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Abstract

Recent advancements in transformer-based
models have greatly improved the ability of
Question Answering (QA) systems to provide
correct answers; in particular, answer sentence
selection (AS2) models, core components of
retrieval-based systems, have achieved impres-
sive results. While generally effective, these
models fail to provide a satisfying answer when
all retrieved candidates are of poor quality, even
if they contain correct information. In AS2,
models are trained to select the best answer
sentence among a set of candidates retrieved
for a given question. In this work, we propose
to generate answers from a set of AS2 top candi-
dates. Rather than selecting the best candidate,
we train a sequence to sequence transformer
model to generate an answer from a candidate
set. Our tests on three English AS2 datasets
show improvement up to 32 absolute points in
accuracy over the state of the art.

1 Introduction

Question answering systems are a core component
of many commercial applications, ranging from
task-based dialog systems to general purpose vir-
tual assistants, e.g., Google Home, Amazon Alexa,
and Siri. Among the many approaches for QA,
AS2 has attracted significant attention in the last
few years (Tymoshenko and Moschitti, 2018; Tian
et al., 2020; Garg et al., 2020; Han et al., 2021).
Under this framework, for a given question, a re-
trieval system is first used to obtain and rank a
set of supporting passages; then, an AS2 model is
used to estimate the likelihood of each sentence
extracted from passages to be a correct answer, re-
turning the one with the highest probability. This
approach is favored in virtual assistant systems be-
cause full sentences are more likely to include the

∗ This work was completed while the author was an
intern at Amazon Alexa.

Q: How a water pump works?
c1: A small, electrically powered pump.
c2: A large, electrically driven pump (electropump) for wa-

terworks near the Hengsteysee, Germany.
c3: A pump is a device that moves fluids (liquids or gases),

or sometimes slurries, by mechanical action.
c4: Pumps can be classified into three major groups according

to the method they use to move the fluid: direct lift,
displacement, and gravity pumps.

c5: Pumps operate by some mechanism (typically reciprocat-
ing or rotary), and consume energy to perform mechanical
work by moving the fluid.

G: A water pump is a device that moves fluids by mechani-
cal action.

Table 1: An example of a question Q and five answer
candidates c1, . . . , c5 from WikiQA (Yang et al., 2015)
ranked by an AS2 system. Answer G generated by our
best system is significantly more natural and concise
than any extracted candidates.

right context and sound natural, both of which are
characteristics users value (Berdasco et al., 2019).

AS2 models have shown great performance on
academic benchmarks. However, these datasets
fail to consider many essential qualities of a QA
system which interacts directly with users, such as
a virtual assistant. In some cases, extracted answer
sentences contain the correct information, but the
focus of the answer doesn’t match the question;
in others, the answer requires reasoning or contex-
tual knowledge from the user or is very long and
contains extraneous information. For example, in
WikiQA (Yang et al., 2015), a widely used AS2
dataset, the answer “Wind power is the conversion
of wind energy into a useful form of energy, such
as using wind turbines to make electrical power,
windmills for mechanical power, wind pumps for
water pumping... ” is considered a good answer
for “What can be powered by wind?”, even though
its formulation is burdensome to a user.

In this work, we explore a fundamentally differ-
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ent approach to AS2. Rather than selecting the best
candidate, we propose using a model to generate
a suitable response for a user question. In so do-
ing, we extend the traditional AS2 pipeline with
a final generation stage that can recover correct
and satisfying answers in cases where a ranking
AS2 model fails to place an acceptable candidate
at the top position or where a top candidate with
the desired information is not a natural-sounding
response to the query. Table 1 shows an exam-
ple of our system: given the question, Q, and a
list of candidates, Ck = {c1, . . . , c5} sorted by a
state-of-the-art AS2 system, we use a sequence-to-
sequence model to produce an answer G given Q
and Ck as input. This approach, which we refer to
as GenQA, addresses the limitations of AS2 sys-
tems by composing concise answers which may
contain information from multiple sources.

Recent works have shown that large, transformer-
based conditional generative models can be used
to significantly improve parsing (Chen et al., 2020;
Rongali et al., 2020), retrieval (De Cao et al., 2020;
Pradeep et al., 2021), and classification tasks (Raf-
fel et al., 2019). Our approach builds on top of
this line of work by designing and testing genera-
tive models for AS2-based QA systems. In recent
years, the use of generative approaches has been
evaluated for other QA tasks, such as machine read-
ing (MR) (Izacard and Grave, 2021; Lewis et al.,
2020b) and question-based summarization (QS)
(Iida et al., 2019; Goodwin et al., 2020; Deng et al.,
2020). However, while related, these efforts are
fundamentally different from the experimental set-
ting described in this paper. Given a question, gen-
erative MR models are used to extract a short span
(1-5 tokens) from a passage that could be used to
construct an answer to a question. In contrast, AS2
returns a complete sentence that could be directly
returned to a user.

QS systems are designed to create a general sum-
mary given a question and one or more related doc-
uments. Unlike QS, AS2-based QA systems need
to provide specific answers; thus, the presence of
even a small amount of unrelated information in a
response could cause the answer sentence to be un-
suitable. In contrast, we show that our approach can
succinctly generate the correct information from a
set of highly relevant sentence candidates.

In summary, our contribution is four-fold: (i)
we introduce a new approach for AS2-based QA
systems, which generates, rather than selects, an

answer sentence; (ii) we illustrate how to adapt
state-of-the-art models such as T5 (Raffel et al.,
2019) and BART (Lewis et al., 2020a) for answer
generation; (iii) we show1 that our GenQA system
improves over the state-of-the-art AS2-based sys-
tems by up to 32 accuracy points, as evaluated by
human annotators; finally, (iv) we briefly explain
why traditional generation metrics are not suited
for evaluating AS2-based systems.

2 Datasets

We use four English datasets in our work, one re-
lated to generative QA and three to AS2. For a
fair comparison between selector and generation
methods, we re-evaluate the top answers returned
by all models using a fixed set of annotators. All
annotations were completed by company associates
who are not part of our research group and had no
knowledge of the systems. Annotators were re-
quired to mark an answer as correct if it was: (i)
factually correct; (ii) natural-sounding; and (iii) re-
quired no additional information to be understood.
All QA pairs were single annotated, as we deter-
mined sufficient agreement for this task in previous
campaigns.

WikiQA by Yang et al. (2015) contains queries
from Bing search logs and candidate answer sen-
tences extracted from a relevant Wikipedia page.
For evaluation, we used the dev. and test sets, which
contain 126 and 243 unique questions and we re-
annotated all of the resulting 569 QA pairs.2

Answer Sentence Natural Questions (ASNQ)
introduced by Garg et al. (2020) was derived from
the NQ dataset (Kwiatkowski et al., 2019) and con-
sists of the questions which have a short answer
span within a single sentence in a long answer
span. The sentences containing the short answer
are marked as correct and the other sentences in
the document are marked as incorrect. We use the
dev. and test splits introduced by Soldaini and Mos-
chitti (2020) which contain 1,336 questions each.
We re-annotated a total of 5,344 QA pairs.

WQA is an internal AS2 dataset created from a
non-representative sample of questions asked by

1Our models, source code, and annotated data
are available at: https://github.com/alexa/
wqa-cascade-transformers.

2Due to time and annotation constraints, we were only able
to annotate results for 100 queries from each of the dev. and
test sets for our UQAT5 model

https://github.com/alexa/wqa-cascade-transformers
https://github.com/alexa/wqa-cascade-transformers
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users of a virtual personal assistant in 20193. For
each question, we retrieved 500 pages from an in-
dex containing over 100M web documents. We
then ranked candidate answers using a state-of-the-
art AS2 system, and annotated up to 100 of them.
In total, the training and dev. sets contain 3,074
queries and 189k QA pairs, while the test set con-
tains 808 queries. For this effort, we re-annotated
4,847 QA pairs from the test set.

MS MARCO QA NLG (MSNLG) by Nguyen
et al. (2016) is a subset of the MS MARCO dataset
focused on generating natural language answers
to user queries from web search result passages.
It consists of 182k queries from Bing search logs,
the ten most relevant passages retrieved for each
query, and a well-formed answer synthesized by an
annotator. This dataset is not designed for AS2, but
it represents a large resource of succinct and clear
answers, thus making it close to our AS2 task.

3 Generative QA Model (GenQA)

The AS2 task is defined as follows: Let q be an ele-
ment of the question set, Q, and Cq = {c1, . . . , cn}
be a set of candidates for q, e.g., sentences retrieved
by a search engine, where ci ∈ C, and C is a set of
candidates. We model a selector S : Q×Cn → C,
such that S(q, Cq) = argmaxi (p(q, ci)), where
p(q, ci) is the probability that ci is a good answer.
We also define Sk : Q× Cn → Ck, such that, Sk
selects the top k answers in descending order of
p(q, ci).

State of the Art Throughout our experiments,
we use TANDA (Garg et al., 2020) as our state-of-
the-art selector S. This AS2 model was trained as
a binary classifier on (q, ci) pairs using a sequen-
tial fine-tuning approach starting with ASNQ and
finishing on a target dataset, e.g., WikiQA. Specif-
ically, we use their pretrained RoBERTa Large
model (Liu et al., 2019), as it achieved the best
results on all datasets it was tested on.

3.1 Our Generative Approach
Instead of selecting the best candidate, we generate
a new answer using the information from the top
k answer candidates. Thus, our model is a func-
tion G : Q × Ck → G, where G is the text that
can be generated by the generator G from the ques-
tion, any fragment of the retrieval set, the model’s

3The public version of WQA will be released in the short-
term future. Please search for a publication with title WQA: A
Dataset for Web-based Question Answering Tasks on arXiv.

vocabulary, and knowledge stored in the model’s
parameters. Formally:

G(q, Cq) = G(q, Ck) = G(q,Sk(k,Cq)). (1)

The example in Table 1 shows that we can gener-
ate a correct answer from a set of candidates which,
as a whole, contain enough information to formu-
late a correct answer. We propose that a valid an-
swer can be built by composing the most promising
constituents coming from the different candidates
in Ck. Intuitively, information repeated across mul-
tiple candidates is more promising; therefore, we
hypothesize that a model trained on the same or
similar generation task should be able to effectively
exploit this form of repetition, even in cases where
the same information is presented in a similar, but
not identical manner. Further, recent works have
shown that large transformer models hold a substan-
tial amount of commonsense knowledge in their
parameters (Roberts et al., 2020), which our model
could leverage to perform inference across sen-
tences in Ck, e.g., associate water with fluid in the
example in Table 1.

3.2 Fine-tuning GenQA
Given a pre-trained transformer seq2seq model,
e.g., T5 (Raffel et al., 2019) or BART (Lewis et al.,
2020a), we obtain G by fine-tuning on a large AS2
or QA generation dataset. For this purpose, we
format our training data as a standard sequence-to-
sequence/text-to-text task, where the source text is
the question concatenated with the top five answer
candidates, (q,Sk=5), joined by newlines. When
an answer composed by a human is available, such
as in MSNLG, we use it as the output target. For
cases where there is no composed answer, we ran-
domly select a known-good candidate to be the
target, remove it from the inputs and replace it with
another candidate if one is available. We truncate
the input text to 512 tokens and, at test time, we
use beam search with a beam size of four and a
maximum output length of 100 tokens.

4 Experiments

In this section, we first report on our experimen-
tal setup, then we show the results on fine-tuning
GenQA, and finally, we report on the comparative
results between AS2 and GenQA.

4.1 Setup
Models and Parameterization Our GenQA
model is based on the T5 (Raffel et al., 2019) vari-
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ant of the UnifiedQA (UQAT5) model by Khashabi
et al. (2020). We use the Large version of UQAT5,
which has 770M parameters for all of our experi-
ments. We compute training loss as the mean of
the cross-entropy between the softmax probabilities
over the output vocabulary and the one-hot encoded
target answer. We fine-tune UQAT5 with a learning
rate of 5E−5. We also experiment with the Large
variant of BART (Lewis et al., 2020a), which is
comprised of 400M parameters. This model was
trained using same loss with learning rate 5E−6.

Evaluation We used accuracy as our primary
metric for all our experiments and models. This
is computed as the average number of questions
a model answers correctly; for a selector S, it is
equivalent to Precision at 1. For S, we also report
Hit Rate at 5, which is the fraction of queries with
at least one good candidate ranked five or less.

Beside human evaluation, we also experimented
with automatic evaluation metrics such as BLEU
(Papineni et al., 2002) and ROUGE-L (Lin, 2004)
for GenQA. Such metrics have found little success
in evaluating QA tasks (Chaganty et al., 2018; Chen
et al., 2019), so we investigate whether that is the
case for AS2 as well.

4.2 Results

How to Fine-tune GenQA? As described in Sec-
tion 4.1, we tested two GenQA variants: one uses
a UnifiedQA T5 (UQAT5) (Khashabi et al., 2020)
as base model, while the other leverages BART-
Large (Lewis et al., 2020a). Of the datasets used
in this work, MSNLG and WQA are large enough
for fine-tuning GenQA. Therefore, based on pre-
liminary results, we tested four different strategies
for training UQAT5: fine tuning on (i) WQA or
(ii) MSNLG alone, (iii) combine the two datasets
by alternating mini-batches during training, or (iv)
follow the transfer-then-adapt strategy proposed
by Garg et al. (2020): first fine-tune on MSNLG,
then adapt to a AS2 using WQA.

Table 2 reports the results on the WQA test set,
which are all relative to the performance of the
state-of-the-art model (TANDA). First, we observe
that all GenQA models reported in this table consid-
erably outperform the best selector model, TANDA.
This result shows that our generative approach can
improve system based on AS2.

Comparing the accuracy of different training
strategies applied to UQAT5, we achieve the best
results when the model is trained on MSNLG alone

Model Accuracy BLEU ROUGE-L

TANDA (Garg et al., 2020) baseline - -

UQAT5 (AS2D) +5.3% 40.8 55.7
UQAT5 (MSNLG) +19.9% 20.2 39.7
UQAT5 (MSNLG+AS2D) +13.6% 35.3 50.6
UQAT5 (MSNLG→AS2D) +7.9% 40.6 54.8

BART-Large (MSNLG) +20.7% 21.5 41.1

Table 2: Relative accuracy of different GenQA models
and training configurations on the WQA dataset; both
UQAT5 and BART perform best when finetuned on
MSNLG only. As shown in previous work, automatic
metrics (BLEU, ROUGE-L) do not correlate with human
annotations (accuracy).

(+19.9% over TANDA baseline). While we were
initially surprised by this result, as MSNLG is
not designed for AS2, error analysis suggests that
GenQA benefits from the high quality training
data (concise answers written by annotators). Con-
versely, when training with WQA, we observed
that GenQA tends to produce answers that, while
correct, are not as natural-sounding. We plan to
explore how to best leverage existing AS2 datasets
for generative model training in future work. We
also note that a GenQA BART-Large achieves com-
parable results to GenQA UQAT5 on WQA; in
preliminary experiments, we found training strate-
gies reported on UQAT5 to have similar effect on
BART-Large.

When manually annotating results of our early
tests, we found that BART was more likely to be
extractive and copy input passages in their entirety
while UQAT5 was more likely to compose new
text and produce answers with textual overlap from
multiple input candidates but was more likely to
hallucinate content. We found that through hyper-
parameter tuning we could largely eliminate the
hallucination from UQAT5 answers but we were
unable to make BART more abstractive.

Similar to what has been observed in other QA
tasks (Chaganty et al., 2018; Chen et al., 2019), we
find that automatic metrics do not correlate with
assessments from human annotators. This is due
to the fact that neither BLEU nor ROUGE-L are
designed to estimate whether an answer is clear and
natural-sounding, instead rewarding candidates that
have high overlap with reference answers. Most
importantly, such overlap is a poor indicator of
factual correctness.
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TANDA GenQA UQAT5
Dataset Acc. Hit@5 Length Acc. Length

WikiQADEV 59.5 99.2 31.7± 13.7 92.1 14.9± 9.3

WikiQATEST 61.0 99.2 30.1± 12.4 88.5 14.6± 8.3

ASNQDEV 75.5 87.7 41.0± 122.4 90.2 13.9± 5.9

ASNQTEST 69.0 87.9 37.9± 51.5 90.5 13.9± 5.6

Table 3: Accuracy of our GenQA UQAT5 model com-
pared to a state-of-the-art AS2 model by Garg et al.
(2020). All answer candidates returned by the two
models were re-annotated to ensure a fair comparison.
Length is the average number of tokens in the answer.

Comparison between AS2 and GenQA Table 3
reports the results of TANDA and GenQA on two
standard AS2 datasets, evaluated with manual an-
notation. We note that there is an impressive gap of
over 20 absolute accuracy points on both develop-
ment and test sets. This result is produced by two
important properties of GenQA. First, it builds cor-
rect answers from a pool of correct and incorrect
answers, and it can generate a good answer so long
as the relevant information can be found anywhere
in the top k = 5 candidates. This is a clear advan-
tage over using TANDA alone, as Hit-Rate@5 of
99.2%, and 87.9% for WikiQA and ASNQ, respec-
tively, ensures that GenQA often receives at least
one correct answer as input.

Second, GenQA exhibits the ability to rewrite
unnatural answers from a text snippet into an an-
swer suitable for a conversation. For example, for
the question “What year did Isaac Newton die?”,
TANDA returns candidate “Sir Isaac Newton (25
December 1642–20 March 1727) was an English
physicist and mathematician”. Although correct,
no human would provide it in such a form. In con-
trast, GenQA composes a concise answer: “Isaac
Newton died in 1727”.

Finally, Table 3 shows that the size of GenQA
answers, in terms of words, is only 14 tokens,
which is 2.7 times less than the 30-40 tokens from
TANDA. This further suggests that GenQA can pro-
vide more concise and direct answers, which are
preferable in a conversational context.

5 Conclusions

In this work we present GenQA, a generative ap-
proach for AS2-based QA systems. The main dif-
ference with recent MR-based generative systems
is the capacity of our models to generate long an-
swers. This comes from the use of AS2 candidates

(complete sentences) as input to our generative ap-
proach. In contrast, MR systems, being mainly
trained with short answers, e.g., noun phrases and
named entities, mostly generate short answers.

We show that GenQA significantly outperforms
state-of-the-art selector models for AS2 by up to 32
accuracy points by combining different pieces of in-
formation from the top k answer candidates. These
results suggest promising directions for generative
retrieval-based systems.
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