
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4382–4391
August 1–6, 2021. ©2021 Association for Computational Linguistics

4382

Analysis of Tree-Structured Architectures for Code Generation

Samip Dahal Adyasha Maharana Mohit Bansal
Department of Computer Science

University of North Carolina at Chapel Hill
{sdpmas, adyasha, mbansal}@cs.unc.edu

Abstract

Code generation is the task of generating code
snippets from input user specifications in nat-
ural language. Leveraging the linguistically-
motivated hierarchical structure of the input
can benefit code generation, especially since
the specifications are complex sentences con-
taining multiple variables and operations over
various data structures. Moreover, recent
advances in Transformer architectures have
led to improved performance with tree-to-tree
style generation for other seq2seq tasks e.g.,
machine translation. Hence, we present an
empirical analysis of the significance of input
parse trees for code generation. We run text-
to-tree, linearized tree-to-tree, and structured
tree-to-tree models, using constituency-based
parse trees as input, where the target is Ab-
stract Syntax Tree (AST) of the code. We eval-
uate our models on the Python-based code gen-
eration dataset CoNaLa and a semantic pars-
ing dataset ATIS. We find that constituency
trees encoded using a structure-aware model
improve performance for both datasets. We
also provide an analysis of those aspects of
the input parse trees which are most impact-
ful. For instance, we find that structure-aware
encodings are better at modelling inputs with
multiple variables and capturing long-range
dependencies for code generation.1

1 Introduction

Code generation is the task of converting input user
specifications written in natural language (NL) to
code snippets in a target programming language. It
is a task-driven variant of semantic parsing, which
translates natural language input to formal machine-
executable representation. Recent works have uti-
lized the Abstract Syntax Tree (AST) - which is the
syntactic tree representation of target source code

1Code available at: https://github.com/
sdpmas/TreeCodeGen.

- to generate better code snippets (Yin and Neu-
big, 2017, 2018; Sun et al., 2020; Rabinovich et al.,
2017). The use of ASTs has achieved strong results
but there has been relatively less work on utilizing
the parse trees of the NL input. Constituency or
dependency trees representing the syntactic struc-
ture of input can be leveraged to perform sub-tree
alignment with corresponding AST of target code
and benefit the downstream task. Hence, in this
paper, we present several tree-to-tree models for
the code generation task that convert the parse tree
representation of NL input to AST representation
of target source code. First, we base our model
on the Transformer architecture (Vaswani et al.,
2017). However, the standard Transformer is not
designed to preserve the tree structure of the input
parse trees. Hence, to better encode the trees, we
modify a structure-aware Tree Transformer model
(Nguyen et al., 2020) for the tree-to-tree code gen-
eration task. We focus on constituency-based parse
trees in this paper because of space constraints as
this is a short paper. Moreover, as pointed out
by Nguyen et al. (2020), there is little evidence
of constituency structures being learned implicitly
in language models, whereas dependency struc-
tures have been shown to be implicitly embedded
in models like BERT (Devlin et al., 2019; Hewitt
and Manning, 2019). We evaluate our models on
the CoNaLa dataset (Yin et al., 2018) and find that
incorporating constituency parse trees in input us-
ing structure-aware encoders improves the quality
of generated code. We further evaluate our mod-
els on the ATIS dataset (Hemphill et al., 1990),
which translates natural language sentences into
their lambda calculus logical forms and show that a
structure-aware Transformer significantly improves
performance over a standard Transformer.

We also focus on analyzing the input parse trees
to find the aspects that benefit code generation. Our
analysis comprises ablation experiments on our pro-

https://github.com/sdpmas/TreeCodeGen
https://github.com/sdpmas/TreeCodeGen

4383

posed structure-aware model and pattern analysis
of the output from different models with respect to
the characteristics of input natural language spec-
ification. Specifically, we analyze the variation
in performance with the presence of user-defined
identifiers and variable entities in input sentence,
and the complexity of input trees. We find that
the structure-aware model improves performance
when such identifiers and variables are present to-
wards the end of the input sentences and when the
input sentences are short in length.

2 Related Work

Code Generation. Code generation for general-
purpose programming languages is a recent phe-
nomenon, earlier works being focused on domain-
specific languages (Gulwani and Marron, 2014;
Raza et al., 2015). Recent works have mainly ap-
plied sequence-to-tree models for code generation,
with the tree being the AST of target source code
(Dong and Lapata, 2016; Yin and Neubig, 2017;
Rabinovich et al., 2017; Yin and Neubig, 2018,
2019; Shin et al., 2019; Xu et al., 2020; Sun et al.,
2020). While the use of ASTs for code generation
has been substantially studied, to the best of our
knowledge, the use of input parse tree for code
generation is largely unexplored.

Semantic Parsing. Several methods have been
proposed to parse natural language sentences to for-
mal meaning representations like lambda calculus
(Wong and Mooney, 2007), Alexa Meaning Repre-
sentation Language (Kumar et al., 2017), Abstract
Meaning Representations (AMR) (Banarescu et al.,
2013), structured queries (Iyer et al., 2017; Yin
and Neubig, 2018), etc. Many of the recent works
for semantic parsing have focused on sequence-to-
tree models leveraging tree structures like AST as
the intermediate representation for target meaning
representation (Yin and Neubig, 2018; Sun et al.,
2020). Code generation can also be regarded as a
form of semantic parsing where the target meaning
representation is programming language snippet.

Source Trees and Structure-Aware Models.
Several structure-aware tree-encoders have also
been proposed to process the source trees (Chen
et al., 2017a,b; Yang et al., 2017; Nguyen et al.,
2020). While many of the tree-encoders are de-
pendent on recurrent mechanism and hence are
unparallelizable, Nguyen et al. (2020) propose a
Transformer-based structure-aware model that is

parallelizable. Concurrently, several tree-to-seq
models have been proposed that leverage source
syntactic trees for NLP tasks like machine trans-
lation (Eriguchi et al., 2016; Yang et al., 2017;
Eriguchi et al., 2017; Chen et al., 2017b) and sen-
tence modeling (Shi et al., 2018). There has been
some work on leveraging hybrid tree - a joint tree-
like representation of the NL sentence and corre-
sponding meaning representation - for semantic
parsing (Lu et al., 2008; Jie and Lu, 2018), while
Harer et al. (2019) made use of source tree struc-
tures for code correction. However, the same is
unexplored in the context of code generation. We
study the use of tree-to-tree models for code gener-
ation and provide analysis of its various modules.

3 Our Models

3.1 Baseline (Sequence-to-Tree Model)

We use a standard Transformer model (Vaswani
et al., 2017) as our natural language-to-code base-
line. We build a sequence-to-tree model with a
regular Transformer encoder and decoder. The en-
coder maps the source sequence x = x1, x2, ..., xn
to its vector representation x̂ = x̂1, x̂2, ..., x̂n,
which is passed into the decoder. At each time
step t, we linearize the AST generated till time step
t− 1 i.e. AST y<t and concatenate its embedding
with the embedding of the corresponding parent ac-
tions, following Yin and Neubig (2017). Decoder
takes this partial AST vector representation and
source vector representation x̂ from encoder as in-
put and expands the frontier non-terminal node of
the partial AST. Here, ASTs are linearized by the
pre-order depth-first traversal and the expansion
of the AST, at each time step, is constrained by
the grammar rules of the underlying programming
language. We adopt the ASDL grammar and tran-
sition system (Yin and Neubig, 2018) that decom-
poses the production of an AST into a sequence
of actions. At each time step t, the action at can
be of 3 types (see Appendix for details). Given
the input specification x, the probability of gen-
erating an AST y can be expressed in terms of
probabilities of generating corresponding actions:
p(y | x) =

∏
t p(at | x, y<t). Here, at is the action

at time step t and y<t is the partial AST generated
upto time step t. We also use a pointer network
(Vinyals et al., 2015) to allow the model to copy
relevant entities from input sequence while gener-
ating a terminal AST node.

4384

3.2 Linearized Tree-to-Tree Model

Here, we use the identical model architecture as
our baseline (see Sec. 3.1) but we replace the input
NL sequence with its linearized constituency-based
parse tree. Constituency trees aim to describe syn-
tactic structure of the sentence by dividing it into
sub-phrases. As discussed in Sec. 1, this struc-
tural information can promote alignment between
source and target sub-trees (AST), thereby improv-
ing downstream generation task. In our model,
constituency trees are linearized by the pre-order
depth-first traversal (see Fig. 5 in Appendix). Our
output is the AST representation of code.

3.3 Structured Tree-to-Tree Model with
Hierarchical Accumulation

A standard Transformer encoder (see Sec. 3.1) is
not designed to process the structural information
of input parse trees. On the other hand, many tree-
based models have been proposed in the past to pro-
cess the structural information (Chen et al., 2018;
Eriguchi et al., 2016; Rao et al., 2019) but most
of them are based on recurrent mechanism and
hence, not parallelizable like Transformer-based
models. This observation motivated us to build
a Transformer-based structure-aware tree-to-tree
model. In this paper, we adapt Tree Transformer, an
attention-based tree-to-tree model with hierarchical
accumulation proposed by Nguyen et al. (2020), for
code generation. Hierarchical accumulation aims
to encode the tree by performing a series of oper-
ations including upward cumulative-average and
weighted aggregation on the interpolated tree ma-
trix. Furthermore, the model includes hierarchical
embeddings to induce biases that reflect hierarchy
within each branch of the tree and among the sib-
lings within a subtree. Finally, subtree masking is
used to filter out irrelevant information during up-
ward cumulative-average and weighted aggregation
operations. In this model, our target is identical to
that of our baseline i.e., the AST representation of
the source code, which is later converted to source
code with the help of the transition system. We
linearize the AST in the same fashion as our base-
line, concatenate it with the corresponding parent
actions vector in the hidden dimension and pass it
into the decoder along with the leaves and nodes
vector representations from the encoder. We also
add a pointer network (Vinyals et al., 2015) to allow
the model to copy from leaves of input parse tree
while generating a terminal AST node. Without

Method BLEU
Xu et al. (2020) 27.2
Baseline: Text-to-Tree 28.13
Model 1: Linearized Constituency Tree-to-Tree 27.71
Model 2: Structured Constituency Tree-to-Tree 30.30

Table 1: Results on the test set of CoNaLa dataset.

pointer network, our model architecture is identical
to the Tree Transformer, so we refer the reader to
Nguyen et al. (2020) for a complete description of
the model architecture.

4 Experimental Setup

Dataset. We evaluate each of the models de-
scribed in Sec. 3 on the CoNaLa (Yin et al., 2018)
and ATIS (Hemphill et al., 1990) datasets. The
CoNaLa dataset contains 2379 manually curated
intent-snippet pairs for training (200 of which we
use for validation) and 500 pairs for test. Although
the CoNaLa dataset consists of 600k additional
mined intent-snippet pairs, we train our models
only on the manually-curated training dataset and
compare them with Xu et al. (2020) model trained
on the same dataset and without the use of reranker.
The ATIS dataset consists of 4434, 491 and 448
pairs for training, validation, and test respectively.
Following previous works, we use corpus-level
BLEU-4 and exact-match accuracy metrics for eval-
uation on CoNaLa and ATIS datasets respectively.
See Appendix for details on training and inference.

5 Results

Table 1 shows BLEU scores from our experiments
on the CoNaLa dataset. Our baseline Transformer
model outperforms previous state-of-the-art LSTM-
based model (Xu et al., 2020) by 0.93 BLEU
points. The linearized constituency tree-to-tree
model hinders the BLEU score compared to our
baseline. However, the structured constituency tree-
to-tree model significantly outperforms baseline
by 2.17 (p<0.01)2 BLEU points and linearized
constituency tree-to-tree model by 2.59 (p<0.01)
BLEU points. It also outperforms the baseline
model by 8% in terms of human-evaluated code
quality (see Appendix). This suggests that the struc-
tured inputs can provide important cues for gener-
ating high quality code snippets through structure-
aware encodings. This information is lost when
trees are converted to linearized inputs, thereby

2Statistical significance is computed with 100K samples
using bootstrap (Noreen, 1989; Tibshirani and Efron, 1993).

4385

Method Acc.
TRANX (Yin and Neubig, 2018) 86.2
TreeGen (Sun et al., 2020) 89.1
Baseline: Text-to-Tree 75.89
Model 1: Linearized Constituency Tree-to-Tree 53.57
Model 2: Structured Constituency Tree-to-Tree 86.83

Table 2: Results on the test set of ATIS dataset.

leading to a drop in performance over the text-to-
tree baseline. It is important to note that our mod-
els have significantly higher number of parameters
compared to (Xu et al., 2020) (roughly 44-49M for
our models vs 2M for their model) as their model
consists of only one layer of LSTM. However, we
ran the LSTM model with higher number of param-
eters by increasing the embedding dimensions and
the number of hidden layers in encoder LSTM and
we did not see significant improvement in BLEU
score. This indicates that the superior performance
of our models is primarily due to the rather than
the increased count of learnable parameters.

Table 2 shows accuracy scores from our exper-
iments on the ATIS dataset. Our baseline model
performs significantly worse than the LSTM-based
TRANX (Yin and Neubig, 2018) and the accuracy
further drops with the linearized constituency tree-
to-tree model. Our structured model, however,
performs significantly better than the aforemen-
tioned models (p<0.01), a trend we observed in
results on the CoNaLa dataset as well. The accu-
racy of the structured model is still slightly worse
than the TreeGen model (Sun et al., 2020). This
might be because the TreeGen model consists of
an AST reader which encodes the partial code tree
generated in previous timesteps using structure-
aware tree convolutions, during generation at each
timestep. Our model lacks such a module for the
target AST. Nonetheless, the overall trend among
our three models suggests that parse trees benefit
semantic parsing as long as their structure is in-
corporated in the model. However, if this extra
hierarchical information is encoded in a linear fash-
ion, it results in negative contribution to semantic
parsing (row 4 in Table 2). Overall, our results
also provide motivation for joint modelling of both,
input and output parse trees, for semantic parsing.

6 Analysis

6.1 Ablation Tests
We ablate our best model to understand the effect
of the various modules in Tree Transformer on tar-

Method CoNaLa
Structured Constituency Tree to Tree 33.76
- Subtree Masking 31.76
- Hierarchical Embeddings 32.62

Table 3: Ablation results for the structured constituency
tree-to-tree model on the validation set of CoNaLa
dataset. BLEU-4 metric is used to evaluate predictions.

 I: Concatenate a list of strings str_0

BM: [x['str_0' for x in str_0 if 'str_0' in 'str_0'] ✗

SM: """""".join([str_0]) ✓

 I: Search for string that matches regular expression
 pattern str_0 in string str_1

BM: re.compile.group('str_0', re.DOTALL) ✗

SM: re.findall('str_0', str_1) ✓

Figure 1: Sample predictions of our models when
quoted string(s) appear towards the end of input
sentence. These strings (highlighted) are replaced
by placeholders. (I=Input, BM=Baseline Model,
SM=Structured Model)

get task and present results in Table 3. First, we
remove subtree masking which allows each node
of the tree to attend over nodes that are not in the
subtree rooted at that node in hierarchical accumu-
lation. Second, we remove the use of hierarchical
embeddings in our model. On the CoNaLa dataset,
both experiments result in negative impact on the
model’s performance. This suggests that subtree
masking is a crucial mechanism for structure-aware
encoding i.e, for each node in the parse tree, only
the relevant information within the subtree rooted
at the node is useful. Comparatively, the results
show that subtree masking is more important than
hierarchical embeddings.

6.2 Pattern Analysis

Following Yin and Neubig (2017) and Xu et al.
(2020), we next analyze the input intents and
the corresponding code generated by the baseline
model and the structured model (on a subset of
test samples of CoNaLa datset) to find recurring
patterns. First, we observe that input specifications
in CoNaLa dataset contain quoted strings, which
often occur as user-defined identifiers or strings in
generated code as well. We find that when these
quoted strings appear towards the end of the in-
put sentence, the difference in quality of output
code by the two models in terms of average BLEU
score is higher than usual i.e., more than 5 BLEU
points (row 2 of Table 4). Moreover, when the in-
put sentence contains two or more quoted strings,

4386

 I: Create list var_0 containing 100 instances of object var_1

BM: var_0 = [(var_1 + var_0) for var_1, in 100(var_0)] ✗

SM: var_0 = [var_1() for _ in range(100)] ✓

 I: Convert string var_0 into a list of integers var_1

BM: var_1 = [int(x) for x in ’var_1’.split(var_0)] ✗

SM: [int(i) for i in var_0.split()] ✓

Figure 2: Sample predictions of our models when
multiple quoted strings appear in the input sentence.
(I=Input, BM=Baseline Model, SM=Structured Model)

Pattern Baseline Structured
All Intents 20.23 23.74
Ending with quoted string 20.79 26.42
Multiple quoted strings 23.55 29.20
No quoted strings 10.04 12.42

Table 4: Comparison of average BLEU scores of base-
line model and structured model in relation to different
characteristics of input intents of CoNaLa dataset. Re-
sults are shown on the test set.

the baseline model often fails to capture the seman-
tic relationship between those strings in the output
code resulting in lower BLEU scores (row 3 of
Table 4). However, in the absence of any quoted
strings, the structure-aware model does better than
the baseline by only 2 BLEU points (row 4 of Ta-
ble 4). This shows that the structured input, when
paired with a structure-aware encoder, helps cap-
ture dependencies between semantic units. Fig. 1
and Fig. 2 provide examples of both these scenarios
and Table 4 compares the average BLEU scores.

Similarly, we notice that there are variable en-
tities like city, airline, airport, time, etc. in the
input specifications, which also appear in the corre-
sponding outputs in the ATIS dataset. We find that
our structure-aware model outperforms the base-
line model by 12.57 points when such variables
occur at the end of the input sentence (see row 3
in Table 6), suggesting that the model is able to
capture long-term dependencies (see Fig. 8).

6.3 Comparison Based on Input Complexity

We compare the performance of the baseline text-
to-tree and structured tree-to-tree models w.r.t. in-
put complexity i.e. the length of input sentences
and height of the input parse trees in the test set
of CoNaLa dataset. The variation of mean BLEU
scores w.r.t. length of input sentence and height of
input trees is shown in Figures 3 and 4 respectively.
In both figures, we observe that the structure-aware
model outperforms baseline by wider margins for
inputs of shorter length and height. Similarly, there

Figure 3: Plot of input intent length vs. mean BLEU
score for our baseline and structured model on the test
set of CoNaLa dataset.

Figure 4: Plot of height of input parse tree vs. mean
BLEU score for our baseline and structured model on
the test set of CoNaLa dataset.

are smaller but consistent improvements for inputs
of medium complexity. The margins are largest for
samples of high complexity, but this observation is
supported by relatively few data points (see scatter
plots in Appendix). From these results, we infer
that the structured model is particularly helpful for
short input sentences or parse trees in code genera-
tion. Similarly, the structured model significantly
outperforms the baseline for shorter intent lengths
in the ATIS dataset. However, we did not find any
clear linkage between the height of input tree and
the performance of our models on the ATIS dataset
(see Figures 9 and 10 in Appendix).

7 Conclusion

We experimented with models to utilize input con-
stituency parse trees for code generation and seman-
tic parsing. Our tree-to-tree model significantly out-
performs other approaches for code generation and
is competitive for semantic parsing. We find that
the hierarchical structure of parse trees helps the
structure-aware model capture semantic relation-
ships between user-defined identifiers and variable
entities in the input intent.

Acknowledgments

We thank Hyounghun Kim and the reviewers for
their useful feedback. This work was supported by
NSF-CAREER Award 1846185 and a Microsoft
Investigator Fellowship.

4387

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Huadong Chen, Shujian Huang, David Chiang, and Jia-
jun Chen. 2017a. Improved neural machine trans-
lation with a syntax-aware encoder and decoder.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1936–1945, Vancouver,
Canada. Association for Computational Linguistics.

Kehai Chen, Rui Wang, Masao Utiyama, Lemao Liu,
Akihiro Tamura, Eiichiro Sumita, and Tiejun Zhao.
2017b. Neural machine translation with source de-
pendency representation. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2846–2852, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Xinyun Chen, Chang Liu, and Dawn Song. 2018.
Tree-to-tree neural networks for program transla-
tion. In Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems,
NIPS’18, page 2552–2562, Red Hook, NY, USA.
Curran Associates Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neu-
ral machine translation. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
823–833, Berlin, Germany. Association for Compu-
tational Linguistics.

Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun
Cho. 2017. Learning to parse and translate improves
neural machine translation. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages

72–78, Vancouver, Canada. Association for Compu-
tational Linguistics.

Sumit Gulwani and Mark Marron. 2014. Nlyze: Inter-
active programming by natural language for spread-
sheet data analysis and manipulation. In Proceed-
ings of the 2014 ACM SIGMOD international con-
ference on Management of data, pages 803–814.

Jacob Harer, Chris Reale, and Peter Chin. 2019. Tree-
transformer: A transformer-based method for cor-
rection of tree-structured data. arXiv preprint
arXiv:1908.00449.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The ATIS spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27,1990.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963–973, Vancouver, Canada.
Association for Computational Linguistics.

Zhanming Jie and Wei Lu. 2018. Dependency-based
hybrid trees for semantic parsing. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2431–2441, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Anjishnu Kumar, Arpit Gupta, Julian Chan, Sam
Tucker, Bjorn Hoffmeister, Markus Dreyer,
Stanislav Peshterliev, Ankur Gandhe, Denis Filimi-
nov, Ariya Rastrow, et al. 2017. Just ask: Building
an architecture for extensible self-service spoken
language understanding. In 1st Workshop on
Conversational AI at the Conference on Advances
in Neural Information Processing Systems (NIPS)
2017.

Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke Zettle-
moyer. 2008. A generative model for parsing natural
language to meaning representations. In Proceed-
ings of the 2008 Conference on Empirical Methods
in Natural Language Processing, pages 783–792.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://doi.org/10.18653/v1/P17-1177
https://doi.org/10.18653/v1/P17-1177
https://doi.org/10.18653/v1/D17-1304
https://doi.org/10.18653/v1/D17-1304
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1078
https://doi.org/10.18653/v1/P16-1078
https://doi.org/10.18653/v1/P17-2012
https://doi.org/10.18653/v1/P17-2012
https://www.aclweb.org/anthology/H90-1021
https://www.aclweb.org/anthology/H90-1021
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/D18-1265
https://doi.org/10.18653/v1/D18-1265

4388

Xuan-Phi Nguyen, Shafiq Joty, Steven Hoi, and
Richard Socher. 2020. Tree-structured attention
with hierarchical accumulation. In International
Conference on Learning Representations.

Eric W Noreen. 1989. Computer-intensive methods for
testing hypotheses. Wiley New York.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1139–
1149, Vancouver, Canada. Association for Computa-
tional Linguistics.

Jinfeng Rao, Kartikeya Upasani, Anusha Balakrish-
nan, Michael White, Anuj Kumar, and Rajen Subba.
2019. A tree-to-sequence model for neural NLG in
task-oriented dialog. In Proceedings of the 12th In-
ternational Conference on Natural Language Gener-
ation, pages 95–100, Tokyo, Japan. Association for
Computational Linguistics.

Mohammad Raza, Sumit Gulwani, and Natasa Milic-
Frayling. 2015. Compositional program synthesis
from natural language and examples. In Twenty-
Fourth International Joint Conference on Artificial
Intelligence.

Haoyue Shi, Hao Zhou, Jiaze Chen, and Lei Li. 2018.
On tree-based neural sentence modeling. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4631–
4641, Brussels, Belgium. Association for Computa-
tional Linguistics.

Eui Chul Shin, Miltiadis Allamanis, Marc
Brockschmidt, and Alex Polozov. 2019. Pro-
gram synthesis and semantic parsing with learned
code idioms. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili
Mou, and Lu Zhang. 2020. Treegen: A tree-based
transformer architecture for code generation. In
AAAI, pages 8984–8991.

Robert J Tibshirani and Bradley Efron. 1993. An intro-
duction to the bootstrap. Monographs on statistics
and applied probability, 57:1–436.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural
Information Processing Systems, volume 28, pages
2692–2700. Curran Associates, Inc.

Yuk Wah Wong and Raymond Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing
with lambda calculus. In Proceedings of the 45th
Annual Meeting of the Association of Computational
Linguistics, pages 960–967, Prague, Czech Repub-
lic. Association for Computational Linguistics.

Frank F. Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan
Vasilescu, and Graham Neubig. 2020. Incorporating
external knowledge through pre-training for natural
language to code generation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6045–6052, Online. As-
sociation for Computational Linguistics.

Baosong Yang, Derek F. Wong, Tong Xiao, Lidia S.
Chao, and Jingbo Zhu. 2017. Towards bidirectional
hierarchical representations for attention-based neu-
ral machine translation. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1432–1441, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In International Conference on Min-
ing Software Repositories, MSR, pages 476–486.
ACM.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2018. TRANX: A
transition-based neural abstract syntax parser for se-
mantic parsing and code generation. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing: System Demonstra-
tions, pages 7–12, Brussels, Belgium. Association
for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2019. Reranking
for neural semantic parsing. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4553–4559.

Appendices

A Our Models

A.1 Baseline (Sequence-to-Tree Model)
We use a standard Transformer model (Vaswani
et al., 2017) as our natural language-to-code base-
line. We build a sequence-to-tree model with a
regular Transformer encoder and decoder. The en-
coder maps the source sequence x = x1, x2, ..., xn
to its vector representation x̂ = x̂1, x̂2, ..., x̂n,
which is passed into the decoder. At each time

https://openreview.net/forum?id=HJxK5pEYvr
https://openreview.net/forum?id=HJxK5pEYvr
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/W19-8611
https://doi.org/10.18653/v1/W19-8611
https://doi.org/10.18653/v1/D18-1492
https://proceedings.neurips.cc/paper/2019/file/cff34ad343b069ea6920464ad17d4bcf-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/cff34ad343b069ea6920464ad17d4bcf-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/cff34ad343b069ea6920464ad17d4bcf-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://www.aclweb.org/anthology/P07-1121
https://www.aclweb.org/anthology/P07-1121
https://www.aclweb.org/anthology/P07-1121
https://doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/10.18653/v1/2020.acl-main.538
https://doi.org/10.18653/v1/D17-1150
https://doi.org/10.18653/v1/D17-1150
https://doi.org/10.18653/v1/D17-1150
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002

4389

step t, we linearize the AST generated till time
step t − 1 i.e. AST y<t and concatenate its em-
bedding with the embedding of the corresponding
parent actions, following Yin and Neubig (2017).
The decoder takes this partial AST vector repre-
sentation and the source vector representation x̂
from encoder as input and expands the frontier non-
terminal node of the partial AST. Here, the ASTs
are linearized by the pre-order depth-first traversal
and the expansion of the AST, at each time step, is
constrained by the grammar rules of the underly-
ing programming language. We adopt the ASDL
grammar for Python and transition system (Yin and
Neubig, 2018) that decomposes the production of
an AST into a sequence of actions. At each time
step t, the action at can be of 3 types:

• ApplyRule Action: Applies production rule R to
the partial AST.

• Reduce Action: Denotes the completion of a field
with optional or multiple cardinalities.

• GenToken Action: Expands a terminal node by
generating a leaf token.

Given the input specification x, the probability
of generating an AST y can be expressed in terms
of the probabilities of generating the corresponding
actions:

p(y | x) =
∏
t

p(at | x, y<t) (1)

Here, at is the action at time step t and y<t is
the partial AST generated upto time step t. We
also use a pointer network (Vinyals et al., 2015)
to allow the model to copy relevant entities from
input sequence while generating a terminal AST
node with GenToken Action.

B Experimental Setup

Training and Inference. All of our models have
6 encoder layers and 6 decoder layers. Our mod-
els are trained on GPUs using Google Colab and
each model takes 2-3 hours for a single run. We
perform manual hyperparameter tuning, using 4-5
runs for each model. We tried learning rates within
the range [1e-4, 5e-5]. After manual tuning, for
CoNaLa dataset, we trained all the models using
learning rate of 1e-4. For ATIS dataset, we use
learning rate of 2e-4 for our baseline model, 5e-5
for our Linearized Tree-to-Tree model and 4e-5
for our structured model. We use batch size of 64.

NP

NP

NNDT

the

NN

time

PP

IN

of

NP

NN

file

NN

Root

Input: get the creation time of file var_0

S

VP

VB

get

creation
var_0

Linearized Order: Root, S, VP, VB, get, NP, NP, DT, the, NN, creation, NN,
 time, PP, IN, of, NP, NN, file, NN, var_0

Constituency Parse Tree:

Figure 5: Constituency parse tree of natural language
specification get the creation time of file var 0 and its
linearized form. Words from the input specification are
leaves of the tree.

Models Wins Loses Tie
Structured T2T vs. Baseline 35% 27% 38%

Table 5: Results from human evaluation of generated
code. Wins and Loses refer to the %times code gen-
erated from structured tree-to-tree model was chosen
over those from baseline model.

We parse source text into constituency trees using
Stanford CoreNLP parser (Manning et al., 2014).
During inference, we use beam search with beam
size of 30 for CoNaLa dataset and beam size of 1
for ATIS dataset to predict the output AST for a
given natural language intent. We begin the beam
search with one AST initialized with the root node
and run until maximum time-step T or until we
find K complete ASTs, where K is the beam-size.
The maximum time-step is set to 200.

C Results

C.1 Human Evaluation

We also perform human evaluation of 100 samples
from the CoNaLa dataset (see Table 5). The an-
notator (non-coauthor graduate student, proficient
in Python) was instructed to pick the better code
output for a given input specification. The samples
contained shuffled outputs from our baseline and
structure-aware models. Outputs from structure-
aware model were preferred 35% of the times while
those from the baseline were preferred 27% of the
times and rest of the instances ended in a tie over
code quality.

4390

Figure 6: Scatter plot of input length vs. BLEU score
for samples from the test set of CoNaLa dataset.

Figure 7: Scatter plot of height of input parse tree vs.
BLEU score for samples from the test set of CoNaLa
dataset.

C.2 Scatter Plots

We present two scatter plots for demonstrating the
effect of input complexity on model performance
for the CoNaLa dataset. Fig. 6 compares sentence-
level BLEU score of predictions from our baseline
and structured models against the length of input
sentences. Similarly, Fig. 7 compares sentence-
level BLEU score of predictions from our baseline
and structured models against the height of input
parse trees. Both of these comparisons are per-
formed on the test set of CoNaLa dataset.

C.3 Pattern Analysis

Following Yin and Neubig (2017) and Xu et al.
(2020), we next analyze the input intents and
the corresponding code generated by the baseline
model and our best model (on a small test sam-
ple), i.e., Structured Constituency Tree-to-Tree to
find recurring patterns. We observe that the code
generated by the structured model is significantly
better for input intents containing certain character-
istics. First, we observe that input specifications in
CoNaLa dataset contain quoted strings (see place-
holder str 0 in Fig. 1 of the main text). These

 I: what airport is at ci0

BM: (lambda $0 e (and (airport $0) (loc:t $0) (to $0 ci0))) ✗
SM: (lambda $0 e (and (airport $0) (loc:t $0 ci0))) ✓

 I: look for a flight to ci0

BM: (lambda $0 e (and (flight $0) (to $0 ci0) (from $0 ci0))) ✗
SM: (lambda $0 e (and (flight $0) (to $0 ci0))) ✓

Figure 8: Outputs of our baseline and structured model
for the ATIS dataset when variable entities appear at
the end of input sentences.

Pattern Baseline Structured
All Intents 75.89 86.83
Not ending with a variable 74.52 80.18
Ending with a variable 76.31 88.88

Table 6: Comparison of accuracies of baseline model
and structured model in relation to different characteris-
tics of input intents of ATIS dataset. Results are shown
on test set.

strings often occur as user-defined identifiers in
the input sentence and as strings in generated code
as well. We find that when these quoted strings
appear towards the end of the input sentence, the
difference in quality of output code by the two
models in terms of average BLEU score is higher
than usual i.e., more than 5 BLEU points (see row
2 in Table 4). We also find that when the input
sentence contains two or more quoted strings, the
baseline model often fails to capture the seman-
tic relationship between those strings in the output
code, resulting in lower BLEU scores. However,
the structure-aware model succeeds at the task, re-
sulting in higher BLEU scores (see row 3 in Ta-
ble 4). In the absence of any quoted strings, the
structure-aware model does better than the baseline
by only 2 BLEU points (see row 4 in Table 4). This
shows that when the structured input is paired with
a structure-aware encoder, it helps capture the se-
mantic relationships between multiple units. Fig. 1
and Fig. 2 provide examples of both these scenarios
and Table 4 compares the average BLEU score of
all the examples in the test set with 1) quoted string
at the end of input sentence, 2) two or more quoted
strings and 3) zero quoted strings,

Similarly, we notice that there are variable enti-
ties like city (ci0 in Fig. 8), airline, airport, time,
etc in the input specifications, which also appear
in the corresponding outputs in the ATIS dataset.
Such variables are anonymized with identifiers of
same type following (Dong and Lapata, 2016). We
find that when such variables occur at the end of the
input sentence, our structured model does signifi-

4391

Figure 9: Plot of length of inputs vs accuracy on the
test set of ATIS dataset.

Figure 10: Plot of height of input parse trees vs accu-
racy on the test set of ATIS dataset.

cantly better than our baseline (see row 3 in Table 6)
but the difference decreases in cases where the vari-
ables don’t occur at the end of the input sentence
(see row 2 in Table 6). Fig. 8 provides examples of
the cases where variable entities occur at the end
of the input sentences.

C.4 Comparison Based on Input Complexity

We compare the performance of our two models
with respect to the complexity of input sentences.
We rank the complexity of an input sentence by its
length and the height of the corresponding parse
tree i.e., the longest length of the path from the root
node of the tree to its leaves. Firstly, we do this
analysis on CoNaLa dataset. Fig. 3 presents a plot
of length of input sentences and mean BLEU scores
of generated code snippets. Fig. 4 presents a plot of
height of input trees and mean BLEU scores of gen-
erated code snippets. Similarly, Figures 6 and 7 are
scatter plots of sentence-level BLEU scores for gen-
erated code snipppets vs. length of input sentences
and height of input parse trees respectively. We can
see in both Fig. 3 and 4 that there is a wider gap

between mean BLEU score of our structured model
and baseline in the beginning, with the structured
model performing significantly better. The gap nar-
rows in the middle and widens towards the end.
However, as we can see from the Figures 6 and 7,
there are very few data points towards the end to
draw any conclusion. From these observations, we
infer that for code generation, structured model is
particularly helpful for short input sentences or for
short input parse trees. Similarly, the structured
model significantly outperforms the baseline for
shorter intent lengths in the ATIS dataset. How-
ever, we did not find any clear linkage between the
height of input sentences and performance of our
models for semantic parsing with the ATIS dataset.
Fig 9 plots length of input sentences against accu-
racy and Fig 10 plots height of input parse trees
against accuracy of outputs for samples in the test
set of ATIS dataset.

