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Abstract
Knowledge Bases (KBs) are easy to query, ve-
rifiable, and interpretable. They however scale
with man-hours and high-quality data. Masked
Language Models (MLMs), such as BERT,
scale with computing power as well as unstruc-
tured raw text data. The knowledge contained
within these models is however not directly in-
terpretable. We propose to perform link pre-
diction with MLMs to address both the KBs
scalability issues and the MLMs interpretabil-
ity issues. By committing the knowledge em-
bedded in MLMs to a KB, it becomes inter-
pretable. To do that we introduce MLMLM,
Mean Likelihood Masked Language Model,
an approach comparing the mean likelihood of
generating the different entities to perform link
prediction in a tractable manner. We obtain
State of the Art (SotA) results on the WN18RR
dataset and SotA results on the Precision@1
metric on the WikidataM5 inductive and trans-
ductive setting. We also obtain convincing re-
sults on link prediction on previously unseen
entities, making MLMLM a suitable approach
to introducing new entities to a KB.

1 Introduction

1.1 Context
KBs have many desirable properties. They are easy
to query, verifiable, and perhaps most importantly
interpretable by humans. They however have one
critical shortcoming, they are expensive to build,
making them harder to scale. Indeed, modern KBs
scale with high-quality data, manual labor, or a
mix of both. Approaches that scale with available
computation and the massive amounts of unstruc-
tured data that are being created and accumulated
have proven invaluable in the recent deep learning
boom.

Large pretrained MLMs (Devlin et al., 2018;
Liu et al., 2019) have been shown to scale well
with large amounts of unstructured text data as

well as with computing power. They also have dis-
played some interesting emergent abilities, such as
the ability to perform zero-shot question answering
(Radford et al., 2019; Brown et al., 2020). This
ability implies that the model parameters contain a
large amount of factual knowledge that it can lever-
age to answer a wide variety of questions. However,
that knowledge is hardly interpretable by humans,
as it is hidden within the millions to billions of
parameters of the language model.

By using MLMs to completes KBs, we can ad-
dress both the issue of scalability of KBs and the is-
sue of the interpretability of MLMs by committing
knowledge of the latter to an interpretable format
in the former. The MLM can learn new knowledge
from the large amount of unstructured textual data
that keeps being added to the World Wide Web and
then be used to continually complete and update the
KB. This has the very desirable effect of making
the link prediction approach scale with both compu-
tational power and a large quantity of unstructured
data, both of which show no sign of slowing down.

1.2 Problem Definition

Given an entity and a relation, we want to train an
MLM to generate all entities completing the KB
triple.

Several technical challenges had to be addressed
to achieve proper link prediction with pretrained
MLMs. The first one is tractability. It is well
known that inference in the task of Link Prediction
is extremely costly, to the point where validation
and test sets are purposefully kept small and most
datasets will shy away from containing millions
of different entities (Wang et al., 2019). While
smaller Link Prediction datasets (Dettmers et al.,
2017; Toutanova and Chen, 2015) are limited to a
few thousand entities, a dataset more representa-
tive of full sized KBs (Wang et al., 2019) would
contain upwards of a million potential entities. A
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model that would be used on such a dataset could
not realistically require an inference step through
an MLM for every potential entity completing a
triplet. It is necessary to enable link prediction
with as little inference to the model as possible,
as performing inference on pretrained models is
expensive. Otherwise, it could result in a model
with no practical purposes, even if it obtained better
leaderboard scores.

The second challenge has to do with the infer-
ence outputs format of the MLMs. The length of
the output needs to be known at inference time (De-
vlin et al., 2018; Vaswani et al., 2017), making it
hard to sample entities of varying lengths from it.
The example ”Horses like ” could be completed
with the word ”carrot” and ”long runs”, but those
two answers require varying length of masked in-
puts to be filled. Work like Petroni et al. (2019)
is limited to single token outputs, which is useful
to probe the model for the presence of embedded
knowledge, but is not usable in practice for tasks
such as link prediction, as the missing entities will
have variable lengths. Solutions have to be able to
sample an MLM for entities of varying lengths to
have practical applications.

Finally, the use of MLMs opens the door to per-
forming link prediction on entities that have not
been previously seen by the model or the KB. This
permits the addition of new entities to a KB on
top of the link prediction capacities. Some capa-
bility of such an approach with MLMs was previ-
ously demonstrated (Petroni et al., 2019) and other
works have approached the task by generating and
comparing entities embedding (Daza et al., 2020;
Gupta et al., 2017; Wang et al., 2019) for differ-
ent KB tasks. By generating entity embeddings
from text, they permit apt representation for pre-
viously unseen entities that can then be compared
to other, previously seen entities. Unlike previous
approaches we forgo the entity embedding step and
let the model directly output the entity. We show
that our approach yields strong results with unseen
entities of arbitrary lengths in this task and should
be explored further.

1.3 Contribution

Our main contributions are summarized here:

• We propose MLMLM, a mean likelihood
method to compare the likelihood of differ-
ent text of different token lengths sampled
from an MLM.

• We demonstrate the tractability of our ap-
proach, requiring only one inference step
through the model to perform link prediction
on any numbers of possible entities, some-
thing which was not previously possible with
an MLM.

• We achieve SotA results on the WN18RR
benchmark and the best Precision@1 on both
the inductive and transductive setting of the
WikidataM5 dataset.

• We demonstrate that our approach can gen-
eralize to previously unseen entities on all
benchmarks.

2 Background and Related Work

2.1 Masked Language Models

Pretrained MLMs, popularized by BERT (Devlin
et al., 2018), have seen tremendous success when
applied to Natural Language Understanding (NLU)
problems. They are pretrained on massive amount
of unsupervised text data. Those models incor-
porate enormous amounts of language knowledge
and world knowledge within their weights. This
lets them be further tuned on challenging NLU
tasks with great success. Being based on the trans-
former (Vaswani et al., 2017) encoder architecture,
the output length of the model is equal to the in-
put length. This makes it challenging to sample
text of arbitrary length when using MLMs with-
out knowing the length of the desired sample in
advance.

2.2 Sampling from MLM

Sampling single words from an MLM is trivial.
By adding a mask to the input, we can sample
likelihoods for the whole vocabulary. This fea-
ture is used by several pieces of work to complete
sentences, answer questions and more (Guu et al.,
2020; Lewis et al., 2020; Petroni et al., 2019). Work
to generate and evaluate multi-token spans from
MLM has also yielded interesting results (Wang
and Cho, 2019; Salazar et al., 2020). We are
however unaware of any other approach to sam-
pling and evaluating multi-token spans of variable
length, which is necessary to properly accomplish
the task of link-prediction in a single pass through
the model.
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2.3 A Re-evaluation of Knowledge Graph
Completion Methods

Recently, Sun et al. (2020) has found that many of
the SotA approaches to link prediction have used
an inappropriate evaluation protocol. They have
shown that the evaluation protocol typically used
in the link prediction approaches assigns a perfect
score to a constant output, by putting the correct
entities on top during a tiebreaker. In essence, un-
der this evaluation protocol, assigning a likelihood
of 0 to all entities would yield a perfect reranking
score, since the tiebreaker would put the target en-
tity as the first prediction. This was shown to yield
very inflated scores for many neural network based
link prediction approaches (Nathani et al., 2019;
Vu et al., 2019; Nguyen et al., 2017), as several
of them output a large number of tied scores for
the various entities. Entity-embedding based ap-
proaches (Balažević et al., 2019; Sun et al., 2019;
Dettmers et al., 2018) do not suffer from this issue.
While we have found that our approach does not
suffer from this issue despite not being an entity-
embedding approach, we will use the random evalu-
ation protocol proposed by Sun et al. (2020) for all
evaluations and compare against approaches that
used a similar protocol to ensure the validity of
the comparisons. This protocol is similar to the
filtered setting (Bordes et al., 2013), with the differ-
ence that the rank among entities with tied scores
is randomly assigned.

2.4 KG-BERT

KG-BERT (Yao et al., 2019) is an approach to KB
tasks based on MLM. It successfully demonstrates
the potential of leveraging these models’ internal
knowledge on KB tasks. They train a BERT model
to classify whether an individual triple fed to the
model is correct or not. In essence, they feed ev-
ery single possible (h, r, ?) or (?, r, t) triple in a
string format to the model to obtain all scores to be
reranked. This can result in millions of inference
steps on the MLM for a single triple completion de-
pending on the size of the KB. KG-BERT has many
advantages over our proposed approach. It uses the
target entity in the input, thus giving the model
more information to use at inference time. The
problem that it solves is much simpler, reducing it
to a simple sequence classification problem. With
a similar setup, it is even likely that KG-BERT
would yield better results than our proposed ap-
proach since it has access to more information and
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Figure 1: Approach Inference Time. This figure
shows the per-entity inference time based on the
total number of entities to be re-ranked, of
MLMLM and KG-BERT, the most comparable
approach.

has a more straightforward training setup. Unfortu-
nately, KG-BERT is not tractable on any reasonably
large KB (see Figure 1). For a KB containing mil-
lions of entities, KG-BERT would require millions
of inference step through the MLM model for ev-
ery triple completion. In contrast, our approach
requires only one inference step through the MLM
model for every triple completion, by generating
all logits required to obtain the likelihood of any
potential entity at once. Modern KBs can con-
tain millions of entities (Wang et al., 2019), which
would translate in KG-BERT requiring hours to
complete a single triplet on a GPU.

3 Methodology

3.1 Overview

Our system performs link prediction. It uses MLM
to generate all possible logits of all tokens required
to generate all entities, and mean likelihood sam-
pling to rerank all possible entities to complete the
triple and perform link prediction. It can also be
used to sample likelihoods for previously unseen
entities.

Figure 2 shows a toy example of our inference
setup. Our model outputs logits for the whole vo-
cabulary of the RoBERTa-Large model. The out-
puts are simply the logits for all words and sub-
words from that vocabulary. This vocabulary is
expressive enough to generate any English text.
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T = 

Token ID Pos 1 Pos 2

"c"

"r"

"at"

0.7 0.4

-1.2 0.6

0.8 0.2

E = 

Entity ID Pos 1 Pos 2

"cat"

"rat"

"at"

"c" "at"

"r" "at"

"at" MASK

S = 

Entity ID Score

"cat"

"rat"

"at"

AVG([0.7, 0.2]) = 0.45

AVG([-1.2, 0.2]) = -0.5

AVG([0.8]) = 0.8 1

2

3

Rank

Figure 2: Ranking Example. The figure contains
a minimal example of the ranking system. It
represents the system in a KB containing 3
subwords in its vocabulary [’c’, ’r’, ’at’], 3 entities
to rank [’cat’, ’rat’, ’at’] and a maximum entity
length of 2.

Head entity
Definition

of head entity
Relation

?
(Tail entity)

Language model

Logits Logits Logits Logits

Lookup 
table

Figure 3: Lookup Table Generation For Tail
Entity Prediction. The figure shows how the
lookup table for tail entity prediction is generated.
A string representation of the head entity and the
relation are fed to the masked language model
which outputs logits that represent the likelihood of
finding each token at each possible position of the
tail entity.

We decide in advance on a maximum length n for
the maximum length of English text to generate.
With a vocabulary of roughly 50,000 logits, the
model would output a vector of logits of shape
[50,000 x n]. Knowing in advance the tokens that
would build the string for all possible entities, we
can obtain a score for the likelihood of those en-
tities completing a triplet by averaging the logits
of those tokens. To evaluate the likelihood of the
entity ”brown dog”, we would average the logits
for the word ”brown” on the first column of the ma-
trix with the logits of the word ”dog” on the second
column of the matrix, ignoring all other columns
of our logit matrix. Even if the model would never

have encountered the entity ”brown dog” it could
still produce a score for said entity.

3.2 Data Pre-processing
The data pre-processing pipeline takes a link pre-
diction dataset and transforms it into a generic for-
mat usable by the model. It is required that both
the entity and relations have string representations.
For every entity in the dataset, we extract an entity
string, which uniquely identifies the entity, and a
definition string, which is a textual description of
the given entity. For every relation, we extract a
relation string, which uniquely identifies and de-
scribes the relation.

We tokenize all strings through the pretrained
RoBERTa tokenizer (Sennrich et al., 2016) and fur-
ther transform the entity string by adding padding
to match the longest tokenized entity within the
dataset. Concretely, in a dataset where the longest
entity has a length of 4 token ids, the entity string
“dog” would be padded to have the representation
“dog ” and the entity string ”cat and dog” would
have the representation “cat and dog ” where “ ”
is the padding token. The purpose of this padding
is to standardise the masked representation of all
entities, therefore letting the model treat all entities
in the same manner.

3.3 Model
Our approach uses the RoBERTa-Large model (Liu
et al., 2019) for all experiments. We finetune the
pretrained model on the link prediction datasets to
generate the logits of the unknown entities. As our
approach does a single call to the model to rerank
all possible entities, it is acceptable to use the larger
model for better performance. Figure 3 shows the
inference process for tail entity prediction. Simi-
larly, the head entity prediction takes as input the
head entity mask, the relation, the tail entity and
the tail entity definition. We use the relation string,
the known entity string and the entity definition of
the known entity string to make the model generate
the logits representing the unknown entity string.

3.4 Ranking System
The ranking system pictured in Figure 4 performs
link prediction on a given triple. The MLM outputs
logits for all possible token ids and positions for the
missing entity to complete the triple. This forms
the lookup table T . The link prediction dataset
contains a list of all possible entities. The token
ids forming those entities make up E. We obtain
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FOR entity_id:
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R[entity_id] = mean(logits)

R = sort_by_highest_rank(R)

Figure 4: Ranking System. The figure details the inner workings of the ranking system which uses the
lookup table generated by the masked language model to compute the score associated with each possible
entity. The scored entities are then ranked by highest score.

the entity token logits L by matching all token
ids in E with their corresponding values in T . L
represents how likely every token of the entity is to
be generated by the MLM at that specific position.
The mean likelihood1 of each entity is computed by
averaging L over non-padded token logits.2 This
value is used to determine the ranking of the entity.
It provides a proper comparison between entities
of different lengths.

Concretely, in our previous “cat and dog ” ex-
ample, we average the output logits for the “cat
and dog” token ids and positions while ignoring
the final padded logit. This averaging is done on all
entities in the dataset completing the triple, yield-
ing the average likelihood assigned by the model
to all entities.

Entities are then sorted by highest rank using the
randomized setting (Sun et al., 2020). For equal
scores the tie-breaking is done randomly, to pro-
duce the ordered list of ranked entities R. We use
the filtered setting (Bordes et al., 2013) for eval-
uation and remove corrupted triples from the list
of ranked entities, corrupted triples being all other
known correct triples.

1Because the length of non-padded tokens is variable, us-
ing the mean of the logits is the chosen comparison metric for
re-ranking.

2By far, the token the model sees most is the padding
token. Counting it would most likely yield a heavy skew
towards shorter entities with more padding.

4 Experimentation

4.1 Datasets
The two datasets used are WN18RR and Wiki-
dataM5 (Dettmers et al., 2017; Fellbaum, 1998;
Bollacker et al., 2008; Wang et al., 2019), a com-
monly used link prediction benchmark and a new,
large scale, link prediction benchmark. Summary
stats are shown in Table 1.

Table 1: Datasets statistics.

WN18RR WikidataM5

#Entities 40,943 4,594,585
#Relations 11 822
#Training 86,835 20,614,279

#Validation 3034 5163
#Test 3134 5133

Mean in-degree 2.12 1
Median in-degree 4.49 0

WN18RR is a dataset composed of WordNet
synsets. We use the cleaned synset as the entity
string. The synset “dog.n.01” would have a string
representation of “dog noun 1” which should be
more interpretable by the model while remaining a
unique identifier. The entity definition is the defini-
tion of the entity given by WordNet. The relation
string is a cleaned representation of the relation
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string. The relation “ member of domain usage”
would be represented with the string “member of
domain usage”. Full examples of inputs and out-
puts are shown in Listing 1 and Listing 2.

WikidataM5 is composed of triples based on
Wikidata and the English Wikipedia with aligned
descriptions for each entity. We use the entity string
and definitions provided in the benchmark.

4.2 Metrics
We use the Mean Reciprocal Rank (MRR) metric
to validate our model and select the best model.
For all experiments, we also report the Mean Rank
(MR), the Mean Precision at 1 (MP@1), the Mean
Precision at 3 (MP@3), and the Mean Precision at
10 (MP@10).

4.3 Training
The training setup is a modified MLM training,
where we let the model generate the missing en-
tity. The previously mentioned padding lets us deal
with the generation of entities of varying sizes. The
input fed to the model for tail entity prediction,
depicted in Figure 3, consists of the concatenated
token ids of the head entity, the head entity defi-
nition, the relation and the tail entity mask. The
model will then generate, in the place of the mask,
the missing entity. The input fed to the model for
head entity prediction is similar. An example of the
input for head entity prediction is found in Listing 1
and an example for tail entity prediction is found
in Listing 2.

We use the categorical cross-entropy loss to train
the language model. The loss only depends on the
non-padded token of the generated entity, ignoring
all other outputs. The target is the actual entity
completing the triple, aligned with the mask in the
input. We retain the model with the best validation
MRR. All experiments are run for 5 random seeds
and the mean and standard deviation of the results
are reported.

For all experiments, we use the hyperparameters
and training setup described in Liu et al. (2019),
with a total of 25 epochs for the WN18RR dataset
and 1 epoch for the WikidataM5 dataset.

4.4 Unseen Entities
An alternative version of the dataset is made to
test the generalization capacity of our methodol-
ogy to unseen entities. For WN18RR we start by
randomly sampling 5% of the entities for the vali-
dation entities and 5% of the entities for the testing

entities. Our training set consists of all triples not
containing any of the validation or testing entities.
Our validation set consists of all triples containing
the validation entities. Finally, our test set consists
of all triples containing the test entities, but not
containing any of the validation entities. The train-
ing is done in the same fashion. The validation
and testing are only done on entities present in the
validation or test entity list, but are still reranked
against all other possible entities. While WN18RR
would only have 2047 test entities in this setting,
the reranking would still involve 40,943 entities. If
the tail entity is the one present in the test entity list,
we will complete the link (h, r, ?) and not the link
(?, r, t). The reported results are therefore only on
the performance of previously unseen entities in
the KB, compared to all other possible entities. The
validation and test set are rebuilt for every random
seed, to evaluate our approach on a wider array of
unseen entities.

WikidataM5 has an inductive setting which
closely resembles our unseen entities setting. The
main difference is that the reranking step in the
validation and test only compares with other previ-
ously unseen entities. While there is upwards of 4
million training entities, the validation and testing
would only consider roughly 7000 entities. For the
purpose of proper comparison, the M5 results are
however done within their specific setting.

5 Results and Analysis

5.1 WN18RR

We achieve SotA results on the WN18RR dataset
on all tested metrics with the exception of MR,
as shown in Table 2. The WN18RR dataset is
sparse in terms of the KG in-degree connections,
see Table 1. Sparseness lends itself naturally to
leveraging a pretrained model. The amount of in-
formation that can be extracted from the dataset
on any given entity is then limited, which makes
outside information all the more valuable.

We can observe that the MR metric is relatively
much weaker for our model, compared to its other
metrics. This implies that while the model will of-
ten rerank the correct entities to the top, it will also
sometimes forget certain entities completely, given
them ranks in the thousands. This could be ex-
plained by an issue of disambiguation in the name
of the entity. While approaches using entity em-
beddings (Balažević et al., 2019; Sun et al., 2019;
Dettmers et al., 2018) will have no issue separating
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Table 2: WN18RR Results

Approach MRR ↑ MR ↓ MP@1 ↑ MP@3 ↑ MP@10 ↑

ConvE 44.4 4950 — — 50.3
RotatE 47.3 3343 — — 57.1
TuckER 46.1 6324 — — 51.6

ConvKB 24.9 3433 — — 52.4
CapsE 41.5 718 — — 55.9
KBAT 41.2 1921 — — 55.4

KG-BERT — 97 — — 52.4

MLMLM 50.17
± 0.18

1603
± 26.8184

43.91
± 0.20

54.18
± 0.28

61.10
± 0.20

The results are reported as <mean> ± <standard deviation>. Results for other models are taken from
Sun et al. (2020); Yao et al. (2019).

Listing 1: Example of an error of the model on WN18RR. Shown are the top 3 ranked entities by the model with
the score assigned to them. The correct answer, matchmaker noun 1, was ranked 14,108 by the system.
Prompt : <s><mask><mask><mask><mask><mask><mask><mask><mask>hypernym mediator noun 1

a negotiator who acts as a link between parties</s><pad><pad><pad><pad>
Correct answer : matchmaker noun 1<pad><pad><pad><pad> Answer rank 14108
Rank 1 Score 32.0242 : interpreter noun 2<pad><pad><pad>
Rank 2 Score 32.0103 : harmonizer noun 1<pad><pad><pad>
Rank 3 Score 31.8889 : diplomat noun 1<pad><pad><pad>

Table 3: WikidataM5 Results

Approach MRR ↑ MR ↓ MP@1 ↑ MP@3 ↑ MP@10 ↑

TransE 25.3 109370 17.0 31.1 39.2
DKRL 16.0 31566 12.0 18.1 22.9
KEPLER-Wiki 15.4 14454 0.105 0.174 0.244
KEPLER-Cond 21.0 20267 17.3 22.4 27.7

MLMLM 22.3 488161 20.1 23.2 26.4
A single seed was ran for the WikidataM5 experiments because of the size of the dataset. Results for
other models are taken from Wang et al. (2019).

Table 4: WN18RR Unseen Entities Result

Approach MRR ↑ MR ↓ MP@1 ↑ MP@3 ↑ MP@10 ↑

Random baseline 0.03
± 0.007

20541.91
± 87.88

0.002
± 0.004

0.002
± 0.004

0.026
± 0.008

Non-finetuned RoBERTa 2.73
± 0.05

10130.35
± 187.61

1.54
± 0.07

2.95
± 0.11

4.92
± 0.19

MLMLM 18.42
± 2.66

3761.50
± 255.4437

14.16
± 0.81

21.75
± 1.19

29.39
± 0.88

The results are reported as <mean> ± <standard deviation>.

the synsets dog.n.01 and dog.n.03 as mean-
ing respectively “a member of the genus Canis [...]”
and “informal term for a man”, our model will
have to discern between those two meanings only

by the digit appended to the name. It is probable
that the model is often confused about whether it
should generate dog noun 1 or dog noun 3,
having only the final digit to differentiate both of
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Listing 2: Example of a disambiguation error of the model on WN18RR. Shown are the top 3 ranked entities by
the model with the score assigned to them. The correct answer, aid noun 3, was ranked second by the system,
after aid noun 1.
Prompt : <s>grant noun 1 any monetary aid hypernym<mask><mask><mask><mask><mask><

mask><mask><mask></s><pad><pad><pad><pad>
Correct answer : aid noun 3<pad><pad><pad><pad><pad> Answer rank 2
Rank 1 Score 33.7597 : aid noun 1<pad><pad><pad><pad><pad>
Rank 2 Score 33.5948 : aid noun 3<pad><pad><pad><pad><pad>
Rank 3 Score 32.7605 : aid noun 2<pad><pad><pad><pad><pad>

Table 5: WikidataM5 Inductive setting Results

Approach MRR ↑ MR ↓ MP@1 ↑ MP@3 ↑ MP@10 ↑

DKRL 23.1 78 5.9 32.0 54.6
KEPLER-Cond 40.2 28 22.2 51.4 73.0

MLMLM 28.4 932 22.6 28.5 34.8
The results are reported as <mean> ± <standard deviation>.

them. An example of such an error is shown in
Listing 2, where the model confuses aid.n.01
and aid.n.03. Follow up work on better rep-
resentations for entity names could yield stronger
results.

Our model generally has a much easier time pre-
dicting the tail entity than the head entity. It has
an MRR of 60.15 on tail entities and an MRR of
40.09 on head entities. By observing the instances
where our model gives the worst rank to the correct
answer, we can understand why. A large number
of those cases are hypernyms on the head entity.
An example of a hypernym relationship would be:
“animal is an hypernym of dog, since all dogs are
animals.” Correctly ranking all possibilities for “X
is an hypernym of dog.” is more straightforward for
the model than correctly ranking all possibilities for
“Animal is an hypernym of Y.”. An example of such
failure is shown in Listing 1, where we look for
the hypernym of the term mediator. It is clear
that the model understands the concept and outputs
plausible answers in its top 3. A large amount of
the model’s severe failure cases are similar to this
one, where the model will output a plausible hy-
pernym of the tail entity, while completely missing
the targeted hypernym. This seems to be the likely
cause for the weak MR of the approach.

5.2 WikidataM5

The results on WikidataM5 are shown in Table 3.
MLMLM boasts the best Precision@1 metric by a
fair margin. Once again, we observe the weakness

in the MR metric. The implications are that there
are many possible correct entities that are given no
weights by the approach.

5.3 Unknown Entities Experiments
We demonstrate the capacity of our approach to
generalize to unknown entities. Results for the
WN18RR datasets are shown in Table 4.

For baselines, we use a random baseline, rerank-
ing the entities randomly, as well as a non-finetuned
RoBERTa-large model, that simply generates the
entity tokens without being finetuned on the dataset
first. We can notice that while our approach out-
performs a non-finetuned benchmark, the non-
finetuned RoBERTa model still far outperforms the
random baseline, supporting some of the findings
of Petroni et al. (2019) in the capacity of MLM to
perform unsupervised link prediction.

The M5 inductive settings are reported in Ta-
ble 5. We obtain the best Precision@1 metric. The
weakness in MR is once again visible, supporting
the intuition that while the model might generate
the correct entity with high conviction, it will of-
ten not give positive score to all plausible entities,
yielding a much worst average rank.

We believe that leveraging MLMs could even-
tually lead to automatically populating KBs with
new entities, as new knowledge and new facts are
created and added to the web.

5.4 Limitations
MLMLM comes with several limitations. Our ap-
proach to padding limits the size of an unknown
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entity to the size of the longest known entity. While
it is unlikely to be limiting in practice, it is still a
weakness of our approach to sampling. The model
size can be very prohibitive and specialized hard-
ware such as GPUs is required to run it in a timely
fashion. The approach however remains tractable
as it can provide likelihoods for all possible enti-
ties in a single inference call. Compared to entity-
embedding based methods, our approach needs
additional information in the form of meaningful
string representations for both entities and relations.
The lack of entity disambiguation is also a limit-
ing factor that does not affect other approaches.
Finally, our approach is liable to forgetting some
entities, leading to comparatively much worst MR
than prior approaches.

6 Conclusion

We have developed a methodology for training
masked language models to perform link prediction.
By leveraging the natural language understanding
abilities of these models and the factual knowledge
embedded within their weights, we have achieved
a tractable approach to link prediction that yields
state of the art results on a standard benchmark
and the best Precision@1 on another competitive
benchmark. We have also demonstrated the ability
of our model to perform link prediction of previ-
ously unseen entities, making our approach suit-
able to introduce new entities to knowledge bases.
More generally, we have introduced an approach
to sampling text from a masked language model of
varying lengths, which can have a wider use case.

Acknowledgements

This research was supported by Apogée Canada,
Canada First Research Excellence Fund program
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