Rate, Success Rate and especially Combined Score.
Besides, our model achieves the best performance
in Combined Score among all the baseline models.
We also observe that models that generate system
actions as a sequence generally have superior per-
formance, implying that sequence is a better rep-
resentation to model the inter-relationships among
dialogue actions than one-hot vectors. Besides, our

2https://github.com/yunhaoli1995/MAMD-TOD
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Model DA LM Inform Success BLEU Combined Score

SC-LSTM (Wen et al., 2015) % % 74.50 62.50 20.50 89.00
LaRL (Zhao et al., 2019) % % 82.80 79.20 12.80 94.10
SimpleTOD (Hosseini-Asl et al., 2020) % ! 88.90 67.10 16.90 94.90
HDSA (Chen et al., 2019) % ! 82.90 68.90 23.60 99.50
DAMD (Zhang et al., 2020) % % 89.50 75.80 18.30 100.90
DAMD (aug) (Zhang et al., 2020) ! % 89.20 77.90 18.60 102.15
PARG (Gao et al., 2020) ! % 91.10 78.90 18.80 103.80
MarCo (Wang et al., 2020b) % ! 92.30 78.60 20.02 105.47
UBAR (Yang et al., 2020) % ! 94.00 83.60 17.20 106.00
LAVA (Lubis et al., 2020) % % 97.50 94.80 12.10 108.25
HDNO (Wang et al., 2020a) % % 96.40 84.70 18.85 109.37
MAMD ! % 95.70 88.90 18.90 111.20

Table 1: Overall results on the MultiWOZ 2.0 dataset. DA indicates whether to use data augmentation, and LM
indicates whether to use pre-trained language models to predict system action.

Model Inform Success BLEU Score

SimpleTOD 85.10 73.50 16.22 95.52
HDSA 86.30 70.60 22.36 100.81
MarCo 92.50 77.80 19.54 104.69
UBAR 92.70 81.00 16.70 103.55
LAVA 96.39 83.57 14.02 104.00
HDNO 92.80 83.00 18.97 106.87
MAMD 94.20 86.20 18.80 109.00

Table 2: Overall results on the MultiWOZ 2.1 dataset.

model outperforms all the methods with data aug-
mentation, which shows the effectiveness of our
proposed retrieve-and-memorize framework.

We also evaluate our model on MultiWOZ 2.1
(Eric et al., 2020), an updated version of Multi-
WOZ 2.0. As shown in Table 11, the results are
consistent with that on MultiWOZ 2.0 in Table 1.

4.5 Performance Across Different Domains

We report the performance of our model on differ-
ent domains of MultiWOZ 2.0 and compare it with
DAMD and DAMD (aug). The results are shown
in Figure 4. From the bar chart, we can find that
our model achieves the best performance across all
domains. Besides, our model achieves significant
performance improvements in taxi and attraction
domains, which appear less frequently in the train-
ing data than other domains. Our MAMD narrows
the performance gaps among different domains.

4.6 Ablation Study

In this section, we conduct experiments to study
the contributions of the proposed context-aware
retrieval module and memory-augmented module.

Hotel Train Restaurant Attraction Taxi

95

100

105

110
DAMD
DAMD (aug)
MAMD

Figure 4: Results of our MAMD and DAMD in com-
bined scores across different domains. If a dialogue in-
volves more than one domain, it is counted into each.

As shown in Table 3, the first group is the base-
line directly trained on four types of augmented
data, where it treats the augmented actions as equiv-
alent to the golden ones. We observe that the perfor-
mance drops significantly if the augmented actions
are randomly selected, suggesting that the benefit
of such data augmentation is strongly subject to the
quality of the augmented data. Additionally, the
model trained with CARM outperforms the Rule,
which indicates the higher quality of our context-
aware retrieved candidates and the effectiveness
of the proposed CARM. What’s more, removing
the system actions prediction pre-training task in
CARM causes a performance drop, which demon-
strates the necessity to adjust the pre-trained model
and obtain more task-related representations.

The second group in Table 3 shows the results of
the model with the memory-augmented (MA) mod-
ule trained as well as evaluated with various aug-
mented data. First, with MA, our MAMD is much
more robust to random noise, only slightly under-
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Method Score ∆

Baseline 98.95 0
+ Random 91.65 -7.30
+ Rule 102.15 +3.20
+ CARM 106.65 +7.70
+ CARM w/o Pt 102.25 +3.30
+ Random + MA 98.10 -0.85
+ Rule + MA 106.75 +7.80
+ CARM + MA 108.70 +9.75
+ CARM + MA + RS 111.20 +12.25

Table 3: Results of ablation study. Baseline is MAMD
without the memory-augmentation component. Ran-
dom means randomly selected actions, Rule is the rule-
based augmentation proposed by DAMD, CARM is the
proposed context-aware retrieval module, and w/o Pt
means without pre-training before retrieval. MA is the
proposed memory-augmentation module, and RS is the
proposed random sampling technique.

performing the baseline. This is because, during
training, a model with MA can learn to ignore the
noises in the memory and pay less attention to the
memory during evaluation. Second, we see more
performance gains with MA from both rule-based
and context-aware retrieved candidates, which sug-
gests a model with MA can utilize the candidate
system actions more effectively. Last but not least,
with the random sampling mechanism, the perfor-
mance of our full model further improves.

4.7 Effect of Random Sampling

To further analyze the effect of random sampling,
we adjust the random sampling probability dur-
ing training from 0 (no random sampling and all
candidates are from CARM) to 1 (all candidates
are randomly sampled), and evaluate MAMD with
retrieved candidates and randomly sampled candi-
dates in the memory bank. As shown in Figure
5, the first thing to notice is that without random
sampling, i.e., the random sampling probability
p is set to 0, the performance of MAMD with
random candidate system actions drops drastically
to 66.40. This indicates MAMD trained with all
decent-quality candidates has developed excessive
dependence on the candidates and in a way treats
them as ground truth actions, which is what we try
to avoid by introducing random sampling. Once
we introduced random sampling, the performance
gap between MAMD evaluated with retrieved ac-
tions and random actions is significantly narrowed,
which suggests MAMD is capable of telling the
quality of the candidates in the memory bank.

0.0 0.2 0.4 0.6 0.8 1.0
Sampling Probability
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Figure 5: Results of our model trained with different
random sampling probabilities and evaluated with dif-
ferent type of candidate actions on the development set.
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Figure 6: Combined score of three models trained
with different numbers of candidate actions retrieved
by CARM on the development set, where MAMD (w/o
RS) means our model without random sampling and
DAMD (CARM) means DAMD trained with augmented
system actions retrieved by CARM.

4.8 Effect of the Number of Candidate
Actions

To analyze the effect of the number of candidate
actions on our proposed modules, we train three
model variations with different numbers of can-
didate actions retrieved by CARM. As shown in
Figure 6, we can see that both MAMD and MAMD
(w/o RS) achieve their best performances with 9
candidate actions. Additionally, both our mod-
els consistently outperform DAMD, which sug-
gests the effectiveness of the memory-augmented
module. What’s more, the performance of our full
model increases more steadily as the number of
candidate actions goes up, while without random
sampling, the performance of our model is much
more unstable across different numbers of candi-
date actions, which indicates that random sampling
can bring in some desirable regularization.
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Figure 7: Visualization of the attention from generated
system actions to candidate actions. The y-axis is gen-
erated system actions and the x-axis is candidate sys-
tem actions. At each decoding step, the generated sys-
tem actions selectively attend to the candidate actions.
(Dialogue ID:MUL0473)

Context:
Sys: I would recommend the cambridge museum of
technology, would you like any information about that?
User: Yes. What is the postcode and phone number?
DAMD:
[attraction] [recommend] postcode phone name type
[attraction] [inform] phone postcode
[attraction] [nooffer] type
......
CARM:
[attraction] [inform] phone postcode
[attraction] [inform] postcode phone [general] [reqmore]

Reference:
[attraction] [inform] postcode phone [general] [reqmore]

Table 4: Comparison of retrieved candidate system ac-
tions of DAMD and our CARM.

Context: ... User: Please book tickets and provide me
with the total cost of tickets and confirmation number.
DAMD:
The [value id] is [value price]. The train id is [value id].
Is there anything else I can help you with?
MAMD:
Booking was successful, the total fee is [value price]
payable at the station. Reference number is: [value
reference]. Is there anything else I can help you with?
Reference:
It has been booked! Your reference number is [value
reference]. The cost is [value price]. Do you need any-
thing else?

Table 5: An example of response generation of DAMD
and MAMD.

5 Visualization and Case Study

An illustrative example is shown in Figure 7, the
current user utterance is “I need a train departing
cambridge arriving by 20:30”. The action decoder
successfully attends to appropriate actions and ig-
nores the noisy ones like “[train] [inform] leave”,

MAMD vs. DAMD Win% Tie% Lose%
Completion 19.25% 66.54% 14.21%

Readability 3.13% 93.08% 3.79%

MAMD vs. Reference Win% Tie% Lose%
Completion 14.51% 56.11% 29.38%

Readability 2.85% 92.03% 5.11%

Table 6: Results of human evaluation on response qual-
ity. Reference means ground truth response. Win, Tie
and Lose respectively indicate the proportions that our
model wins over, ties with or loses to its counterpart.

as the leaving time has not provided by the user.
Table 4 shows an example of candidate sys-

tem actions that CARM appropriately retrieved
but DAMD failed. The user asks the system
to provide the postcode and phone number of
the attraction, while DAMD returns “[attrac-
tion][nooffer][type]”.

We also present an example of response gener-
ation in Table 5, where the user asks for the price
and reference number. DAMD manages to provide
the postcode but fails to provide the reference num-
ber, while our MAMD model successfully provides
both the postcode and the reference number.

6 Human Evaluation

Finally, we conduct a human study to evaluate our
model from the human perspective. We randomly
select 30 dialogue sessions (211 dialog turns in
total) from the test dataset and have 5 postgradu-
ates as judges to compare two groups of systems:
MAMD vs. DAMD and MAMD vs. Reference, in
terms of Readability and Completion (Wang et al.,
2020b). Completion measures whether a response
has correctly answered a user query, including rele-
vance and informativeness. Readability measures
the fluency and consistency of the response.

We report the human evaluation results in Table
6, from which we can observe that our model out-
performs DAMD and beats or ties with Reference
nearly 70% of the time in terms of Completion. In
Readability, our model ties more than 92% with
DAMD as well as Reference. This may suggest the
language of responses lacks diversity and is easy
to learn. Overall, our model is superior to DAMD
in human evaluation, which demonstrates its com-
petence in a more holistic evaluation other than
automatic metrics.
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7 Conclusion

In this paper, we proposed a retrieve-and-memorize
framework to deal with the unbalanced distribution
of system actions in task-oriented dialogue sys-
tems. Our framework includes a neural retrieval
module that can retrieve multiple candidate system
actions given a dialogue context, and a memory-
augmented multi-decoder network that can gener-
ate system actions conditioned on multiple candi-
date system actions. Extensive experiments were
conducted on a large-scale multi-domain task dia-
logue dataset and the results demonstrate the effec-
tiveness of our framework. In essence, the whole
framework, including its random sampling strategy,
can be viewed as an attempt to prevent the systems
from overfitting skewed dialogue datasets with an
unbalanced distribution of system actions.
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A More Details of MAMD

A.1 Attention Function

In MAMD, we use an attention function Attn to
attend to three groups of hidden states. In this
study, Attn(h,Ha, Hb, Hc) is defined as:

ha = CatAttn(h,Ha),

hb = CatAttn(h,Hb),

hc = CatAttn(h,Hc),

Attn(h,Ha, Hb, Hc) = [ha ⊕ hb ⊕ hc],

(12)

where ⊕ is the concatenation operator and CatAttn
is a simple concat-attention defined as:

ai = tanh(W [h⊕Hi]),

αi = Softmax(a),

CatAttn(h,H) =
∑n

i=1
αiHi,

(13)

where W represents learnable parameters, H is the
sequence of encoded hidden states,3 and n is the
number of hidden states in H .

A.2 Decoder with Copy Mechanism

The decoder used to generate the belief state, sys-
tem action and response is a one-layer GRU aug-
mented with copy mechanism. Each step of the

3For example, the encoded hidden states of user utterance.



457

generation in Dec(ct, ht−1, H) is defined as fol-
lows:

ht = GRU(ct, ht−1),

pvocab = Softmax(Wvht),

si = h>t tanh(WcHi),

pcopy = Softmax(s),

pfinal(w) = pvocab(w) +
∑

i:X(i)=w

picopy,

Dec(ct, ht−1, H) = pfinal, ht,

(14)

where Wv and Wc are learnable weights, and X is
the corresponding context of H.

B More implementation Details

B.1 Hyperparameters

In this section, we report the hyperparameter set-
ting in our model. For MAMD, we adopt the de-
fault hyperparameters in DAMD, as shown in Table
7. As for the learning rate, the number of candidate
actions, and the random sampling probability, we
apply grid search to find the best combination on
the development set. It takes about 10 hours to
train our model on a single 12 GB Nvidia GeForce
RTX 2080 Ti. As for CARM’s pre-training task,
the hyperparameter setting is shown in Table 8.

Parameter Values
batch size 80
learning rate 7e-3
embedding size 50
hidden size 100
dimension of db search result 6
encoder layers 1
decoder layers 1
epoch 60
candidate actions 9
random sampling probability 0.8
beam size 5
random seed 777

Table 7: Hyperparameter setting of MAMD.

B.2 Delexicalization Strategy

For delexicalization, we follow DAMD’s domain-
adaptive delexicalization strategy. Specially, we
use tokens such as [value name] to represent the
same slot name. In this case, the placeholders [ho-
tel name] and [restaurant name] will be converted
to [value name]. During the evaluation, we induce

Parameter Values
batch size 6
learning rate 5e-5
epoch 20
random seed 42
max sequence length 400
warmup proportion 0.1

Table 8: Hyperparameter setting of CARM.

the domain of a placeholder from the transition be-
tween two adjacent belief states and the generated
system actions of the current dialog turn.4

B.3 Post-Processing of Candidate Action
Retrieval

As for candidate action retrieval, we retrieve 50
candidate actions for each sample. Then, we apply
post-processing to clean the candidate actions:

• Duplicated actions are merged. For example,
the system actions “[attraction] [inform] post-
code phone [general] [reqmore]” and “[attrac-
tion] [inform] postcode phone [general] [req-
more]” will be combined into “[attraction] [in-
form] postcode phone [general] [reqmore]”.

• Null system actions are removed.

• System actions with different database query
results are filtered out.

• System actions that conflict with current be-
lief are filtered, e.g., requesting a slot that is
already included in belief states.

C Dataset Details

We provide more information about the MultiWOZ
2.0 dataset. The training set contains 8438 dialogs,
115,424 turns, and 1,520,970 tokens. The aver-
age number of turns per dialog is 13.68, and the
average number of tokens per turn is 13.18. The
number of slots and values are 25 and 4510, respec-
tively. The ontology is shown in Table 9. We also
count the numbers of system actions across differ-
ent domains. As shown in Figure 8, the numbers
of system actions in attraction and taxi are smaller
than the other domains, showing the unbalanced
distribution of system actions at the domain level.

4For more details, please refer to the source code.
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act
type

inform∗ / request∗ / nooffer1234 /
recommend123 / select1234 / offerbook124 /
offerbooked124 / nobook12 / bye∗ / greet∗ /

reqmore∗ / welcome∗

slot
car5 / address12367 / postcode12367 /

phone123567 / internet2 / parking2 / type23 /
pricerange12 / food1 / stars2 / area123 /

reference1234 / time14 /
leave45 / price45 / arrive45 / id4 /

stay2 / day124 / leave45 / people123 / name123 /
destination45 / departure45 / department6

Table 9: Ontology for all domains. The upper script
indicates which domains it belongs to (∗: universal, 1:
restaurant, 2: hotel, 3: attraction, 4: train, 5: taxi, 6:
hospital, 7: policy).

Hotel

27.34%
Train

23.95%

Restaurant

26.69%

Attraction

15.55%
Taxi6.47%

Figure 8: Statistics of system actions across different
domains of MultiWOZ 2.0.

Dateset Inform Success BLEU Score

Development 96.60 90.70 18.70 112.35
Test 95.70 88.90 18.90 111.20

Table 10: Overall results on the MultiWOZ 2.0 dataset.

Dateset Inform Success BLEU Score

Development 94.90 87.70 18.60 109.90
Test 94.20 86.20 18.80 109.00

Table 11: Overall results on the MultiWOZ 2.1 dataset.

D More Analyses and Discussions

D.1 Results on Development and Test Sets

We report the results of MAMD on the develop-
ment and test sets of MultiWOZ 2.0 and Multi-
WOZ 2.1. As shown in Table 10 and Table 11, the
results on the development set are generally consis-

tent with that on the test set on both benchmarks.

D.2 Distribution of Generated System
Actions

To further analyze the influence of our model on
the generation of system actions, we count the ap-
pearance of generated actions. Recall that each
dimension of the actions stands for either domain,
function or slot, where domain defines the domain
involved in the conversation, and function defines
the behavior of system such as informing the user
or request certain information. Here we only count
the first two dimensions of the actions because the
third dimension appears to be less important.

As shown in Figure 9, the distribution of sys-
tem actions generated by DAMD is proportional
to the original distribution in the dataset, and
DAMD tends to generate fewer actions than the
original distribution. After applying their rule-
based multi-action data augmentation, DAMD
(aug) can generate more diverse system actions
compared with DAMD. Compared with DAMD
(aug), MAMD generates more actions. More im-
portantly, MAMD generates more important ac-
tions such as “attraction-inform” and “taxi-inform”
which are more relevant to task completion, while
DAMD (aug) tends to generate less useful actions
such as “general-require” and “general-greet”. This
phenomenon indicates that the memory-augmented
mechanism provides some guidance to our model
during system action learning. To sum up, our pro-
posed model can generate more diverse and valu-
able actions, which demonstrates the effectiveness
of our proposed memory-augmented mechanism.
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Figure 9: Statistics of generated system actions by DAMD, DAMD (aug) and MAMD, and comparison with
reference actions.


