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Abstract

Text generation from semantic parses is to
generate textual descriptions for formal rep-
resentation inputs such as logic forms and
SQL queries. This is challenging due to two
reasons: (1) the complex and intensive in-
ner logic with the data scarcity constraint, (2)
the lack of automatic evaluation metrics for
logic consistency. To address these two chal-
lenges, this paper first proposes SNOWBALL,
a framework for logic consistent text genera-
tion from semantic parses that employs an it-
erative training procedure by recursively aug-
menting the training set with quality control.
Second, we propose a novel automatic met-
ric, BLEC, for evaluating the logical consis-
tency between the semantic parses and gener-
ated texts. The experimental results on two
benchmark datasets, Logic2Text and Spider,
demonstrate the SNOWBALL framework en-
hances the logic consistency on both BLEC
and human evaluation. Furthermore, our sta-
tistical analysis reveals that BLEC is more log-
ically consistent with human evaluation than
general-purpose automatic metrics including
BLEU, ROUGE and, BLEURT. Our data and
code are available at https://github.com/
Ciaranshu/relogic.

1 Introduction

Natural language generation (NLG) from semantic
parses is to generate the text description for the
formal representation input such as logical forms,
AMR, and SQL queries. It has drawn widespread
attention because of its substantial contributions to
the interpretability and usability of the latest natural
language interfaces (Gatt and Krahmer, 2018; Chen
et al., 2020b; Hu et al., 2020; Mishra et al., 2019;
Yu et al., 2019; Ngomo et al., 2013; Wang et al.,
2018; Gardent et al., 2017; Wang et al., 2020a;

*Equal Contribution

Figure 1: Our data augmentation procedure for the gen-
erator and evaluator in the SNOWBALL framework.

Wang, 2019; Koutrika et al., 2010a). Recently, pre-
trained large-scale language models like BERT (De-
vlin et al., 2018), T5 (Raffel et al., 2020), and GPT-
3 (Brown et al., 2020) have raised the ability to
generate natural language from formal texts to a
promising level of fluency and coherence.

However, NLG from semantic parses still has
suffered from two crucial challenges: (1) the data
scarcity constraint due to the bias on certain types
of logic forms or expensive labeling work (Iyer
et al., 2017; Yaghmazadeh et al., 2017), which po-
tentially leads to the unsatisfied fidelity of remain-
ing the complex and intensive inner logic in the
generated text based on our empirical research; (2)
The general-purpose automatic metrics (Novikova
et al., 2017a) such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004) and BLEURT (Sellam et al.,

https://github.com/Ciaranshu/relogic
https://github.com/Ciaranshu/relogic
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Figure 2: Our SNOWBALL framework employs an iterative training procedure over a generator and evaluator
through data augmentation.

2020) are not ideal for explicitly measuring the
logic consistency (Wang et al., 2020b; Harkous
et al., 2020), because they tend to evenly weight
each word in the generated text without fully at-
tending on the fatal logical keywords.

To address these two critical problems, we pro-
pose the SNOWBALL framework for high-fidelity
text generation from semantic parses and the BLEC

automatic evaluation metric for logic consistency:
Snowball Framework. Our SNOWBALL frame-
work, as illustrated in Figure 2, trains two modules
to ensure high-fidelity text generation: (1) a genera-
tor that maps the logical form to its textual descrip-
tion, and (2) an evaluator that indicates the logic
consistent score of each pair of logical form and
textual sentence. Rather than training the generator
and evaluator independently, SNOWBALL performs
iterative training on the generator and the evalua-
tor. To deal with the data scarcity issue, we pro-
pose a data augmentation procedure to cover valid
logic variations with diverse natural language ex-
pressions to improve generalizability. To this end,
during each iteration, various unseen logic pairs
could be automatically generated with rule-based
enumerated logic forms and their corresponding
text predicted by the generator. The evaluator is
then used to filter out the high reliable augmented
logic pairs for the next training iteration.
BLEC Metric. To evaluate the logic consistency of
the text generated by the model, we propose a rule-
based automatic evaluation metric called Bidirec-
tional Logic Evaluation of Consistency, or BLEC.
It takes the logical form and the generated corre-
sponding natural language text as input, then out-
puts a label indicating if they represent consistent
logic. Compared with the neural network evaluator,
BLEC can be easily deployed to different datasets,
as long as the parser (i.e., the grammar of the logi-
cal form) is given.

In our experiments, we exam the effectiveness
of our proposed approaches on the benchmark

datasets of NLG from semantic parses derived from
existed Text-to-SQL dataset Spider (Yu et al., 2018)
and Table-to-Text dataset Logic2Text Chen et al.
(2020b). Our analysis shows that our BLEC met-
ric has a substantially positive Pearson score with
human annotations, demonstrating better logic con-
sistency than other automatic metrics. The BLEC

result shows that the SNOWBALL framework leads
to accordant enhancement in logic consistency on
two datasets compared to the single-pass training
method based on BART (Lewis et al., 2020).

Our key contributions are summarized into three-
folds: (1) We propose a simple but effective train-
ing framework SNOWBALL that strengthens the
logic faithfulness of generated text by covering
diverse logic variations. (2) We propose a new
logic evaluation metric BLEC that accurately mea-
sures the logical consistency with a refined key-
word matching mechanism. (3) Our experiment
results demonstrate that SNOWBALL at most in-
creases the BLEC from 10.1% on SQL-to-Text and
1.2% on Logic-to-Text tasks compared to the base-
line. Moreover, our statistical analysis reveals that
BLEC achieves a +0.66 Pearson correlation coef-
ficient compared with human labels, serving as a
much better automatic evaluation metric than not
only the traditional BLEU and ROUGE metrics,
but the latest BLEURT metrics.

2 Related Work

2.1 Parses-to-Text
The source of data-to-text (D2T) datasets is mostly
a flat ontology structure, like E2E(Novikova
et al., 2017b), LogicNLP(Chen et al., 2020a), Ro-
toWire(Wiseman et al., 2017), and ToTTo(Parikh
et al., 2020), which is not powerful enough to en-
code rich semantic relationships in the ontology.
Second, some datasets, such as WebNLG(Gardent
et al., 2017), E2E, and RotoWire, have a limited
number of domains. E2E is on the restaurant do-
main, and RotoWire is on the basketball domain.
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Moreover, some of them only have loose align-
ments between input and sentence, e.g., RotoWire.

Generating the natural language descriptions for
the logic forms or parses as a sub-task of D2T, has
been studied in various datasets and tasks, such
as GCC grammar to text (White, 2006), and UCC
grammar to text (Gardent and Plainfossé, 1990).
There are a lot of works that leverage the neu-
ral networks to conduct the generation on various
tasks, for example, generating natural language
from AMR (Song et al., 2018; Ribeiro et al., 2019;
Damonte and Cohen, 2019), logic forms (Chen
et al., 2020b), as well as SQL parses (Xu et al.,
2018; Ngonga Ngomo et al., 2013; Koutrika et al.,
2010b). However, different from these works, our
work focuses on the logic consistency generation
from parses. So we will mainly discuss and eval-
uate the model based on the logic between parses
and questions.

2.2 High-fidelity Text Generation

As for the end-to-end neural-based text genera-
tion models, collaborating the auxiliary task during
model training is an intuitive method that intro-
duces the logic regulation to the models. For in-
stance, the fidelity classification task proposed by
Harkous et al. (2020), the auxiliary span extrac-
tion tasks by Kryscinski et al. (2020),the table-text
optimal-transport matching and embedding similar-
ity losses by Wang et al. (2020b) and the content
matching task presented by Parikh et al. (2020) are
proved to be effective. Nevertheless, to the best of
our knowledge, we are the first to bridge the train-
ing procedure of evaluator and generator together
with the iterative training framework snowball. Fur-
thermore, we attempt to construct a new automatic
metric and a new dataset dedicated to evaluating
the logic consistency of text generation. The con-
centration of our work differs from the related high-
fidelity text generation work (Chen et al., 2020b;
Chan et al., 2019; Nie et al., 2018; Tian et al., 2019;
Wang et al., 2020a), by attempting to present the
panorama of the challenges of logic-consistent text
generation instead of focusing on the model-wised
modifications.

3 Snowball Framework

The SNOWBALL framework addresses the chal-
lenge of the complex and intensive inner logic with
data sparsity constraint for the high-fidelity text-
generation from semantic parses. As illustrated

in Figure 2, SNOWBALL assures the logic consis-
tency with three bases: (1) Iterative training pro-
cedure synergistically enhances the generator and
evaluator in the adversarial fashion; (2) Data aug-
mentation based on rule-based logic perturbations
and neural-based text generation covering diverse
unseen logic variations for iterative training; (3)
Structure-aware encoding boost the sensibility of
the encoder on mild logic shift.

3.1 Iterative Training

Rather than training the generator and evaluator in-
dependently, SNOWBALL performs training on the
generator and the evaluator iteratively. As demon-
strated in Figure 2, the prerequisite of the snowball
training procedure is the regular training procedure:
(1) the Generator0 is trained on the benchmark
NLG datasets with the normal end-to-end approach
into trained Generator1; (2) meanwhile, the logic
forms in the seed data are converted into variations
with given rules, then the Generator1 predicts the
text for each mutated logic forms to be a com-
pleted logic pair; (3) The initial Evaluator0 is
then trained on those augmented logic pairs.

Then, during the SNOWBALL procedure, the gen-
erator and evaluator are collaboratively improved
through several training iterations, and during each
iteration, a three-step adversarial interaction would
be conducted between the generator and evalua-
tor: Step 1: The trained Evaluatori−1 could be
used to rerank the beam search results given by
the decoder of the generator, consequently leading
to increased quality of the augmented logic pairs,
Augmented datai−1; Step 2: The Generatori is
capable to better retain the logic consistency by
training on the Augmented datai−1 which con-
tains more unseen logic variations uncovered in
the seed data; Step 3: The enhanced Generatori
predicts the increasingly realistic-like perturbed
sentences from the perturbed logical forms, which
brings more challenging negative samples to the
training set of the Evaluatori. The data augmen-
tation in the first step would be further described in
Section 3.2.

To be specific, our generator and evaluator in
SNOWBALL are described as follows.

Generator The generator maps the logical form
to the corresponding natural language sentences.
We choose the pre-trained BART model (Lewis
et al., 2020) following the standard transformer ar-
chitecture (Vaswani et al., 2017), which contains
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the encoder and decoder architecture as the de-
noising autoencoder pre-trained on the task of cor-
rupted text reconstruction. The input of the encoder
is the structure-aware representation of the logic
forms (Section 3.2), while the target output of the
decoder is the aligned textual description for the
input parses.

Evaluator An evaluator indicates the logic con-
sistent score of pairs of logical forms and textual
sentences, which is vital for assessing the perfor-
mance of the logic-focused text generator. In con-
trast to other text generation tasks, generating sen-
tences from logical forms especially requires the
evaluator to be reasonably sensitive to the subtle
logic shifts of the model predictions. For instance,
deleting negation words such as ‘not’ is fatal for
our task by significantly compromising the logic
consistency. Therefore, we exploit a binary classifi-
cation architecture similar to the BART-based natu-
ral language inference model (Lewis et al., 2020) as
our evaluator to compute the consistency between
the pairs of logical form and text [L,Q]. The input
of the encoder is the concatenation of the L and Q
appended an [EOS] token, and the logic scores γ
are computed as:

γ = σ(ω([hd1 , hd2 , hd3 ...])) (1)

where hdn denotes the last hidden states of the
decoder, ω denotes the max-pooling layer, and σ is
the sigmoid activation function.

3.2 Data Augmentation

As the labeled training data for both the generator
and evaluator is extremely limited, we propose a
data augmentation procedure to enlarge the train-
ing set by covering variations of logic forms paired
with diverse natural language expressions to im-
prove the generalizability. To be specific, our data
augmentation consists of three steps as depicted in
Figure 1 from a seed dataset with human annota-
tion:

Step 1: Logic perturbation Instead of modify-
ing the natural language sentences, we choose to
corrupt the logic consistency by perturbing logi-
cal forms mainly because of two reasons: (1) The
regular structures of logical forms guarantee the
procedure of the logical corruption to be compara-
tively controllable; (2) The perturbed logical forms
could be easily validated with the corresponding
parser and grammar checker. The perturbations of

each given logical form could be enumerated ex-
haustively according to hand-tuned rules to cover
the following logic inconsistencies:

• Logic shift: The logic shift indicates that the
generated text logically distinct from the in-
put logical forms, such as turning the assertive
sentences into negative sentences. This could
be attributed to the perturbations of aggrega-
tors, operators, logic conjunction, etc.

• Phrase and number changes: The phrase
changes mean that the generated sentence
modifies the appointed phrase from the logi-
cal forms, while the number changes are that
the numerical values in the logical forms are
perturbed.

• Entity insertion, deletion and swapping:
Perturbations of entities is a common draw-
back that most natural language generation
models suffer. This includes the phenomenon
that the predicted sentences neglect the en-
tities mentioned in the logical forms, insert
unrelated entities to the logical form, or mis-
lay them.

Step 2: Inference from perturbed logic After
logic perturbation, the generator could be exploited
as the artificial annotator to generate the corre-
sponding sentence for each logical form in a semi-
supervised manner. Compared to the rule-based
or template-based method, the recent pre-trained
seq-to-seq models empirically generate the natu-
ral language sentences with better fluency and co-
herency. Though this method could easily create
a considerable amount of labeled data meanwhile
avoid the expensive human annotation, what can
not be ignored is that the model-based generator
naturally would introduce unexpected noise during
augmentation. Therefore, the quality control for
the data augmentation is one of the most crucial
cornerstones for a satisfactory result.

Step 3: Dataset composition As shown in Fig-
ure 1, the example in the seed dataset is denoted
as [Seed logic, Seed text], and the augmented ex-
amples are denoted as [Perturbed logic, Perturbed
text]. Intuitively, we may take the augmented [Per-
turbed logic, Perturbed text] to be not only the
training example for the generator but also the posi-
tive sample for the evaluator, while crossover pairs
[Seed logic, Perturbed text] and [Perturbed logic,
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Figure 3: The example of word-by-word translation and linearization of structure-aware encoding.

Seed text] would be suitable negative samples for
the evaluator.

3.3 Structure-aware Encoding

The logical forms normally have equivalent struc-
tured representations to precisely express the com-
plex relations between a set of objects. For in-
stance, the executable codes written in Python or
SQL could be parsed into abstract syntax tree(AST)
(Noonan, 1985) denoting the mutual relations
among occurred constructs in the source code,
while the knowledge bases may be converted into
knowledge graphs that depict the relations between
entities with directed edges. Compared to the plain
text inputs, the structure-aware encoding captur-
ing not only the sequential information from texts
but also the internal logic from structural repre-
sentations recently has been proved to be more ef-
fective in several Graph-to-Text tasks (Song et al.,
2018; Ribeiro et al., 2020). To make full use of
the intrinsic knowledge of the pre-trained BART
model, we follow the similar approach proposed by
Ribeiro et al. (2020) to linearize the structural rep-
resentations of the SQL queries and logical forms
respectively (Figure 3). Furthermore, the logical
forms from different domains or datasets may vary
in keywords, so normalizing them into a unified
form would bridge the gaps between different logic
NLG datasets and then increase the generalization
ability of our framework. Hence, the logical forms
would be firstly word-by-word translated into the
unified intermediate semi-textual forms according
to a manually annotated dictionary. Then the paren-
thesis is inserted into the semi-textual forms to
denote the hierarchy of the correlated structured
representations such as ASTs.

question: How	many	singer	are	not	older	than	20?

logic: SELECT	count(*)	FROM	singer	where	age	>					20

Step 1: Logic-to-Question Matching

Step 2: Question-to-Logic Matching

question: How	many	singer	are		not		older	than	20?

logic: SELECT	count(*)	FROM	singer	where	age	>	20

1 2 3

ERROR

Figure 4: A sample of BLEC. The words marked in
green are the matched tokens while the words marked
in red are the tokens with no match.

4 BLEC for Logic Consistency
Evaluation

Because the general-purpose automatic metrics
such as BLEU, ROUGE, and BLEURT are not
ideal for explicitly measuring the logic consistency,
we propose BLEC, a new rule-based automatic eval-
uation metric called Bidirectional Logic Evaluation
of Consistency. We apply a bidirectional evalua-
tion to determine the logical consistency of pairs of
logical forms and questions. The intuition behind
this metric is that some key tokens such as number,
operator, and keywords in the logical form should
always be matched with some tokens that repre-
sent similar meanings in the question, and vice
versa. An example is shown in Figure 4, BLEC

first traverses the key tokens in the question, trying
to find the tokens with the same meaning in the
logic form to match them. Then, in step two, the
sample is marked as inconsistent because there is
one token with no match from the question to the
logical form.

Formally, given a logical form L = l1, l2, ..., ln
containing n word tokens and a questions Q =
q1, q2, ..., qm containing m word tokens, the pro-
posed evaluation metric performs token level
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Dataset Train Dev Test

SQL2Text Generator 5600 1400 1034
Evaluator - 1142 1142

Logic2Text Generator 8566 1095 1092
Evaluator - 1041 1041

Table 1: The statistics of the SQL2Text and Logic2Text
dataset.

matching on li and qj to test the consistency. To
be specific, the matching procedure contains two
steps, i.e. matching from L to Q as well as match-
ing from Q to L. In step one, each key token lkeyi

in L tries to match with the tokens in Q. In step
two, each key token qkeyj in Q tries to match with
the tokens in L. If no tokens are found that could
be matched with any key tokens in either step one
or step two, the sample will be marked as negative,
vice versa. The final score is the accuracy of all the
samples:

BLEC =

∑
s∈Smatch(s)

|S|
(2)

Where S denotes the dataset while match(∗) is
the matching function with binary output, i.e. 1 for
positive and 0 for negative.

Compared with the neural network evaluator re-
quiring data-specific training, BLEC can be easily
deployed to different datasets. In our experiments,
we demonstrate that BLEC can be applied to two
different datasets of text generation from two types
of semantic parse input, and it shows a substantial
agreement with human evaluation for evaluating
logic consistency between the semantic parse input
and the text output (Table 2).

5 Experiment Settings

5.1 Datasets
Text generation from semantic parses has different
forms depending on the input formal representation.
To demonstrate that our SNOWBALL and BLEC can
be applied to different types of inputs, we study
two tasks: (1) SQL2Text with the SQL query as
the input and (2) Logic2Text with the logic forms
as the input.

To this end, we make use of two existing pub-
licly available datasets: For SQL2Text, we use the
Spider dataset (Yu et al., 2018), a complex cross-
domain semantic parsing and text-to-SQL dataset.
Generating natural language from formal languages

with abundant logic representations could be re-
garded as the inverse semantics parsing process.
Therefore, we reverse the input and output as a
dataset for the text generation from SQL queries
with complicated logic. As the test set of the Spider
dataset remains undisclosed, 20% of the original
Spider training set is converted into a development
set, and 80% of the training set remains to be the
training set, and the original development set is
exploited as the test set for our SQL2Text task. For
Logic2Text, we use an existing Logic2Text dataset
from Chen et al. (2020b). We pick the SENT and
LOGIC STR fields from the original Logic2Text to
compose our own train data. We then change SENT

to TEXTand change LOGIC SET to LOGIC as our
one keyword of each sample in the dictionary of
our dataset.

In contrast, evaluating the logical consistency
between logical form and text is closely related
to the sequence classification tasks such as fact
verification and natural language inference (NLI).
According to the best of our knowledge, there is
no existing dataset for evaluating the logical con-
sistency between logical form and generated text.
Therefore, we simplified the logic evaluation as
a two-sequence binary classification problem and
then construct the dataset with the development
set and test set dedicated for our proposed eval-
uator. The dataset is constituted from the devel-
opment and test set of Spider and Logic2text by
three methods: (i) The [logical form, Text] pairs in
the two datasets are regarded as positive samples;
(ii) The human-labeled negative samples by inten-
tionally introducing the logical inconsistency to the
known [logical form, Text] pairs in the two datasets;
(iii) The manually scored [logical form, Text] pre-
diction given by the trained generator on the two
datasets which contain both positive and negative
samples. As for the human-labeled negative sam-
ples, we attempt to cover the possible logic pertur-
bations mentioned in section 3.2 with minimum
modification to the original [logical form, Text]
pairs. For example, a coincident pair [SELECT
avg(age) FROM dogs, What is the average
age of dogs?] would be corrupted into [SELECT
avg(age) FROM dogs, What is the oldest age
of dogs?]. Table 1 summarizes the statistics of
each dataset for both generator and evaluator, re-
spectively.



4420

5.2 Baselines and Implementation Details

The baselines for assessing the performance of
SNOWBALL framework are the attention-based
LSTM machine translation model (Tao et al., 2019),
and the single-pass trained models which are the
models trained before performing SNOWBALL it-
eration. For instance, the BART-large gener-
ator trained in the second SNOWBALL iteration
would be compared to the identical BART-large
generator in the zero SNOWBALL iteration. The
hype-parameter settings of the models trained
on SQL2Text and Logic2Text, mostly follow the
default setting of BART model from Hugging-
face (Lewis et al., 2020; Wolf et al., 2020). How-
ever, the learning rate of evaluator and tokenizer
are slightly different, namely the learning rate of
evaluator on SQL2Text is 2e-5 for BART-base
and is 5e-6 for BART-large, while the learning
rate of evaluator on Logic2Text is 1e-5 for both
BART-base and BART-large.

5.3 Multitask Learning

Due to the lack of data of logic NLG, intuitively
collaborative training on SQL2Text and Logic2Text
dataset may prevent the models from bias fitting to
their confined training data. Aside from the stan-
dard special separators used by BART tokenizer,
we further introduce [SQL] and [logic] tokens to
be the control codes to indicate if one sample is
from SQL2Text or Logic2Text dataset, similar as
(Keskar et al., 2019). For each sample fed into the
BART model, a corresponding control token is con-
tacted in the front of the input logical form accord-
ing to that sample source. Therefore, the distribu-
tion p(QSQL|LSQL, [SQL]) of the SQL2Text mod-
els and p(QLogic|LLogic, [logic]) of the Logic2Text
models could be learned respectively during the
backpropagation that takes the control tokens into
account, while training the generator and evaluator
in the MTL fashion.

5.4 Human Evaluation

To evaluate if the sentence generated by the model
is logically consistent, we randomly sample 90
questions from the test set of Spider and a test set
of logic2text separately to form a human evaluation
set. The samples of each setting will be divided into
two parts and assigned to two different annotators.
Each part contains 10 overlap and 40 non-overlap
examples, which means one person has to label 50
samples for a setting. As for the human evalua-

tion, the annotators label the [logical form, text] as
True or False based on two criteria: (1) the logic
consistency between logical form and text; (2) The
grammaticality of the text. After labeling, we es-
timate the accuracy of the model predictions by
computing the expectation of the true labels from
80 non-overlap data. To prove the consistency of
the annotators, we use the 10 overlap data to cal-
culate the cohen kappa score. Only if the kappa
score is over 0.4 which implies that this estimated
accuracy is valid, the results would be reported. In
Table 4, we only human annotated the results given
by the models trained without snowball iteration
and trained with 4 snowball iterations. It demon-
strates the correlation between human evaluation
and BLEC metrics in these two time steps instead
of directly evaluating the improvement of model
performance.

6 Results and Analysis

6.1 Correlation Analysis on BLEC

To show that BLEC is consistent with human judg-
ment, we test the Pearson correlation between the
BLEC score and the human evaluation result. We
also include ROUGE and BLEU for comparisons.
Therefore, we apply these four automatic metrics
(BLEU, ROUGE, BLEURT, BLEC) to a human-
labeled dataset and compare the evaluation results.
This dataset is constructed by extracting 50 sam-
ples from each of the different Snowball iterations,
15 iterations in total. As shown in Table 2, the logic
consistency between BLEC and human evaluation
is 0.66 while BLEU, ROUGE, and BLEURT ob-
tain scores below or around zero. This shows that
the BLEC score is capable of testing the logical
consistency between logic forms and questions.

Metrics Pearson p-value

ROUGE (Lin, 2004) -0.30 0.28
BLEU (Papineni et al., 2002) -0.24 0.40
BLEURT (Sellam et al., 2020) +0.02 0.94
BLEC +0.66 0.007

Table 2: The correlation with human annotation of
BLEU, ROUGE, BLEURT, and our proposed BLEC.

6.2 Effectiveness of Snowball Framework

Generator The experimental results of the gen-
erator in our SNOWBALL framework are shown in
Table 4. We found that the SNOWBALL training
framework empirically leads to the improvement of
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Input SQL: SELECT count(*), max(Percentage) FROM country language
WHERE LANGUAGE = "Spanish" GROUP BY CountryCode

Pre-processed SQL: ( the number of ( all items ) ) , ( the maximum of ( percentage ) ) that belongs to ( countrylanguage ) ,
that have ( ( language ) equal to ( spanish ) ) , grouped by ( countrycode )

Label: What is the total number of countries where Spanish is spoken by the largest percentage of people?

BART-base the number and percentage of languages that are Spanish for each country code.
+snowball (iteration = 4) the number of languages and maximum percentage of languages in each country code?
+multi-tasking How many languages does Spanish have in each country code?

+snowball (iteration = 4) Show the number and maximum percentage for each country code.

BART-large How many languages are there in each country and what is the percentage of the language spoken in that country?
+snowball (iteration = 4) Find the number of languages and maximum percentage of Spanish for each country code.
+multi-tasking Find the number and percentage of speakers of Spanish in each country code.

+snowball (iteration = 4) Find the number and highest percentage of speakers of Spanish for each country code

Table 3: Example outputs from different models with or w/o performing the MTL and SNOWBALL iteration.

SQL2Text Test Set
Metrics BLEC Human
Snowball - 1 2 3 4 5 - 4 κ

LSTM Seq2Seq 22.6
BART-base 76.4 78.6 78.5 84.1 79.7 78.1 22 45 0.69

+MTL 89.1 89.5 89.2 88.9 88.6 88.1 66 68 0.5
BART-large 91.8 91.3 93.7 91.8 93.2 93.0 75 74 0.7

Logic2Text Test Set
Metrics BLEC Human
Snowball - 1 2 3 4 5 - 4 κ

LSTM Seq2Seq 41.1
BART-base 87.9 86.1 88.6 87.4 87.7 87.8 83 85 0.48
BART-large 86.7 87.8 85.2 87.1 86.0 88.5 86 78 0.48

Table 4: The results of SNOWBALL generator using
BLEC and human evaluation over different iterations.

the logic consistency. Evaluated by our proposed
BLEC metric, the performance of BART-base
generator improves the logic consistency by 10.1%
on SQL2Text and by 0.7% on Logic2Text. Simi-
larly, the performance of BART-large generator
acquires the improvement by 2.1% on SQL2Text
and by 1.2% on Logic2Text. Under the MTL
setting on SQL2Text, the logic faithfulness of
theBART-base generator is further enhanced by
16.6% compared to single-pass training, and is even
boosted by 17.1% by combing with SNOWBALL

training.

Evaluator The results of the evaluator in our
SNOWBALL framework are illustrated in Figure 5.
Empirically the snowball framework is more ef-
fective to the evaluators base on BART-base
than BART-large, this is likely because that
the BART-large models have already obtained
enough intrinsic knowledge to accurately judge
the validness of the [Logical form, Text] pairs.
The data augmentation procedure of the SNOW-
BALL framework may introduce unexpected noise
to the evaluators, which may cause a catastrophic
reduction in terms of AUC and other metrics. On
the other hand, the snowball framework indeed

Figure 5: The result of SNOWBALL evaluator based on
the AUC scores on the test set. The iteration = 0 means
the model is under the regular training procedure as de-
scribed in Figure 2.

enhances the performance of the evaluator based
on relative inferior BART-base by improving the
performance on the SQL2Text by 10.9% as well
as the Logic2Text by 3.1%. These results indicate
that our proposed SNOWBALL framework is most
suitable for tasks suffering from both domain data
scarcity and the lack of external knowledge.

6.3 Case Study

Table 3 shows example outputs from our model
with different settings. Apparently, in this case, the
entity Spanish and the aggregator maximum are
the touchstones for evaluating the logic consistency
of each model. The prediction from the BART-
large based generator trained under both snowball
and multi-tasking frameworks simultaneously is
the only one that acquires the seamless sentences
from the input SQL. Furthermore, we also notice
that multi-tasking learning significantly alleviates
the artifacts within the generated text. Based on
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the fact that, compared to the vanilla generators,
the generator solely trained with snowball frame-
work would enhance the logic consistency but also
increase an unnatural sense to the generated sen-
tences at the same time, we may argue that there is
a trade-off between fluency and logic consistency
of our purposed snowball framework. The model-
level modification may collaboratively enhance the
fluency and logic consistency of the NLG, which
we would remain for future studies.

7 Conclusion

In this paper, we propose SNOWBALL, a neural
network-based framework to augment the data al-
ternatively by a generator, and an evaluator. In
addition, we propose BLEC, an automatic evalu-
ation metric that could evaluate the logic consis-
tency between question and logic forms by direc-
tional matching. We also formulate two datasets
and the experimental results show the effectiveness
of the proposed framework. This method is appli-
cable to other Data-to-Text tasks, because domain-
specific rules for perturbations can be derived for
most structural data with pre-defined structures or
grammar.

8 Ethics Statement

The datasets we use are built by selecting and pro-
cessing from two datasets that are open to the pub-
lic, separately. The data sources we utilize to con-
struct our datasets are Spider and Logic2Text, two
complex and cross-domain text-to-SQL datasets.
Besides, we use three experts to annotate about
500 data beyond the original dataset. We admit
that some biases may still exist in our datasets,
even though we have double-checked the data they
annotated and the data from the original datasets.

Authors with SQL expertise annotate and verify
our datasets through 1) selecting about 500 rep-
resentative samples from the original dataset, 2)
changing the entities of the samples, 3) using three
different labels to mark which type of change has
been done to the sentences, and 4) double-checking
the quality of the data we annotate.

We conduct several experiments of different set-
tings on our AWS server, with 8 Tesla V100 GPUs,
to test the efficiency of our models. To be more spe-
cific, our experiments contain two different types.
The first type of them is that we train both generator
and evaluator using SQL2Text or Logic2Text. The
second type of them is that we utilize SQL2Text

and Logic2Text to train generators, use one of them
to train evaluators in the first epoch, and train the
next several epochs with both of them.
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A BLEC Details

BLEC uses bidirectional keyword matching to de-
tect the logic consistency. Table 5 shows several
sample cases for constructing BLEC metrics. As
shown in the table, the first column shows the type
of matching rules. “Special” means that these rules
are only contained in one of the datasets. Then, the
following 3 columns display the tokens in different
languages. Using the tokens, the algorithm can de-
tect if the question matches the parse. For instance,
given a pair of question and SQL parse, the algo-
rithm could check if “MAX” is in SQL parse. If so,
it will try to match one of the possible tokens cor-
responding to “MAX”, i.e. largest/ greatest, etc., in
the question, and vice versa. It is worth noting that,
this table only shows a small part of the algorithm,
however, all the rules can be classified as one of
the three types.

Type Spider Logic2text Natural Language
Negation NOT not eq not/ none...

Operator

> filter greater larger/ more/ greater...
< filter smaller smaller/ less/ fewer...
MAX max largest/ greatest...
COUNT count total/ how many...

Special
ASC - ascending/ fewest...
DESC - descending/ highest...
- most str eq majority/ most...

Table 5: Sample rules for BLEC.


