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Abstract

Generating context-aware language that em-
bodies diverse emotions is an important step
towards building empathetic NLP systems. In
this paper, we propose a formulation of mod-
ulated layer normalization—a technique in-
spired by computer vision—that allows us
to use large-scale language models for emo-
tional response generation. In automatic and
human evaluation on the MojiTalk dataset,
our proposed modulated layer normalization
method outperforms prior baseline methods
while maintaining diversity, fluency, and co-
herence. Our method also obtains competitive
performance even when using only 10% of the
available training data.

1 Introduction

Building interactive systems that can understand
and express human emotions has been a long-term
goal of artificial intelligence (Shen and Feng, 2020;
Huang et al., 2018; Salovey and Sluyter, 1997).
Given a context, an intelligent agent ought to be
able to generate responses that not only consider
the context but also reflect a specified emotion, a
task called emotional response generation. One
common representation of emotions is through
emojis, which often convey the underlying emo-
tions in an utterance (Zhou and Wang, 2018). Table
1 shows an example generation in this formulation.

To tackle this problem, prior work has proposed
a number of different models, including variants of
sequence-to-sequence (Seq2Seq) models (Serban
et al., 2016; Li et al., 2016a), variational autoen-
coders (VAE) (Gu et al., 2019; Shen et al., 2017;
Zhao et al., 2017) and adversarial networks (Kong
et al., 2019; Li et al., 2017). Their generated re-
sponses are often dull or generic, partially due to
the limited training data for diverse emotions (Li
et al., 2017). More recent studies have tried to

Context:
Emotion Response

good game start morning off tigers v eagles.

good luck to all the eagles
i m not a tigers fan but we ve got a win
we ve got to wait for tommorrow for the game
hope you enjoyed the match with your team

Table 1. Example generation of our method for four
different emojis. Context is an actual random tweet,
and emotion is specified by emojis.

pre-train language models (LMs) on specific do-
main data to pivot generation towards certain di-
rection (Gao et al., 2020; Zhang et al., 2020; Yang
et al., 2020; Keskar et al., 2019). However, training
a LM from scratch can be costly, and collecting
sufficient pre-training data in diverse emotions is
also challenging, especially for low-resource emo-
tions (Yang et al., 2019a).

In this work, we present a simple and easy-
to-deploy technique that can enable pre-trained
large-scale LMs to generate fine-grained emotional
responses. Specifically, we inject emotional sig-
nals specified by 64 commonly used emojis via
Modulated Layer Normalization (Mod-LN), a tech-
nique widely adopted in computer vision but whose
potential has not been well studied yet in NLP. The
main advantages of our method are:
• Instead of designing or re-training models from

scratch, our method is plug-and-play. In this
work, we show its effectiveness on BERT (2019)
and GPT-2 (2019), but one can easily extend our
method to other Transformer-based LMs.

• By fully exploiting the transfer learning abil-
ity of pre-trained LMs, we achieve comparable
emotional response generation performance as
prior best-performing work with only 10% of
the training data, which is especially beneficial
for low-resource scenarios.
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2 Approach

Given a context text and a specified emoji as a
target emotion, we aim to generate responses that
both reflect the emotion associated with the emoji
and the semantic information in the context. In this
work, we demonstrate how to inject target emotions
through a modulation module of layer normaliza-
tion (§2.1). We also provide data preparation and
model adaptation strategies on two typical LMs
(BERT and GPT-2) to aid reproduction and exten-
sion (§2.2).

2.1 Modulated Layer Normalization

Layerwise-normalization (LN) is commonly used
in Transformer-based (Vaswani et al., 2017) lan-
guage models (LMs) (Devlin et al., 2019; Radford
et al., 2019; Yang et al., 2019b) to stabilize hidden
state dynamics and reduce training time (Ba et al.,
2016). In the vanilla implementation (Figure 1(a)),
data are normalized by their own mean µ and stan-
dard deviation σ without relying on external inputs.
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Figure 1: Overview of (a) Vanilla Layer Normaliza-
tion (LN) and (b) Modulated Layer Normalization
(Mod-LN) in Transformer-based LMs. The modulation
module in Mod-LN uses two Multi-Layer Perceptrons
(MLPs) that each have two sets of dense layers. It uses
the external emotion input to modulate regularization
towards a certain emotion c. FFN: Feed-Forward Net-
work. Self-Attn: Multi-head Self-Attention blocks.

In contrast to vanilla LN that only regularizes
data itself, Mod-LN introduces an external modula-
tion module shared across the whole dataset, which
is independent of the individual data samples and
able to modulate the regularization towards exter-
nal inputs c (Figure 1 (b)). Specifically, for an input
hidden state tensor x in layer l, it is normalized by
Mod-LN as

x = MLP(l)
γ (c) · x− µ

σ + ε
+ MLP(l)

β , (1)

where ε is the smoothing parameter to avoid divid-
ing by zero. MLP(l)

γ and MLP(l)
β are two trainable

modulation modules for a certain layer l. They are
computed by

MLP(l)
γ (c) =W (l,2)

γ · Swish(W (l,1)
γ c), (2)

MLP(l)
β (c) =W

(l,2)
β · Swish(W (l,1)

β c+ b), (3)

whereW (l,1) andW (l,2) are dense layers belonging
to layer l, with weights size of [64, 1

2 · dimh] and
[12 · dimh, dimh] respectively1. Dense layers con-
nect 64 emoji classes to the output hidden states
of the language model, and b is a bias added to
γ. We use the Swish activation (Ramachandran
et al., 2017), which has been shown to outper-
form ReLU (Xu et al., 2015) on several challenging
datasets. Though conceptually simple, such MLP
based modules have been shown to be a faster and
more efficient alternative to vanilla dot product self-
attention in NLP (Tay et al., 2021) and CV (Tol-
stikhin et al., 2021). Our work uses MLPs as a
plug-and-play modulator rather than a replacement
for self-attentions, allowing us to shift the hidden
states towards a given target emotion.

2.2 Data Preparation and Model Adaptation

For the text input, we concatenate ground-truth con-
text with corresponding response as a whole input
to feed into LMs. We add a pre-defined separator
token ([SEP] for BERT and [UNK] for GPT-2)
between context and response, to make LMs aware
of the range of each part. We also pad both context
and response to a max sequence length with the
padding token.

Encoder-Decoder models have been successful
in many text-to-text generation tasks, such as ques-
tion answering (Chen et al., 2017; Seo et al., 2017),
news summarization (Chopra et al., 2016; Rush
et al., 2015), and style transfer (Li et al., 2018; Liu
et al., 2021). For the response generation task, the
encoder encodes the context text into a fixed-length
vector in latent space, while the decoder decodes
the generated response tokens step-by-step, given
the encoded context vector and the ground truth
token from the previous step; this method is also
known as teacher-forcing (Zhang et al., 2019c; Cho
et al., 2014).

In this work, we consider leveraging the transfer
learning power of large-scale LMs—using LMs

1The hidden size dimh of bert-large-uncased and GPT-2
medium model are both 1024.
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as encoder and decoder—to better capture the
complicated relationship between context and re-
sponse (Rothe et al., 2020). Auto-regressive LMs
(ARLMs), such as GPT-2 are trained to iteratively
predict the next step token given the past, while
Masked Language Models (MLM), such as BERT,
are trained to predict missing tokens given both
the preceding and subsequent text. In contrast to
the uni-directional attention flow in ARLM, the
attention flow of MLM is bi-directional, and thus if
we directly use MLM as decoder, the prediction of
tokens in the response will also attend to (i.e., have
the context of) future tokens; this could potentially
lead to exposure bias (Schmidt, 2019). Inspired by
recent text-to-text LMs such as T5 (Raffel et al.,
2020) and BART (Lewis et al., 2019), for MLM
decoder, we modify the original bi-directional at-
tention mask to make it uni-directional.

We experiment with two encoder-decoder mod-
els built on MLM and ARLM: 1) BERT-to-BERT:
using bi-directional BERT as both encoder and
decoder, but forcing the decoder BERT to attend
to past context with uni-directional mask, and 2)
GPT2-to-GPT2: using uni-directional GPT-2 as
both encoder and decoder.

3 Experimental Setup

Dataset. For all the experiments, we use the Mo-
jiTalk (Zhou and Wang, 2018) dataset, a large Twit-
ter conversation corpus (N ≈ 700k) of responses
that each contain one or more of 64 popular emojis.
Following the original paper, we split the corpus
into training, validation, and test sets of 596,959,
32,600, and 32,600 conversation pairs, respectively.
We fine-tune the two LM-based encoder-decoder
models on this dataset and generate responses given
contexts and all possible emotions using top-k ran-
dom decoding (Fan et al., 2018) on a machine with
four RTX 2080 GPUs 2.

Models. We evaluate three models in total.
We take the Reinforced Conditional Variational
AutoEncoders (R-CVAE) model from Zhou and
Wang (2018) as Baseline (current best-performing
model on 64-emoji controlled response generation),
Mod-LN MLM: BERT-to-BERT (large, uncased)
+ Mod-LN, and Mod-LN ARLM: GPT2-to-GPT2
(large) + Mod-LN.

2We choose k = 10 for a balance of generation diversity
and readability through empirical observation.

Model Emoji Acc (%)

Hits@1 Hits@3 Hits@5

Baseline: R-CVAE
w/. 10% train data 13.4 27.1 33.6
w/. 100% train data 26.2 44.2 53.4

Mod-LN MLM
w/. 10% train data 20.5 47.4 59.1
w/. 100% train data 33.6 56.8 72.2

Mod-LN ARLM
w/. 10% train data 27.9 43.4 64.1
w/. 100% train data 34.4 60.3 82.5

Table 1: Accuracy of emotional response judged by
DeepMoji on classifying emotions in responses gen-
erated by R-CVAE, MLM (BERT) with Mod-LN, and
ARLM (GPT-2) with Mod-LN.

4 Evaluation

Good emotional responses should accurately reflect
the intended emotion, be diverse, and have coherent
language. We thus evaluate three aspects of gener-
ated responses: emotion control (§4.1), response
diversity (§4.2), and coherence and fluency (§4.3).
We also use Amazon Mechanical Turk (MTurk) to
run a manual evaluation of emotion control and
readability in generated responses (§4.4).

4.1 Emotion Control

First, we evaluate whether intended emotions were
reflected in the responses generated by various
models. We choose DeepMoji (Felbo et al., 2017)3

as the judgment classifier. DeepMoji was trained
on a large-scale emoji dataset containing 1,246 mil-
lion tweets and 64 distinct emojis, and as far as
we know, is state-of-the-art for 64-emoji classifica-
tion tasks. Since the meanings of different emojis
can overlap with subtle differences, we compute
Hits@k (k = {1, 3, 5}) classification accuracy (Gao
et al., 2020) to describe the performance of mod-
els in different criteria. As shown in Table 1, our
proposed models outperform R-CVAE with a large
margin. Of note, LM-based models reveal more
robust performance in extreme data scarcity cases:
our models achieve comparable performance with
R-CVAE even when using only 10% of the training
data. Between BERT and GPT-2, GPT-2 shows
superior performance, partially because its weights
are from auto-regressive pre-training.

3We chose the official implementation by huggingface:
https://github.com/huggingface/torchMoji.
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Model TTR-1 TTR-2 Avg. len %stop

Human Reference 0.059 0.43 11.7 50.4

Baseline: R-CVAE
w/. 10% train data 0.034 0.24 8.6 60.1
w/. 100% train data 0.051 0.33 9.2 59.3

Mod-LN MLM
w/. 10% train data 0.054 0.43 18.2 49.3
w/. 100% train data 0.059 0.39 14.3 49.2

Mod-LN ARLM
w/. 10% train data 0.056 0.38 15.9 48.7
w/. 100% train data 0.057 0.40 12.5 48.5

Table 2: Lexical diversity of generated responses from
various models. TTR-1/TTR-2: unigram/bigram type-
token ratio; Avg. len: average number of tokens in
generated responses; %stop: average percent of stop
words among all tokens in the generated responses.

4.2 Generation Diversity

As shown in Table 2, we evaluate the diversity
of responses generated by each model in terms
of unigram and bigram type-token ratios, average
length, and percent of stop words in generated re-
sponses, with values for the human-generated re-
sponses shown for reference. As measured by the
type-token ratio for both uni- and bi-grams, our
proposed models generate more diverse responses.
In addition, compared with the R-CVAE, the re-
sponses generated by our models are longer and use
fewer stop words. The advance can be attributed to
the using of large-scale language models as base
models.

4.3 Fluency and Coherence

Moreover, we evaluate the fluency and coher-
ence of machine-generated text. For fluency, we
trained a standalone language model on the human-
generated responses using KenLM (Heafield, 2011)
to measure the perplexity of generated texts. To
evaluate coherence between the context and the
generated responses, we compute the similarity
between the generated text and human-generated
responses using BERTScore (Zhang et al., 2019b),
with the human-generated responses as refer-
ence. We configure the BERTScore using 24-layer
RoBERTa-large (Liu et al., 2019) as for English
tasks. Table 3 shows these results. For perplexity
and BERTScore, our Mod-LN models outperform
the R-CVAE in both 10% and 100% training data
cases.

Model (vs Ref.) PPL BERTScore (%)

Precision Recall F1

Baseline: R-CVAE
w/. 10% train data 121.18 74.9 83.0 76.7
w/. 100% train data 92.64 80.8 80.8 80.8

Mod-LN MLM
w/. 10% train data 79.24 78.4 80.1 78.8
w/. 100% train data 50.72 82.9 84.1 83.5

Mod-LN ARLM
w/. 10% train data 51.55 83.7 80.7 83.2
w/. 100% train data 36.31 84.7 86.2 85.4

Table 3: Fluency as measured by perplexity (PPL) and
coherence as measured by BERTScore of generated re-
sponses from various models. Ref.: Human-generated
responses.

4.4 Human Evaluation

In total 120 MTurk participants manually evaluated
the emotion control and readability of responses
from our proposed models and the original human-
generated reference data. The average age of par-
ticipants was 38.40 years-old (SD = 12.26, Me-
dian=34.50). More than half (65.8%) of partici-
pants were male, and 34.2% were female. The
average completion time of each survey was 4.53
minutes. Participants were paid $1 per survey, aver-
aging to more than $13 per hour wage for each
participant, significantly above the U.S. federal
minimum wage.

Procedure Each participant was assigned to read
five randomly selected context-response pairs with-
out being informed of the sources of the responses.
They were asked to rate 1) emotion control: “How
well the emotion conveyed in the response agrees
with the specified emoji? (1-very well to 7-not at
all)”, and 2) readability: “Please rate the readabil-
ity of the response on a 7-point scale. (1-very low
to 7-very high)”. The readability measure included
five items adapted from a previous study (Graefe
et al., 2018), specifically, well-written, concise,
comprehensive, coherent, and clear. Since the five
measures had very high agreement (Cronbach’s4 α
= .91), we average the five measures into one as a
general readability index.

Results The participant’s averaged ratings (µ)
and Standard Errors (SE) are reported in Table 4.

4Cronbach’s alpha is a measure of internal consistency
between sets of items.
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Response Source Annotator Ratings: µ (SE)

EMO CTRL. READABILITY

Human Reference 5.62 (0.10) 5.34 (0.10)

Baseline: R-CVAE 4.80 (0.10) 4.67 (0.10)

Mod-LN MLM 5.43 (0.10) 5.20 (0.10)

Ablation: Vanilla GPT-2 4.98 (0.10) 4.64 (0.10)
Mod-LN ARLM 5.40 (0.10) 5.32 (0.10)

Table 4: Humans manually evaluated the emotional
control and readability of responses from the original
data (human reference), Baseline and proposed models
on a 7-point scale (1: low quality, 7: high quality). We
also take the generative LM: vanilla GPT-2, as the abla-
tion reference.

As shown in the table, the standard error of the
mean among all annotators is .10, which is very
low for a 7-point scale, indicating large agreement
between annotators. Responses generated by Mod-
LN MLM (BERT), Mod-LN ARLM (GPT-2), and
the human-generated references had no statistically
significant differences in emotion control and read-
ability. All were rated significantly higher than
plain GPT-2 and R-CVAE in both emotion control
and readability (p < .001 for one-way repeated
measures ANOVA). We also conducted pairwise
multiple comparisons in our analysis as post-hoc
analysis. In terms of emotion control, both of our
two proposed models and original reference data
were rated significantly better than vanilla GPT-
2 (p < .007). For readability, both our models,
vanilla GPT-2, and original reference data were
rated significantly more readable than R-CVAE
(p < .001).

5 Related Work

Emotional Text Generation. VAE-based models
(Park et al., 2018; Shen et al., 2017; Zhao et al.,
2017; Serban et al., 2017), adversarial networks
(Kong et al., 2019; Li et al., 2017; Yu et al., 2017)
and reinforcement learning systems (Li et al., 2019,
2016b) have dominated sentiment-aware dialogue
models. Other methods have been developed using
LSTM (Song et al., 2019) and GRU (Wei et al.,
2019; Zhou et al., 2018). All these methods, how-
ever, are built on relatively coarse emotion types,
partially due to the limited modeling ability of
RNNs. Our model outperforms current state-of-
the-art R-CVAE (Zhou and Wang, 2018) in the
same 64-emoji settings.

Modulated Normalization. Though not common
in NLP, modulated normalization has been pre-
viously used in computer vision. In addition to
work mentioned in the introduction (De Vries et al.,
2017), adversarial networks such as CGAN (Miy-
ato and Koyama, 2018), self-attention GAN (Zhang
et al., 2019a) and Style GAN (Karras et al., 2019)
have used modulated normalization to inject exter-
nal signal into their models. In NLP, previous stud-
ies have tried to modulate normalization for classifi-
cation tasks (Houlsby et al., 2019) and multilingual
machine translation (Bapna and Firat, 2019), how-
ever, both these methods require architecture-level
modifications. Our method, on the other hand, is
plug-and-play, requiring minimal modifications to
the architecture and thus easier to deploy for a di-
verse set of applications.

6 Conclusions

We have proposed a modulated layer normalization
approach to generating responses of varying speci-
fied emotions. Our approach allows us to leverage
large pre-trained models, while remaining simple
and easily-extendable. In empirical experiments,
our approach substantially outperforms prior work
and achieves comparable results using only 10%
of the available training data, all while maintaining
diversity, fluency, and coherence.
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