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Abstract

Pre-trained language models (e.g., BERT) sig-
nificantly alleviate two traditional challeng-
ing problems for Chinese word segmentation
(CWS): segmentation ambiguity and out-of-
vocabulary (OOV) words. However, such im-
provements are usually achieved on traditional
benchmark datasets and not close to an im-
portant goal of CWS: practicability (i.e., low
complexity as a standalone task and high ben-
eficiality to downstream tasks). To make a
trade-off between traditional evaluation and
practicability for CWS, we propose a semi-
supervised neural method via pseudo labels.
The neural method consists of a teacher model
and a student model, which distills knowl-
edge from unlabeled data to the student model
so as to improve both in-domain and out-of-
domain CWS. Experiments show that our pro-
posed method can not only keep the practi-
cability of the lightweight student model but
also improve the performance of segmentation
effectively. We also evaluate a range of het-
erogeneous neural architectures of CWS on
downstream Chinese NLP tasks. Results of
further experiments demonstrate that our pro-
posed segmenter is reliable and practical as a
pre-processing step of the downstream NLP
tasks at the minimum cost.1

1 Introduction

Natural language processing (NLP) tasks often
leverage word-level features to exploit lexical
knowledge. Segmenting a sentence into a sequence
of words, especially for languages without explicit
word boundaries (e.g., Chinese) not only extracts
lexical features, but also shortens the length of the
sentence to be processed. Thus, word segmenta-
tion, detecting word boundaries, is a crucial pre-

∗Corresponding author
1Our code is available at https://github.com/

koukaiu/dlut-nihao

processing task for many NLP tasks. In this aspect,
Chinese word segmentation (CWS) is widely ac-
knowledged as an essential task for Chinese NLP.

CWS has made substantial progress in recent
studies on several benchmarks, which is reported
by Huang and Zhao (2007) and Zhao et al. (2019).
In particular, pretrained language models (PLMs),
like BERT (Devlin et al., 2019), have established
new state-of-the-art in sequence labeling (Meng
et al., 2019). Various fine-tuning methods have
been proposed to improve the performance of in-
domain and cross-domain CWS based on PLMs
(Huang et al., 2020; Tian et al., 2020). The two
challenging problems in CWS, segmentation am-
biguity and out-of-vocabulary (OOV) words, have
been significantly mitigated by PLM-based meth-
ods that are fine-tuned on large-scale annotated
CWS corpora. Such methods are even reaching
human performance on benchmarks. Nevertheless,
CWS is more valuable as a prelude for downstream
NLP tasks than as a standalone task. Intrinsic eval-
uation of CWS on benchmark datasets only exam-
ines the effectiveness of current neural methods on
word boundary detection. To better apply CWS
in downstream NLP tasks, we should comprehen-
sively re-think CWS from the perspective of practi-
cability. In this paper, we define the practicability
of CWS with two aspects: low complexity as a stan-
dalone task and high beneficiality to downstream
tasks.

The complexity is twofold: 1) complexity of im-
plementation and 2) time and space complexity of
a CWS algorithm. Previous neural methods usu-
ally require additional resources (Zhou et al., 2017;
Ma et al., 2018; Zhang et al., 2018b; Zhao et al.,
2018; Yang et al., 2019; Qiu et al., 2020), such as
external pre-trained embeddings. The complexity
of implementation is reflected in the difficulty of
acquiring external resources. External resources

https://github.com/koukaiu/dlut-nihao
https://github.com/koukaiu/dlut-nihao
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vary in quality and the length of time for computa-
tion, For example, it is time-consuming to obtain
effective pre-trained embeddings as they are trained
on a huge amount of data. Generally, it is difficult
to maintain high CWS performance for many previ-
ous neural methods in a low-resource environment.
Neural methods with external resources achieve
high CWS performance but at the cost of a high
complexity of implementation. On the other hand,
for training and inference, PLM-based CWS meth-
ods also consume large memory to store a huge
number of parameters of their models. The speed
of inference is usually slow. The huge memory con-
sumption and slow inference prevent PLM-based
CWS models from being deployed in small-scale
smart devices. And, as CWS is often used with
downstream models, this even weakens the appli-
cability on smart devices as CWS is not supposed
to take too much overhead in this situation.

The second is the beneficiality to downstream
tasks. CWS is rarely used as a standalone task in
industry. Existing CWS evaluations only rely on
benchmarks and analyze the behavior of segmenta-
tion methods in a static scenario. Some well-known
benchmarks are quite old (e.g., Bakeoff-2005) and
not challenging for neural CWS anymore. Such
evaluations are intrinsic, which are not associated
with downstream NLP tasks. High CWS perfor-
mance (e.g., Precision and F1) does not mean that
segmentation results are beneficial to downstream
processing. Additionally, benchmark datasets have
a plenty of segmentation noises that affect CWS
training and evaluation. For instance, although the
structure of “副” (vice) + “X” is segmented as two
words: “副” (vice) and “X” in training data and
never unified as a single word, “副校长” (vice-
president) appears as one word in test data, note
that: X presents any job titles, e.g., “总统” (presi-
dent) and “经理” (manager). There are also many
obvious errors due to annotation inconsistency in
data. We have found, in one benchmark dataset, the
word “操作系统” (operating system) is regarded
as two words [“操作” (operate) + “系统” (system)]
6 times and appears as one word 14 times, respec-
tively. Therefore, to measure and improve the ben-
eficiality of CWS to downstream tasks, intrinsic
evaluations on CWS benchmark datasets are not
sufficient. We should perform extrinsic evaluations
with downstream tasks.

To address the aforementioned practicability is-
sue of CWS, we propose a semi-supervised neu-

ral method via pseudo labels. The method con-
sists of two parts: a teacher model and a student
model. First, we use a fine-tuned CWS model that
is trained on the annotated CWS data as the teacher
model, which can achieve competitive performance
in traditional perspective for CWS. Then we collect
massive unlabeled data and distill knowledge from
the teacher model to the student model by generat-
ing pseudo labels. We filter out noisy pseudo labels
to provide reliable knowledge for training the stu-
dent model. The unlabeled data is easier to obtain
than other external resources (e.g., lexicon and pre-
trained embeddings) and can be updated anytime
at a low cost. And we use the lightweight student
model for inference, hence significantly reducing
the memory consumption and inference time com-
plexity. The practicability of our proposed method
is competitive.

To sum up, the contributions of this work are as
follows:

• Our proposed method distills knowledge from
the teacher model via unlabeled data to coach
the lightweight student model. The proposed
method achieves a noticeable improvement
over strong baselines for CWS by the tradi-
tional intrinsic evaluation.

• The lightweight student can be deployed on a
small-scale device, even in a non-GPU envi-
ronment. We abandon the PLM neural archi-
tectures (teacher model) during decoding. The
speed of decoding is thus fast for practical ap-
plication. Our method reduces the complexity
of implementation, inference time, and mem-
ory consumption.

• We empirically investigate the effectiveness
of the proposed method to downstream Chi-
nese NLP tasks and analyze the impact of seg-
mentation results on them via extrinsic evalu-
ations.

2 Related Work

Since Xue (2003) formalizes CWS as a sequence
labeling problem, many traditional statistical meth-
ods have achieved high performance for CWS on
several benchmarks (Emerson, 2005). According
to (Huang and Zhao, 2007) and (Zhao et al., 2019),
CRF-based models (Tseng et al., 2005; Zhao and
Kit, 2008; Zhao et al., 2010; Sun et al., 2012; Zhang
et al., 2013) and neural methods (Zheng et al., 2013;
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Pei et al., 2014; Chen et al., 2015; Cai and Zhao,
2016; Cai et al., 2017) have been reported to out-
perform traditional methods with high F1 scores
(0.95-0.97). In particular, Long Short-Term Mem-
ory Networks (LSTM) are the main backbone net-
works being used in these methods (Huang et al.,
2015; Ma et al., 2018; Yang et al., 2019). Except
for using LSTM, self-attention networks have been
also employed for CWS (Duan and Zhao, 2020).

The OOV problem has been a long-standing
challenge for CWS and it is particularly serious
in the cross-domain scenario. To relieve this issue,
many studies incorporate a variety of pre-trained
word embeddings and external resources into CWS
models (Zhou et al., 2017; Zhang et al., 2018b,a;
Yang et al., 2019). Recently, with the development
of PLMs (Devlin et al., 2018; Liu et al., 2019),
fine-tuning methods benefit from a huge amount of
the pre-trained knowledge for alleviating the OOV
problem for CWS (Meng et al., 2019; Tian et al.,
2020; Huang et al., 2020; Qiu et al., 2020). Such
methods are nearly reaching human-level perfor-
mance.

Nevertheless, external resources and PLMs re-
sult in additional costs in memory consumption
and inference time. Knowledge distillation has
been proposed to alleviate this additional cost is-
sue (Ba and Caruana, 2014; Hinton et al., 2015).
Kim and Rush (2016) propose to use knowledge
distillation for neural machine translation while
Mukherjee and Awadallah (2019) study several as-
pects of distillation to match the student model for
sentiment classification. Jiao et al. (2020) adopt
multiple distilling strategies to minimize the num-
ber of the parameters of the pre-trained language
model. Different from these previous studies, our
proposed method utilizes unified pseudo labels to
improve the performance of the lightweight model.
The model can provide positive influence as a pre-
processing step to downstream tasks, compared
with previous state-of-the-art methods.

3 Proposed Framework

Aiming at not only keeping competitive perfor-
mance on benchmarks but also reducing the com-
plexity of the CWS methods, our proposed frame-
work consists of two essential modules: a student
model and a teacher model, as shown in Figure 1.
There is an obvious performance gap between the
model based on PLMs (Huang et al., 2020) and the
lightweight model (Duan and Zhao, 2020). The
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Figure 1: The illustration of our proposed framework.
The red, green and blue blocks indicate the heteroge-
neous student models.

OOV issue is the main reason for the gap. Since
the teacher model based on fine-tuned PLMs with
high complexity can alleviate the OOV issue effec-
tively, we use a combination of PLM-based teacher
and lightweight student. First, the teacher model
transfers pre-trained knowledge into a specific data
distribution by annotating unlabeled data. Then
we utilize a huge amount of such annotated data
to distill knowledge from the teacher model to the
lightweight student model. The pseudo labels pro-
vided by the teacher model can help the lightweight
model to alleviate the OOV issue of CWS.

3.1 Teacher Model

Recently, there are several PLMs (e.g., BERT and
RoBERTa) that have shown competitive perfor-
mance for many NLP tasks. In particular, a mod-
ified RoBERTa model has been built for Chinese
NLP tasks (Cui et al., 2019). Inspired by the previ-
ous success of PLM-based models on CWS (Huang
et al., 2020), we use the RoBERTa-WWM PLM as
the teacher model.

Normally, PLMs are trained for predicting words
in general. To adapt PLMs and transfer their knowl-
edge to CWS, we need to fine-tune PLMs on the
annotated data of CWS. Let X denote the inputs,
which are converted into a sequence of embeddings.
For consistency, two tags (“[CLS]” and “[SEP]”)
are added to the beginning and end of each sen-
tence, respectively. A Linear transfer layer with
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W (t) ∈ Rdmodel∗N replaces the original compo-
nent, where dmodel is the same as the size of di-
mensions of the pre-trained model and N presents
number of tags in CWS annotated data (N = 4).
We convert CWS annotations into annotations with
a 4-tag set T = {B,M,E, S} that indicates the
Begin, Middle, End of a word, or a Single char-
acter forming a word. After linear mapping, the
teacher model adopts the function of Softmax and
the greedy search for decoding.

p(t)(x) = Softmax(ht(x) ·W (t) + b(t)) (1)

where ht(x) represents the hidden states of the
teacher model. Complex algorithms (e.g., CRF or
beam search) for decoding are abandoned in or-
der to reduce the complexity. In addition, these
complex algorithms only obtain a slight improve-
ment for CWS. CRF increases the time complexity
by n times and beam search requires more search
time varying with the beam size, compared with
the greedy search.

GreedySearch→ O(Mn)

BeamSearch→ O(Mnb2)

CRF → O(Mn2)

where M is a constant representing other factors in
the model complexity, n is the size of the sentence,
and b is the width of beam.

The training of the teacher model is to minimize
the errors by solving the following optimization
function:

min
W (t)

Jseg(y(x)|p(t)(x,W (t))) (2)

where the loss function Jseg is computed by:

Jseg(y(x)|p(t)(x)) = −
∑
x

y(x)logp(t)(x) (3)

3.2 Student Model
To improve the practicability of CWS, our pro-
posed framework rediscovers the potential of the
lightweight models. The lightweight model suffers
from the OOV problem compared with the teacher
model. However, the lightweight model can help
us to solve the practicability issue of CWS. We
propose multiple lightweight models as the student
model, as shown in Figure 1.

-ConPrune. This is a pruned PLM model,
where three quarters of the PLM’s layers are dis-
carded. Particularly, we only use the first top 3

layers of the entire 12 layers. We also incorporate
a Convolutional Neural Network (CNN) encoder
to capture the local features of the sequence.

-LSTM. LSTM is the most popular architec-
ture for sequence labeling tasks (Ma et al., 2018).
As shown in Figure 1, for each input character
ci, the corresponding character uni-gram embed-
ding and bi-gram embedding are represented as
eci and ecici+1 , respectively. The LSTM model is
fed with the two types of character embeddings by
concatenation operation, wi = eci ⊕ ecici+1 . The
loss function and the decoding are the same as the
teacher model.

-Transformer. The Transformer is usually not
working as well as LSTM for sequence labeling
tasks despite its success on other tasks. We pro-
pose a new Transformer variant that is inspired by
Duan and Zhao (2020). The modified Transformer
utilizes the Gaussian directional mask to encode
unigram features.

-CRF. Although CRF is not a dominant model
for CWS, it still has great significance for prac-
ticability. We only utilize uni-gram and bi-gram
features for CRF, keeping the same as neural meth-
ods for a fair comparison. It does not rely on any
auxiliary features, e.g., accessor variety (AV) (Feng
et al., 2004) or pointwise mutual information (PMI)
(Sun et al., 1998).

All formulations and details of the student mod-
els are shown in Appendix A.

3.3 Pseudo Labels

Neural networks typically predict the probability of
each class by Softmax. In the form of distillation,
knowledge is transferred to the distilled model by
using a distribution that is produced by the teacher
model with a temperature in its Softmax. How-
ever, the architectures of the student models are
completely different from the teacher model, as
shown in the last section. Unlike previous stud-
ies on distilling knowledge, the process of knowl-
edge distillation in our framework is essentially the
same as the original CWS task. Particularly, our
proposed method distills the knowledge from the
teacher model to the student model by using a huge
amount of unlabeled data as the knowledge con-
tainer. It is easy to obtain unlabeled data from the
Internet. The pseudo labels are generated together
with noisy labels and we reduce the impact of noisy
labels. Due to the high correlation between training
data and unlabeled data, we directly distill knowl-
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MSR PKU AS CITYU CTB6
TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

# CHAR 4,050K 184K 1,826K 173K 8,368K 198K 2,403K 68K 1,156K 134K
# WORD 2,368K 107K 1,110K 104K 5,500K 123K 1,456K 41K 701K 82K

NER-PKU WMT-18 UNLABELED

TRAIN TEST TRAIN DEV TEST PEOPLE’S DAILY

# SEN 17,546 1,714 24,752,392 2,002 2,001 115,856

Table 1: Statistics of our datasets. The upper part of the table shows the details of the CWS benchmarks and the
bottom for the downstream NLP tasks. All datasets come from the official websites.

edge from the teacher model to the student model,
and the final loss is shown as follow:

Ju(y(u)|p(s)(u)) = −
∑
xu

yulogy∗(xu) (4)

J(Θs,Θu) = Jseg(Θs) + αJu(Θu),

Θs : y(x)|p(s)(x),Θu : y(u)|p(s)(u)
(5)

where s denotes the student model, α is a weight to
balance the losses on the labeled data and unlabeled
data (α = 0.5 in our experiments). The loss func-
tion is calculated with two parts. One is from the
labeled data, the other is from the unlabeled data
xu. Hard prediction of the teacher model on the
unlabeled data produces noisy labels yu. And the
prediction of the student model on unlabeled data is
y∗. To reduce the redundant computation, pseudo
labels are mix-sampled according to a regular in-
terval. The sampling strategy chooses the different
n-gram features with the annotated data, which
makes the distribution of unlabeled sentences dif-
ferent from the annotated data. Instead of optimiz-
ing the loss function jointly, we adopt a two-stage
optimizing method. The first stage trains student
models on the large-scale annotated data. In the
second stage, the student model is continued to be
trained on the data with labels predicted from the
teacher model. Since the teacher model is also fine-
tuned on the annotated data, the two-stage training
does not suffer from the catastrophic forgetting
issue.

4 Experiments

4.1 Datasets and Settings
To examine the advantage of distilling knowledge
and the complexity of our proposed framework
via pseudo labels, we conducted experiments on
five benchmarks (Bakeoff-20052 and CTB6). The

2http://sighan.cs.uchicago.edu/
bakeoff2005/

Parameters Teacher
Student

PRUNE LSTM TRANS

Hidden states 768 768 256 256
uni-gram embeds 768 768 50 256
bi-gram embeds - - 50 -
learning rate 2e-5 1e-5 1e-3 0.1
batch size 64 256 64 4096
dropout 0.1 0.1 0.2 0.1
hidden layers 12 3 3 6
epochs 10 20 30 200

Table 2: The hyper-parameters. “PRUNE” represents
the ConPrune and “TRANS” represents the modified
Transformer.

statistics of the benchmarks are shown in Table 1.
We randomly picked 10% sentences from the train-
ing data as the development data for tuning. The
unlabeled data were collected from the People’s
Daily website. We crawled 5,000 articles. For con-
sistency, we pre-processed unsegmented sentences,
which is similar to previous work (Cai et al., 2017).
In addition, to empirically validate the beneficial-
ity of the proposed CWS method to downstream
tasks, we carried out comprehensive experiments
on named entity recognition (NER) and machine
translation (MT). The details of datasets for these
two tasks are shown in Table 1. We used F1 as the
evaluation metric for NER and BLEU (Papineni
et al., 2002) for MT.

To fine-tune the teacher model (i.e., RoBERTa-
WWM), we adjusted a few crucial hyper-
parameters for it, as shown in Table 2. The hyper-
parameters of the student model were tuned with
the development sets. We evaluated inference
speed for all models on the same hardware configu-
ration (Non-GPU environment: Intel(R) Core(TM)
i9-10900KF CPU @ 3.70GHz //GPU environment:
Nvidia GeForce RTX 3090). All other hyper-
parameters and search ranges are shown in Ap-
pendix B.

http://sighan.cs.uchicago.edu/bakeoff2005/
http://sighan.cs.uchicago.edu/bakeoff2005/
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MODELS AU PKU MSR AS CITYU CTB6 S-CPU (ms.) S-GPU (ms.)

TEACHER - 96.68 98.14 96.62 97.92 97.55 119.24 3.61

CRF
× 95.02 96.72 95.40 94.25 95.65 3.54 -√

96.19 97.33 95.70 96.18 96.79

LSTM
× 95.15 97.26 95.29 95.13 94.98

21.66 1.03√
96.25 97.58 95.81 96.30 96.66

GREEDY LSTM
× 95.37 96.83 95.22 95.54 96.06

11.62 -√
96.43 97.17 95.43 96.44 97.04

TRANSFOMER
× 95.46 97.59 95.96 95.26 96.10

60.41 1.70√
96.43 97.79 96.25 96.91 97.16

CONPRUNE
× 96.34 97.93 96.31 97.28 97.19

30.17 1.29√
96.76 98.07 96.47 97.58 97.45

Table 3: Results on the Bakeoff-2005 dataset. “AU” indicates whether the student model utilizes unlabeled data.
GREEDY LSTM follows Cai et al. (2017), which is a LSTM model adapted to the CPU environment. S-CPU/GPU
denotes the inference speed (ms per sentence) on the CPU/GPU environment.

MODELS PKU MSR AS CITYU CTB6

(CHEN ET AL., 2015) 96.5 97.4 - - 96.0
(ZHOU ET AL., 2017) 96.0 97.8 - - 96.2
(MA ET AL., 2018) 96.1 97.4 96.2 97.2 96.7
(GONG ET AL., 2019) 96.7 96.5 94.5 93.7 -
(DUAN AND ZHAO, 2020) 95.5 97.7 95.7 96.4 -

(TIAN ET AL., 2020) 96.5 98.4 96.6 97.9 97.3
(HUANG ET AL., 2020) 96.7 98.1 - - 97.6

TRANSFORMER 96.4 97.8 96.3 96.9 97.2
CONPRUNE 96.8 98.1 96.5 97.6 97.5

Table 4: Experiment results on the Bakeoff-2005
datasets. The best results obtained by non-PLM mod-
els. Our results are significantly better (p < 0.05 boot-
strap resampling) than all previous state-of-the-art re-
sults.

4.2 Results of Intrinsic Evaluation

As shown in Table 3, we investigated the effect of
the proposed method on the benchmark Bakeoff-
2005, which is the most widely-used dataset for
CWS. “TEACHER” denotes the teacher model as
introduced in section 3.1. It achieves competitive
performance as it is based on a state-of-the-art pre-
trained model. Other models are the student mod-
els.

Experimental results in Table 4 show that
our proposed semi-supervised method signifi-
cantly improves the performance on all 5 bench-
mark datasets, compared with the pure student
model. Surprisingly, results of the proposed semi-
supervised method are even close to those of the
teacher model. We also compared our proposed
method against previous SOTA models, as shown
in Table 4. In particular, Tian et al. (2020) and

Huang et al. (2020) utilize PLMs which are slower
in inference than non-PLM CWS models. This
paper focuses on the methods with low complex-
ity. These results demonstrate that our proposed
method achieves state-of-the-art performance com-
pared with non-PLM methods. Although there is
a small performance gap between our proposed
method and fine-tuned PLM methods, the advan-
tage of our method over PLMs is that our method
is much faster in both CPU and GPU environments,
as displayed in Table 3, which is the key interest
of our work. From this perspective, our method is
more readily to be used in downstream tasks than
previous state-of-the-art PLM methods. In addi-
tion, our proposed method not only maintains the
advantages of the basic neural methods but also has
a low complexity for practicability. Meanwhile, the
method leverages easily available unlabeled data to
make up for the insufficiency of the student model.

4.3 Results of Extrinsic Evaluation

The performance of models on various CWS bench-
marks only demonstrates the merits of models
themselves. However, CWS results of different
methods that achieve good performance on bench-
marks are not necessarily beneficial for specific
downstream tasks. We therefore investigated the
effect of using different CWS results on the two
popular downstream Chinese NLP tasks (NER and
MT) to analyze the beneficiality of CWS methods
to other tasks. The benchmarks of these two tasks
that we adopted are both widely acknowledged in
the literature of NER and MT. Particularly, we used
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MT (BLEU) CWS (F1) NER (F1)
ZH→EN SEG. TRAIN SEG. TEST NR NP NT

CHAR 21.16 GOLD 1.000 1.000 .895 .880 .864

TEACHER 23.51 +2.35 .991 -.009 .993 -.007 .897 +.001 .875 -.005 .862 -.002
CRF 23.37 +2.21 .990 -.010 .992 -.008 .907 +.012 .880 -.000 .877 +.013
CRF† 23.68 +2.52 .990 -.010 .992 -.008 .915 +.020 .881 +.001 .862 -.002
CONPRUNE 23.71 +2.55 .990 -.010 .992 -.008 .903 +.008 .879 -.001 .863 -.001
CONPRUNE† 23.73 +2.57 .988 -.012 .991 -.009 .915 +.020 .884 +.004 .877 +.013

Table 5: Results on NER and MT. “NR, NP AND NT” represent entities of person, place and organization. “GOLD”
denotes gold-standard word segmentations for NER and “CHAR” indicates the character-level neural model based
on Transformer for baseline comparison. † indicates that the corresponding model utilizes the proposed semi-
supervised method.

the “PKU” open resources for NER evaluation and
a Chinese-to-English machine translation task from
WMT-183 for MT evaluation. The model for NER
employs word-based LSTM to extract context in-
formation and applies a CRF layer stacked over
LSTM for decoding. It utilizes random word-level
embeddings which can be further fine-tuned later.
The evaluation of this task is the same as CWS
(F1). The MT model is based on the Transformer
(Vaswani et al., 2017) neural network. We used
Byte Pair Encoding (BPE) for alleviating the issue
of rare words. We kept all other hyper-parameters
of the NER and MT models as those widely used.
We then fed CWS results produced by different
models into the NER and MT models. Results are
shown in Table 5.

Clearly, our proposed method can provide word
segmentations that are beneficial for the two down-
stream tasks. The performance of NER using seg-
mentation results yielded by our proposed method
is better than others, even ground-truth word seg-
mentations. All segmentation systems achieve
good performance with no evidence of OOV. How-
ever, there are still some distinctions between two
CWS methods, which will be analyzed in the case
study section. Except for the quality of word seg-
mentations, the speed of our proposed method is
fast enough to support specific downstream tasks.
Surprisingly, we find that word segmentations with
high F1 scores on CWS benchmarks do not neces-
sarily indicate high performance on downstream
tasks. Especially, the optimal performance of seg-
mentation results (“Seg. train” and “Seg. test”)
does not suggest the highest performance on NER
(“NR”, “NP” and “NT”), as shown in Table 5. This

3http://data.statmt.org/wmt18/
translation-task/

might be due to two reasons. First, gold results in
NER have noises, which is similar to CWS. Our
proposed method has a strong robustness to deal
with noisy labels. Second, word segmentation er-
rors do not necessarily cause error propagation.

4.4 Case Study
To make further progress on CWS, it is important
to understand errors that CWS methods are making.
Hence we randomly selected typical errors from
the PKU test set and manually analyzed them.

The segmentation errors can be roughly divided
into two categories. One is the type of errors
with OOV words. The proposed semi-supervised
method can alleviate the issue of OOV words ef-
fectively. For instance, “威尔第” (Verdi) is seg-
mented into two words incorrectly by the pure stu-
dent model. This split frequently occurs in the un-
labeled data, and such knowledge is distilled from
the teacher model. The semi-supervised method
can revise these OOV words.

Except for the type of errors of OOV words, the
rest of errors are mainly caused by segmentation
inconsistency. For example, the word “人” (person)
should be regarded as a suffix word behind some
words, e.g., “中国+人” (Chinese) and “代理+人”
(agent). “人” (person) also exists as part of other
words, e.g., “关系人” and “继承人”. Simply train-
ing neural model on such inconsistent segmentation
data may be insufficient to solve these segmenta-
tion errors without further efforts in data process-
ing. This situation naturally raises a question: do
the errors caused by segmentation inconsistency
really influence the performance of downstream
NLP tasks?

To answer this question, we conducted addi-
tional experiments on the two downstream NLP
tasks. In NER, segmentation results of non-entity

http://data.statmt.org/wmt18/translation-task/
http://data.statmt.org/wmt18/translation-task/


4376

words hardly affect the performance of NER. For
instance, the word “不懈奋斗” (untiringly strug-
gle) is regarded as a word according to the criterion
of “PKU”. Previous state-of-the-art methods that
achieve high F1 scores for CWS can segment it cor-
rectly. While our proposed method splits this unit
into two independent words “不懈” (untiringly)
and “奋斗” (unremitting). However, these two
words do not belong to any entities. In other words,
the better performance for segmenting non-entity
words does not necessarily indicate better perfor-
mance of NER. In addition, segmentation results
of entity words directly affect the veracity of NER.
There is a phrase “西方七国集团” (the Group of
Seven, abbreviations: G7) in a sentence. This seg-
ment is an organizational entity. In word segmenta-
tion, it is regarded as two words “西方” (western)
and “七国集团” (the group of seven countries) ac-
cording to ground-truth segmentation results. Pre-
vious state-of-the-art methods are usually able to
segment it correctly. By contrast, our proposed
method segments it into three words “西方” (west-
ern), “七国” (seven countries) and “集团” (group).
Surprisingly, the final result of NER is out of ex-
pectation. The entity with incorrectly segmented
words by our method is correctly recognized. Gold
segmentation does not achieve a better result on
this entity. The vague boundary of a word may in-
crease the uncertainty and difficulty of downstream
Chinese NLP tasks. There are many prefix and
suffix words in Chinese. Sometimes, it is hard to
determine whether these words are a single word
or not. For this reason, high performance of CWS
is not equal to high performance of Chinese NER.

In MT, due to the technique of BPE, rare words
are segmented into sub-words. The issue of un-
known words can thus be alleviated effectively.
Even if a word as simple as “日本” (Japan) is seg-
mented into two words incorrectly, NMT models
are able to prevent the error propagation of seg-
mentation in the training step. Thus, a faster seg-
mentation system, rather than a high-performance
segmentation system, is more practical for NMT.
To analyze NMT translation differences between
two sentences with different segmentation results,
we also supply the additional analysis in Appendix
C. We find that segmentation results with slight
differences make translation results varying. The
boundary of words may lead to these differences.
But we also conjecture that this is more due to the
robustness of NMT models.

5 Conclusion

To bring a positive impact of CWS to down-
stream NLP tasks, this paper makes a trade-off
between the traditional evaluation and the com-
plexity (e.g., implementation and decoding speed),
which makes the segmenter more practical. We pro-
pose a semi-supervised method that distills knowl-
edge via pseudo labels into the lightweight student
model. The method is low coupling, which signif-
icantly improves the performance of multiple het-
erogeneous tiny neural architectures. The proposed
framework can achieve competitive performance
on CWS benchmarks and the speed of the student
model also satisfies the practical requirement. In
summary, the advantages of our model are twofold.
First, the inference speed of the method is much
faster than PLM methods. It can run under low
resource conditions, even on CPUs. Second, the
model provides efficient segmentation results for
downstream NLP tasks.
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Appendix

A Model Architecture

This paper introduces multiple heterogeneous tiny
neural architectures as the student model. To better
describe each model, all formulations of the student
models are shown as follows.

-ConPrune. ConPrune prunes three quarters of
12 layers of the used PLM. To extract local features,
we incorporate a Convolutional Neural Network
(CNN) encoder into the pruned model. The kernel
size determines the distance of scanning. The input
sequence is converted into two vector matrices Et

and Ec. Word positions are also mapped into a
feature matrix Ep. The input to the encoder consists
of four parts that are token embedding Et, position
embedding Ep, segment embedding Es and CNN
embedding Ec. Because of the specificity for CWS,
all segment embeddings of sequences are regarded
as the same mapping matrix Es. The input of the
two components are:

Etrm = Et + Ep + Es,Ecnn = Ec (6)

The convolutional encoder involves a filter W ∈
Rhk, which is applied to a window of h characters
to produce a new feature.

Wcnn = Relu (W ·xi:i+h−1 + b) (7)

where Relu is a type of activation function.
xi:i+h−1 indicates the matrix of Ec.

The pruned encoder consists of 3 base Trans-
former encoded layers with multiple multi-head
self-attention layers to extract contextual features
for each character. The multi-head self-attention
layer adopts “Scaled Dot-Product Attention” which
is formulated as:

Attn (Q,K, V ) = softmax

(
QKT

√
dk

)
V (8)

where Q,K, V represents a query and a set of key-
value pairs through a linear transformation respec-
tively, and dk is the dimension of K.

MultiAttn (Etrm) = [head1, ..., headk]WO (9)

headi = Attn
(
EtrmW

Q
i , EtrmW

K
i , EtrmW

V
i

)
(10)

where WO,WQ
i ,W

K
i ,W

V
i are trainable parame-

ters.

-LSTM. LSTM can be used as a lightweight
architecture for sequence labeling tasks. Rigor-
ous tuning can obtain competitive performance for
CWS. The model handles sequence features very
well. For each input character ci, the correspond-
ing character uni-gram embedding and bi-gram
embedding are represented as eci and ecici+1 , re-
spectively. The LSTM model is fed with the two
types of character embeddings by concatenation op-
eration, wi = eci ⊕ ecici+1 . We get the outputs of
the student representations from the LSTM model
as follow:

−→
hs =

−→
LSTM (w1, w2, . . . , wi) (11)

←−
hs =

←−
LSTM (w1, w2, . . . , wi) (12)

hs =
−→
hs ⊕

←−
hs (13)

-Transformer. This paper adopts a modified
Transformer which follows the previous study by
Duan and Zhao (2020). The modified Transformer
changes the multi-head self-attention to the multi-
head Gaussian directional attention. Given an input
sequence, the attention function can be described
as mapping a query and a set of key-value pairs.
The Gaussian directional attention incorporates the
Gaussian directional attention into traditional self-
attention module to pay attention to the neighbor-
ing characters of each position and capture features
between characters as a fix Gaussian weight for
attention. The Gaussian weight function and the
multi-head Gaussian directional attention are com-
puted as:

Gi,j =

√
2

σπ

∫ −di,j
−∞

exp(− x2

2σ2
)dx (14)

where i and j are two adjacent positions, di,j is the
distance between the two characters, σ represents
the standard deviation of the function. We set this
hyper-parameter as 2.

GDA(Q,K, V ) = softmax(
QKTG√

dk
)V (15)

where GDA represents the Gaussian directional at-
tention, dk is the dimension of the matrix K. Q,
k and V are vectors which are similar to the base
Transformer. The multi-head attention are com-
puted as:

MultiGDA = [head1, head2, ..., headk]W o

headi = GDA(QW q
i ,KW

k
i , V W

v
i )

(16)
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CONFIG Parameters

hidden states 768
optimizer Bert Adam
learning rate [3e-5,2e-5,1e-5]
batch size [16,32,64,256]
dropout [0.1,0.2,0.4]
epochs 20

Table 6: The hyper-parameters of the teacher model.

CONFIG Parameters

hidden states 768
optimizer Bert Adam
learning rate [3e-5,2e-5,1e-5]
batch size [16,32,64,256]
dropout [0.1,0.2,0.4]
epochs 40
kernel size [2,3,4]
char embeds [768]

Table 7: The hyper-parameters of the conPrune model.

CONFIG Parameters

char embeds [50,100,200]
bi-gram embeds [50,100,200]
hidden states [128,256,512]
optimizer Adam
learning rate [0.01,0.001,0.002]
batch size [16,32,64,256]
dropout [0.1,0.2,0.4]
hidden layers [1,2,3]
epochs 30

Table 8: The hyper-parameters of the LSTM student
model.

where WO,WQ
i ,W

K
i ,W

V
i are trainable parame-

ters. The layer normalization is adopted in the end
of each multi-head Gaussian directional attention
layer.

B Hyper-parameter Setting

To improve the reproducibility, we list all important
hyper-parameters of the teacher model (Table 6),
the student models (Table 7 and 8), the word-based
NER models (Table 9) and the NMT model. We
randomly pick 10% sentences from the training
data as the development data for the tuning. In
addition, we use the original development set of

CONFIG Parameters

input embeds [50,100,200]
hidden states [100,200,300]
optimizer Adam
learning rate [0.01,0.001,0.005]
batch size [16,32,64,256]
dropout [0.1,0.2,0.5]
hidden layers [1,2,3]
epochs 30

Table 9: The hyper-parameters of the word-based NER
model.

Figure 2: The Pinyin sequences for two Chinese sen-
tences.

WMT-18 for MT. We utilize the uniform-sample to
choose the hyper-parameters. In particular, we use
the hyper-parameters of the modified Transformer
model and the NMT model following previous stud-
ies (Vaswani et al., 2017; Duan and Zhao, 2020).

C Case Study

For NMT, it is difficult to analyze translation re-
sults as the interpretability of NMT is poor. We
start with examples and focus on the differences
between two translations with different segmen-
tation results in addition to sentence-level BLEU
scores. The Pinyin sequences for the two Chinese
sentences are shown in Figure 2 and translations
are shown in Table 10. We find that segmentation
results with slight differences make translation re-
sults varying. The boundary of words may lead to
these differences. There is a considerable discrep-
ancy when the neural machine translation system
stops training at different steps. That shows the
neural machine translation system is unstable. It
is full of uncertainty, and it still brings great chal-
lenges for the MT model itself and other crucial
techniques.
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LABEL MODEL SEG. RESULT MT. RESULT BLEU

I
TEACHER

yi/ ta/ wei/ yi tuo/ ,/ wu zhen da dao/ ke with it as its base, the koku district of wuzhen
21.79

chuang/ ji ju qu/ ying yun er sheng boulevard came into being.

CONPRUNE† yi/ ta/ wei/ yi tuo/ ,/ wu zhen/ da dao/ ke to rely on it, wuzhen boulevard science set up 70.71
chuang/ ji ju qu/ ying yun er sheng the agglomeration area emerged at the moment.

II

TEACHER

bao/ xie ke/ ,/ shun/ xie jiao/ ,/ tiao/ xie dipping crab shell, sucking crab foot, picking
17.28rou/ ,/ zhan/ xie/ liao/ ,/ shi ke/ gan shou/ crab meat, dipping crab material, eating

zhe/ shen/ chu/ jiang nan/ de/ mei hao experience in the south of the good.

CONPRUNE†
bao/ xie/ ke/ ,/ shun/ xie/ jiao/ ,/ tiao/ xie/ peeling crab shell, sucking crab feet, picking

27.08rou/ ,/ zhan/ xie/ liao/ ,/ shi ke/ gan shou/ crab meat, dipping crab material, customers
zhe/ shen/ chu/ jiang nan/ de/ mei hao feel the good in the south of the river.

Table 10: The evaluation and results for MT. SEG. RESULT represents the segmentation results with different
CWS methods. In particular, we use “/” to split the words.


