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Abstract

Visual dialogue is a challenging task since
it needs to answer a series of coherent ques-
tions on the basis of understanding the vi-
sual environment. Previous studies focus
on the implicit exploration of multimodal co-
reference by implicitly attending to spatial
image features or object-level image features
but neglect the importance of locating the ob-
jects explicitly in the visual content, which
is associated with entities in the textual con-
tent. Therefore, in this paper we propose
a Multimodal Incremental Transformer with
Visual Grounding, named MITVG, which con-
sists of two key parts: visual grounding and
multimodal incremental transformer. Visual
grounding aims to explicitly locate related ob-
jects in the image guided by textual entities,
which helps the model exclude the visual con-
tent that does not need attention. On the ba-
sis of visual grounding, the multimodal incre-
mental transformer encodes the multi-turn dia-
logue history combined with visual scene step
by step according to the order of the dialogue
and then generates a contextually and visually
coherent response. Experimental results on
the VisDial v0.9 and v1.0 datasets demonstrate
the superiority of the proposed model, which
achieves comparable performance.

1 Introduction

Recently, there is increasing interest in vision-
language tasks, such as image caption (Xu et al.,
2015; Anderson et al., 2016, 2018; Cornia et al.,
2020) and visual question answering (Ren et al.,
2015a; Gao et al., 2015; Lu et al., 2016; Ander-
son et al., 2018). In the real world, our conver-
sations (Chen et al., 2020b, 2019) usually have
multiple turns. As an extension of conventional
single-turn visual question answering, Das et al.
(2017) introduce a multi-turn visual question an-
swering task named visual dialogue, which aims to
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Caption: there is a frisbee team with their
coach taking a team photo
Q1: how many people ?

Q2: is anyone holding a ? A2: yes

Q3:is the coach on theright ?  A3: yes, on the far right

Q4: are they wearing matching  A4: all except the coach
?

Al: 7 people

Figure 1: An example of visual dialogue. The color in
text background corresponds to the same color box in
the image, which indicates the same entity. Our model
firstly associates textual entities with objects explicitly
and then gives contextually and visually coherent an-
swers to contextual questions.

explore the ability of an Al agent to hold a mean-
ingful multi-turn dialogue with humans in natural
language about visual content.

Visual dialogue (Agarwal et al., 2020; Wang
et al., 2020; Qi et al., 2020; Murahari et al., 2020)
requires agents to give a response on the basis of
understanding both visual and textual content. One
of the key challenges in visual dialogue is how to
solve multimodal co-reference (Das et al., 2017;
Kottur et al., 2018). Therefore, some fusion-based
models (Das et al., 2017) are proposed to fuse spa-
tial image features and textual features in order to
obtain a joint representation. Then attention-based
models (Lu et al., 2017; Wu et al., 2018; Kottur
et al., 2018) are proposed to dynamically attend to
spatial image features in order to find related visual
content. Furthermore, models based on object-level
image features (Niu et al., 2019; Gan et al., 2019;
Chen et al., 2020a; Jiang et al., 2020a; Nguyen
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et al., 2020; Jiang et al., 2020b) are proposed to ef-
fectively leverage the visual content for multimodal
co-reference. However, as implicit exploration of
multimodal co-reference, these methods implic-
itly attend to spatial or object-level image features,
which is trained with the whole model and is in-
evitably distracted by unnecessary visual content.
Intuitively, specific mapping of objects and textual
entities can reduce the noise of attention. As shown
in Figure 1, the related objects can help the agent
to understand the entities (e.g., Q1: “people”, Q2:
“frisbee”, Q3: “coach”) for the generation of correct
answers. Then when it answers the question Q4
“are they wearing matching uniforms ?”, the agent
has already comprehended “people” and “coach”
from the previous conversation. On this basis, it
can learn the entity “uniforms” with the correspond-
ing object in the image, and generate the answer
“all except the coach”. To this end, we need to 1)
explicitly locate related objects guided by textual
entities to exclude undesired visual content, and 2)
incrementally model the multi-turn structure of the
dialogue to develop a unified representation com-
bining multi-turn utterances with the corresponding
related objects. However, previous work overlooks
these two important aspects.

In this paper, we thus propose a novel and ef-
fective Multimodal Incremental Transformer with
Visual Grounding, named MITVG, which contains
two key parts: visual grounding and multimodal
incremental transformer. Visual grounding aims
to establish specific mapping of objects and tex-
tual entities by explicitly locating related objects
in the image with the textual entities. By doing
so, our model can exclude undesired visual content
and reduce attention noise. On the basis of visual
grounding, the multimodal incremental transformer
is used to model the multi-turn dialogue history
combined with the specific visual content to gen-
erate visually and contextually coherent responses.
As an encoder-decoder framework, MITVG con-
tains a Multimodal Incremental Transformer En-
coder (MITE) and a Gated Cross-Attention De-
coder (GCAD).

We test the effectiveness of our proposed model
on large-scale datasets: VisDial v0.9 and v1.0 (Das
et al., 2017). Both automatic and manual evalu-
ations show that our model substantially outper-
forms the competitive baselines and achieves the
new state-of-the-art results on substantial metrics.
Our main contributions are as follows:

437

* To the best of our knowledge, we are the first
to leverage visual grounding to explicitly lo-
cate related objects in the image guided by
textual entities for visual dialogue.

* We propose a novel multimodal incremental
transformer to encode the multi-turn dialogue
history step by step combined with the visual
content and then generate a contextually and
visually coherent response.

* We achieve comparable performance on Vis-
Dial v0.9 and v1.0 datasets.

2 Approach

2.1 Overview

In this section, we formally describe the visual
dialogue task and then proceed to our proposed
Multimodal Incremental Transformer with Visual
Grounding (MITVG).

Following Das et al.(2017), a visual dia-
logue agent is given three inputs, i.e., an im-
age I, a dialogue history (the caption and
question-answer pairs) till round ¢t — 1: H =

(Cap, (Q1,A1),- -+, (Qt—1,A:+—1)) and the cur-
N N — N’
Hyp H, Hyi 1

rent question ); at round ¢, where Cap is
the caption describing the image taken as Hj
and Hy, ..., H;_; are concatenations of question-
answer pairs. The goal of the visual dialogue agent
is to generate a response (or answer) A, to the ques-
tion Q. Cap, Q. and A, are sentences.

Figure 2 shows the framework of MITVG, which
aims to explicitly model multi-turn dialogue his-
tory step by step based on the explicit modeling
relationship between multiple modalities. MITVG
firstly locates related objects in the image explicitly
guided by the textual entities via visual ground-
ing, then encodes multi-turn dialogue history in
the order of the dialogue utterance based on visual
grounding via Multimodal Incremental Encoder
(MITE), and finally utilizes the outputs of both
encoder and visual grounding to generate the re-
sponse word by word via Gated Cross-Attention
Decoder (GCAD).

2.2 Input Representation

Before describing our method, we introduce the
input representation.

Image Features. We use a pre-trained Faster R-
CNN model (Ren et al., 2015b) to extract object-
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Figure 2: The framework of Multimodal Incremental Transformer with Visual Grounding (MITVG). “VG Model”
indicates visual grounding model (Yang et al., 2019b) (Details are described in Sec. 2.3). “MITE” denotes the
multimodal incremental transformer encoder (Details are described in Sec. 2.4.1). MITVG firstly uses the VG
model to explicitly model the relationship between the textual content and the visual content, and encodes multi-
turn dialogue history in the order of the dialogue based on visual grounding, and finally utilizes the outputs of both
encoder and visual grounding to generate the response word by word in the decoding process.

level image features. Specifically, the image fea-
tures v for an image I are represented by:

v = Faster R — CNN(I) ¢ RE*V (1)

where K denotes the total number of the detected
objects per image and V' denotes the dimension of
features for each object.

Language Features. The current (at the ¢-th
round) L-word question features are a sequence
of M -dimension word embedding with positional
encoding added (Vaswani et al., 2017), as follows:

@ = [st1,562,---,8,L) € REXM - (2)
sty = wj+ PE(j), (3)

where w; is the word embedding of the j-th word
in the question @y, and PE(-) denotes positional
encoding function (Vaswani et al., 2017). For the
dialogue history H = {Hy, Hy,...,H;—1} and
the answer A;, the dialogue history features u =
{ug,u1,...,u;—1} and the answer features a; are
obtained in the same way as the question ();.
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2.3 Visual Grounding

To exclude the needless visual content, we intro-
duce visual grounding, which is defined to ground
a natural language query (phrase or sentence) about
an image onto a correct region of the image. First
of all, we use NeuralCoref! for reference resolu-
tion. For example, when it processes the question
Q4 “are they wearing matching uniforms ?” shown
in Figure 1, NeuralCoref takes the question Q4 and
its history as inputs, and then generates a new ques-
tion “are the people wearing matching uniforms
7 as anew Q4. As shown in Figure 3 (a), visual
grounding model (Yang et al., 2019b) takes the i-th
question (); and the image I as inputs and gener-
ates initial visual grounding features, as follows:

v = VGM(Q;, 1), )

where VGM(-) denotes visual grounding model.
Then vg?) is sent to the multi-head self-attention

"Introduction and code of NeuralCoref are available at
https://github.com/huggingface/neuralcoref. NeuralCoref is
only used for visual grounding.

YIntroduction  and code are  available at
https://github.com/zyang-ur/onestage_grounding.
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Figure 3: Framework of (a) Visual Grounding and
(b) Multimodal Incremental Transformer Encoder
(MITE).

layer followed by a position wise feed-forward net-
work (FFN) layer (stacked IV, times) to generate
the i-th visual grounding features as follows?:

0

= MultiHead (vg“l), vé?*l), vé:””) , (5)

n
Gi
where n = 1,..., N, and MultiHead(-) denotes
the multi-head self-attention layer (Vaswani et al.,

2017), then
v{™ = FFN (07, (6)

wheren = 1,..., N, and FFN(-) denotes the po-
sition wise feed-forward networks (Vaswani et al.,
2017). After N, layers computation, we obtain the
final visual grounding features vy, by:

— (M)
Vg; = vgiv

; (7)

Actually, there are some questions that do not con-
tain any entities in the visual dialogue, such as
“anything else 7. For such questions, we use the
features of the whole image instead, i.e. vy, = v.

2.4 Multimodal Incremental Transformer

Inspired by the idea of incremental transformer (Li
et al., 2019) which is originally designed for the
single-modal dialogue task, we make an extension
and propose a multimodal incremental transformer,
which is composed of a Multimodal Incremental
Transformer Encoder (MITE) and a Gated Cross-
Attention Decoder (GCAD). The MITE uses an
incremental encoding scheme to encode multi-turn

3For simplicity, we omit the descriptions of layer normal-
ization and residual connection.

dialogue history with an understanding of the im-
age. The GCAD leverages the outputs from both
the encoder and visual grounding via the gated
cross-attention layer to fuse the two modal informa-
tion in order to generate a contextually and visually
coherent response word by word.

24.1 MITE

To effectively encode multi-turn utterances
grounded in visual content, we design the Mul-
timodal Incremental Transformer Encoder (MITE).
As shown in Figure 3 (b), at the i-th round, where
1 =1,2,...,t—1, the MITE takes the visual ground-
ing features vy, the dialogue history features u;
and the context state c;_; as inputs, and utilizes
attention mechanism to incrementally build up the
representation of the relevant dialogue history and
the associated image regions, and then outputs the
new context state ¢;. This process can be stated
recursively as follows:

¢i = MITE (v, ui, ¢i1) @®)

where MITE(-) denotes the encoding function, ¢;
denotes the context state after the dialogue history
features u; and the visual grounding features v, be-
ing encoded, and cj is the dialogue history features
uQ-.

As shown in Figure 3 (b), we use a stack of IV},
identical layers to encode vg,, u; and ¢;_1, and to
generate c;. Each layer consists of four sub-layers.
The first sub-layer is a multi-head self-attention
for the dialogue history:

A®™ = MultiHead (C("_l), o1, C(”_1)> )
)
where n = 1,..., Ny, C"~1) is the output of the
last layer N,,_1, and C(?) is the dialog history fea-
tures u;. The second sub-layer is a multi-head
cross-modal attention:

B(n) = MultlHead (An7 vgi ) Ugi) ’ (10)

where v, is the visual grounding features. The
third sub-layer is a multi-head history attention:

FO) — MultiHead (B(”),ci,l, CH) Can

where c;_1 is the context state after the previous di-
alogue history features u;_; being encoded. That’s
why we call this encoder “Multimodal Incremental
Transformer”. The fourth sub-layer is a position
wise feed-forward network (FFN):

Cc®™ — FFN (F<”>> . (12)

439



We use c¢; to denote the final representation at /Ny, -th
layer:

c; = CWNw), (13)

The mulitmodal incremental transformer encoder
at the current turn ¢, i.e., the bottom one in Figure 2,
has the same structure as all the other MITEs but
takes the visual grounding features vy, , the current
question features ¢; and the context state c;—; as
inputs and generates the final context state c;.

242 GCAD

Motivated by the real-world human cognitive pro-
cess, we design a Gated Cross-Attention Decoder
(GCAD) shown in Figure 2, which takes the
masked answer features a~, (where z = 1,2, ..., Z
and Z is the length of the answer), encoder out-
puts ¢; and visual grounding features vy, as inputs,
and generates contextually and visually coherent
responses grounded in an image. GCAD is com-
posed of a stack of IV, identical layers, each of
which has three sub-layers.

The first sub-layer is a multi-head self-
attention as follows:

3 — MultiHead (RWU, R<"*1>,R("*1>) :
(14)
wheren =1,..., Ny, R is the output of the
previous layer, and R(?) is the masked answer fea-
tures a«.

The second sub-layer is a multi-head gated
cross-modal attention layer (GCA) as shown in
Figure 4, calculated as:

P = o o E™ 4 g o G, (15)

where n = 1,..., N,, o denotes Hadamard prod-
uct, E( and G(") denote the outputs of two cross-
attention functions, computed as follows:

EM™ = MultiHead (J(m,ct,ct), (16)

GM™ = MultiHead (J<”),vgt,vgt),(17)

where (™), (") are two gates®:

o™ —

o (WE[J("), EM] bE> . (18)

B = o (Wall™,6") 4 bg), (19)

where ¢ denotes sigmoid function, Wg, Wq, bg,
b¢ are learnable parameters, and [-, -] indicates con-
catenation.

4Our inspiration comes from Cornia et al. (2020).

Ct J ) Vg

Key Query Key
Cross- Cross-
Attention Attention

pm
Figure 4: Framework of Gated Cross-Attention (GCA)
in the Deocer.

The third sub-layer is a position wise feed-
forward network (FFN):
R™ — FFN <P<">> . (20)
We use 7, to denote the final representation at N, -
th layer:

r, = R, 21)

Finally, we use softmax to get the word probabili-
ties G:

a, = softmax(r,). (22)

3 Experiments

3.1 Datasets

We conduct experiments on the VisDial v0.9 and
v1.0 datasets (Das et al., 2017) to verify our ap-
proach. VisDial v0.9 contains 83k dialogs on
COCO-train (Lu et al., 2017) and 40k dialogs on
COCO-val images as test set, for a total of 1.23M
dialog question-answer pairs. VisDial v1.0 dateset
is an extension of VisDial v0.9 dateset with addi-
tional 10k COCO-like images from Flickr. VisDial
v1.0 dateset contains 123k, 2k and 8k images as
train, validation and test splits, respectively.

3.2 Implementation and Evaluation

Implementation Details. Following previous
work (Das et al., 2017), in order to represent words
we firstly lowercase all the texts and convert digits
to words, and then remove contractions before tok-
enization. The captions, questions and answers are
further truncated to ensure that they are not longer
than 40, 20 and 20 tokens, respectively. We con-
struct the vocabulary of tokens that appear at least
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Model

| Object | Vis-G | MRR 1 | R@11 | R@51 | R@10 1 | Mean |

AP (Das et al., 2017) x x| 3735 | 2355 | 4852 | 5323 | 2650
NN (Das et al., 2017) X x| 4274 | 3313 | 5083 | 58.69 | 19.62
LF (Das et al., 2017) x x| 5199 | 41.83 | 61.78 | 67.59 | 17.07
HREA (Das et al., 2017) x x| 5242 | 4228 | 6233 | 68.71 | 16.79
MN (Das et al., 2017) x x| 5259 | 4229 | 62.85 | 68388 | 17.06
HCIAE (Lu et al., 2017) X x| 53.86 | 44.06 | 6355 | 69.24 | 16.01
CorefNMN (Kottur et al., 2018) | x x| 5350 | 43.66 | 6354 | 69.93 | 15.69
CoAtt (Wu et al., 2018) X x| 5578 | 46.10 | 6569 | 7174 | 14.43
RvA (Niu et al., 2019) v x| 5543 | 4537 | 6527 | 7297 | 10.71
DVAN (Guo et al., 2019b) v X | 5594 | 4658 | 6550 | 71.25 | 14.79
VDBERT (Wang et al., 2020) v x | 5595 | 46.83 | 6543 | 7205 | 13.18
LTMI (Nguyen et al., 2020)f v X | 5585 | 4607 | 6597 | 7244 | 1417
DMRM (Chen et al., 2020a) v x| 5596 | 4620 | 66.02 | 7243 | 13.15
MITVG | v | v | 5683 | 47.14 | 67.19 | 7372 | 11.95

Table 1: Performance on VisDial val v0.9 (Das et al., 2017). t indicates that we re-implement the model. “Object”
and “Vis-G” denote if the model uses object-level image features and visual grounding, respectively. Underline
denotes the highest score among baselines. Our MITVG exceeds previous work on most of the metrics and achieves

comparable performance.

Model | Object | Vis-G | MRR 1 | R@11 | R@51 | R@10 1 | Mean | | NDCG 1
MN (Das et al., 2017)* v x | 4799 | 38.18 | 57.54 | 6432 | 1860 | 51.86
HCIAE (Lu et al., 2017)* v x| 49.07 | 3972 | 5823 | 6473 | 1843 | 59.70
CoAtt (Wu et al., 2018)* v x| 49.64 | 40.09 | 5937 | 6592 | 17.86 | 59.24
Primary (Guo et al., 2019a) v x| 4901 | 3854 | 59.82 | 66.94 | 16.60 -
ReDAN (Gan et al., 2019) v x| 5002 | 4027 | 59.93 | 66.78 | 17.40 | 60.47
DMRM (Chen et al., 20202) | v/ x| 5016 | 40.15 | 60.02 | 67.21 | 15.19 -
LTMI (Nguyen et al., 2020)7 | v/ x| 5038 | 4030 | 60.72 | 6844 | 1573 | 6161
DAM (Jiang et al., 2020b) v x | 5051 | 40.53 | 60.84 | 67.94 | 1665 | 60.93
KBGN (Jiang et al., 2020a) v x| 5005 | 4040 | 60.11 | 66.82 | 17.54 | 60.42
MITVG | v | v | 5114 | 41.03 | 6125 | 6849 | 14.37 | 6147

Table 2: Performance on VisDial val v1.0 (Das et al., 2017). { denotes that all the models are re-implemented by
Gan et al. (2019). Our MITVG outperforms previous work and achieves comparable performance.

5 times in the training split. To represent image
regions, we use Faster R-CNN (Ren et al., 2015b)
with ResNet-101 (He et al., 2016) finetuned on the
Visual Genome dataset (Krishna et al., 2017), thus
obtaining a 2048-dimensional feature vector for
each region. The layers of our encoder, decoder
and visual grounding module are all set to 3. The
number of attention heads in multi-head attention is
8 and the filter size is 2048. The word embedding
is shared by the history, questions and responses.
The dimension of word embedding is set to 512 em-
pirically. We use Adam (Kingma and Ba, 2014) for
optimization, following the learning rate schedul-
ing strategy of Vaswani et al. (2017). Our model
is implemented using PyTorch v1.0, Python v3.6,
and provides out of the box support with CUDA
9 and CuDNN 7. We train our model on TITAN
XP with 8 GPUs. For each epoch, we spend about
9,000 seconds on training the model. The total
parameters are about 56.79M.

Before we train our model, we use three exter-
nal tools for image features extracting, reference

resolution and visual grounding.

Image Features Extracting We extract im-
age features of VisDial images, using a Faster-
RCNN (Ren et al., 2015b) with ResNet-101 (He
et al., 2016) pre-trained on Visual Genome (Kr-
ishna et al.,, 2017), introduction and code
from https://github.com/peteanderson80/bottom-
up-attention.

Reference Resolution we use NeuralCoref v4.0
for reference resolution, which is developed by
huggingface. Introduction and code are available
at https://github.com/huggingface/neuralcoref.

Visual Grounding We use One-Stage Visual
Grounding Model (Yang et al., 2019b) to ob-
tain the visual grounding features. Introduction
and code are available at https://github.com/zyang-
ur/onestage_grounding.

Automatic Evaluation. We use a retrieval set-
ting to evaluate individual responses at each round
of a dialogue, following Das et al. (2017). Specif-
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ically, at test time, apart from the image, ground
truth dialogue history and the question, a list of
100-candidate answers is also given. The model is
evaluated on retrieval metrics: (1) rank of human
response (Mean, the lower the better), (2) existence
of the human response in top — k ranked responses,
i.e., R@k (3) mean reciprocal rank (MRR) of the
human response (the higher the better) and (4) nor-
malized discounted cumulative gain (NDCG) for
VisDial v1.0 (the higher the better). During eval-
uation, we use the log-likelihood scores to rank
candidate answers.

Human Evaluation. We randomly extract 100
samples for human evaluation according to Wu et al.
(2018), and then ask 3 human subjects to guess
whether the last response in the dialogue is human-
generated or machine-generated. If at least 2 of
them agree it is generated by a human, we think it
passes the Truing Test (M1). In addition, we record
the percentage of responses that are evaluated better
than or equal to human responses (M2), according
to the human subjects’ evaluation.

3.3 Main Results

We compare our proposed model to the state-
of-the-art generative models developed in previ-
ous work. Current encoder-decoder based gen-
erative models can be divided into tree facets.
(1) Fusion-based models: LF (Das et al., 2017)
and HREA (Das et al., 2017) directly encode the
multimodal inputs and decode the answer. (2)
Attention-based models: HCIAE (Lu et al., 2017),
CoAtt (Wu et al., 2018), Primary (Guo et al.,
2019a), ReDAN (Gan et al., 2019), DVAN (Guo
et al., 2019b) and DMRM (Chen et al., 2020a),
DAM, LTMI, KBGN. (3) Visual co-reference res-
olution models: CorefNMN (Kottur et al., 2018),
RvA (Niu et al., 2019). (4) The pretraining model:
VDBERT (Wang et al., 2020).

As shown in Table 1 and Table 2, our MITVG,
which explicitly locates related objects guided by
the textual entities and implements a multimodal
incremental transformer to incrementally build the
representation of the dialogue history and the im-
age, achieves comparable performance on the Vis-
Dial v0.9 and v1.0 datasets. Specifically, our model
outperforms previous work by a significant margin
both on the VisDial v0.9 dataset (0.87 on MRR,
0.31onR@1, 1.17 on R@5, 0.75 on R10) and the
VisDial v1.0 dataset (0.98 on MRR, 0.76 on R@1,
1.23 on R@5, 1.28 on R10, 0.82 on Mean, and

| DMRM | MITVG
Method 1 M1) | 0.62 | 0.76
Method2(M2) | 059 | 0.70

Table 3: Human evaluation on 100 sampled responses
on VisDial val v1.0. M1: percentage of responses pass
the Turing Test. M2: percentage of responses evaluated
better than or equal to human responses.

1.00 on NDCG). The improvement of R@10 is the
largest and our method also gains a large increase
on MRR and R@1 due to the explicit modeling
of multiple modalities (Seeing Sec 3.5 for further
quantitative analysis).

As shown in Table 3, we conduct human study
to further prove the effectiveness of our model.
Our model achieves the highest scores both on the
metric M1 (0.76) and M2 (0.70) compared with
the previous model, DMRM (Chen et al., 2020a).
These results show that our model can generate a
better contextually and visually coherent response.

3.4 Ablation Study

We also conduct an ablation study to illustrate the
validity of our proposed Multimodal Incremental
Transformer with Visual Grounding. The results
are shown in Table 4.

We implement Multimodal Incremental Trans-
former without Visual Grounding (‘MITVG w/o
VG’) to verify the validity of visual grounding.
As shown in Table 4, comparing ‘MITVG w/o
VG’ with MITVG, we find the metrics decrease
obviously (0.46 on MRR, 0.60 on R@1, 0.68 on
R@5, 0.46 on R@10 and 0.59 on Mean) if visual
grounding is deleted from MITVG. This observa-
tion demonstrates the validity of visual grounding.

To verify the effectiveness of the incremental
transformer architecture, we implement a Multi-
modal Incremental LSTM without Visual Ground-
ing (‘MI-LSTM w/o VG’). A 3-layer bidirectional
LSTM (Schuster and Paliwal, 1997) with multi-
head attention and a 1-layer LSTM with GCA are
applied for encoder and decoder, respectively. All
the LSTM hidden state size is 512. Results in
Table 4 demonstrate the effectiveness of our incre-
mental transformer architecture (compare ‘MITVG
w/o VG’ with ‘MI-LSTM w/o VG’). Results from
the comparison between ‘MITVG w/o VG’ and
DMRM (Chen et al., 2020a) also show the validity
of our incremental transformer to some extent.

442



Caption: a stack of luggage below a framed photo
of a map

<

QL: how tall is the stack ?

GT: Ours:

Q2: what color are they ?

GT: Ours :

Q3: what do you think they contain ?
GT: Ours:

(@

Caption: several giraffes gather at an elevated
platform to take food from zoo visitors

Q1: is the photo in color ?

GT: Qurs:

Q2: how many giraffes ?

GT: more than3  Ours:

Q3:is it daytime ?

GT: Qurs:
(b)

Figure 5: Case study. The text marked in blue indicates the dialogue topic. The answers marked in green and red
indicate the right and wrong answers, respectively. Our MITVG often generates right responses (marked in green)

in keeping with human answers.

Model | MRR | R@1 | R@5 | R@10 | Mean
DMRM | 50.16 | 40.15 | 60.02 | 67.21 | 15.19
MITVG 51.14 | 41.03 | 61.25 | 68.49 | 14.37
MITVG w/o VG | 50.68 | 40.43 | 60.57 | 68.03 | 14.96
MI-LSTM w/o VG | 50.02 | 39.85 | 59.86 | 67.16 | 15.78

Table 4: Ablation study of our proposed model on Vis-
Dial val v1.0. “MI-LISM” indicates Multimodal Incre-
mental LSTM. “VG” indicates visual grounding.

‘ Train ‘ Validation ‘ Test
VisDial v0.9 | 2.04 | 195 | -
VisDial v1.0 | 2.05 | 193 | 1.93

Table 5: Average number of the grounded objects in
each question.

3.5 Case Study

As shown in Table 5, we calculate the average num-
ber of the objects associated with entities in each
question for assistant analysis. As shown in Fig-
ure 5 (a), owing to the explicit understanding of
visual content via visual grounding and the mul-
timodal incremental transformer architecture, our
MITVG generates responses in keeping with hu-
man answers. For example, while answering the
question Q1 ‘how tall is the stack ?”” and Q2 “what
color are they ?”, our model grounds the three suit-
cases accurately via visual grounding, thus giving
the accurate responses “3 suitcases” and “blue and
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2 red”. However, as shown in Figure 5 (b), for
questions Q2, MITVG gives a wrong answer be-
cause it focuses on wrong number of objects in the
question by visual grounding.

4 Related Work

Visual Dialogue. Our work touches two
branches of the research in visual dialogue. One
is how to leverage image features. Niu et al.
(2019) utilize object-level image features as visual
attention and refine it by recursively reviewing the
dialog history. Gan et al. (2019) and Chen et al.
(2020a) regard the object-level image features
as visual memory to infer answers progressively
through multiple steps. The other is how to model
dialogue history. Yang et al. (2019a) propose a new
training paradigm inspired by actor-critic policy
gradient (Sutton et al., 1999) for history-advantage
training. Guo et al. (2020) represent each turn
dialogue history with visual content as a node in
a context-aware graph neural network. Park et al.
(2020) refine history information from both topic
aggregation and context matching. Different from
these approaches, we explicitly establish specific
mapping of objects and textual entities to exclude
undesired visual content via visual grounding,
and model multi-turn structure of the dialogue
based on visual grounding to develop a unified
representation combining multi-turn utterances



along with the relevant objects.

Incremental Structures. There are some suc-
cesses on introducing the incremental structure into
tasks related to dialog systems (Zilka and Jurcicek,
2015; Coman et al., 2019; Li et al., 2019; Das et al.,
2017). In particular, Coman et al. (2019) propose
an incremental dialog state tracker which is updated
on a token basis from incremental transcriptions.
Li et al. (2019) devise an incremental transformer
to encode multi-turn utterances along with knowl-
edge in related documents for document grounded
conversations. Das et al. (2017) propose a dialog-
RNN to produce an encoding for this round and a
state for next round. Our model is different from
these approaches mainly in two aspects: 1) we ex-
plicitly model the relationship between modalities,
i.e., textual utterance and image objects, in visual
dialogue through visual grounding; 2) based on the
explicit association between modalities, our model
incrementally encodes the dialogue history and the
image with well-designed incremental multimodal
architecture to sufficiently understand the dialogue
content, thus generating better responses.

5 Conclusion

We propose a novel Multimodal Incremental Trans-
former with Visual Grounding for visual dia-
logue, named MITVG, which consists of two key
parts: visual grounding and multimodal incremen-
tal transformer. Visual grounding aims to explicitly
model the relationship between multiple modalities.
Based on visual grounding, multimodal incremen-
tal transformer aims to explicitly model multi-turn
dialogue history in the order of the dialogue. Exper-
iments on the VisDial v0.9 and v1.0 datasets show
that our model achieves comparable performance.
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