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Abstract

An attention matrix of a transformer self-
attention sublayer can provably be decom-
posed into two components and only one of
them (effective attention) contributes to the
model output. This leads us to ask whether
visualizing effective attention gives different
conclusions than interpretation of standard at-
tention. Using a subset of the GLUE tasks and
BERT, we carry out an analysis to compare the
two attention matrices, and show that their in-
terpretations differ. Effective attention is less
associated with the features related to the lan-
guage modeling pretraining such as the separa-
tor token, and it has more potential to illustrate
linguistic features captured by the model for
solving the end-task. Given the found differ-
ences, we recommend using effective attention
for studying a transformer’s behavior since it is
more pertinent to the model output by design.

1 Introduction

Attention mechanism (Bahdanau et al., 2015) is
an essential component of many NLP models, in-
cluding those that are built on the ubiquitous trans-
former architecture (Vaswani et al., 2017). As a
result, visualizing attention weights is a widely
used technique to interpret models’ behavior (Be-
linkov and Glass, 2019). Despite that, the validity
of this analysis method is a subject undergoing
intense discussion and study in NLP (Jain and Wal-
lace, 2019; Wiegreffe and Pinter, 2019; Serrano
and Smith, 2019; Moradi et al., 2019; Mohanku-
mar et al., 2020; Tutek and Snajder, 2020, i.a.).

Related to this discussion, Brunner et al. (2020)
show that, under mild conditions, the attention ma-
trix of a transformer self-attention sublayer can be
written as a sum of two components. One of them is
irrelevant for the model output because its product
with the value matrix is zero. They term the other
component as effective attention (formally defined

in §2). We study whether effective attention gives
interpretations that differ from conclusions we get
by analyzing standard attention. If this is the case,
interpretation of effective attention is better suited
for studying transformers’ internals because it is
more pertinent to the model output by design.

Brunner et al. (2020) briefly discuss this by com-
paring standard and effective attention matrices
from a single BERT head (Devlin et al., 2019) for
one example. They observe that: (i) standard atten-
tion is largely concentrated on the delimiter tokens
([SEP], [CLS]) or on near-diagonal elements; (ii)
effective attention is more dispersed; (iii) effective
attention disregards the delimiters. They stress that
we should not extrapolate too much from these ob-
servations since they are based on a single example,
and that further research is needed on this topic.

In this work, we aim to reliably answer whether
effective attention disregards the [SEP] and [CLS]

tokens, and if so, are effective attention weights
dispersed to linguistic features? To address these
questions, we embrace the methodology for a quan-
titative analysis of the attention patterns produced
by individual transformer heads proposed by Ko-
valeva et al. (2019). We carry out their experiments
on a subset of the GLUE tasks with BERT’s stan-
dard and effective attention. We show that effective
attention “ignores” [SEP] and punctuation symbols
(§3.1, §3.2), but not [CLS] (§3.2), and that it high-
lights end-task features instead (§3.1, §3.2, §3.3).1

2 Background: Effective Attention

Each transformer layer consists of multi-head self-
attention and feedforward sublayers (Vaswani et al.,
2017, see Appendix A). Brunner et al. (2020) show
that the standard attention matrix A can be de-
composed into two components, if a mild condition

1Our code is available at https:
//github.com/KaiserWhoLearns/
Effective-Attention-Interpretability

https://github.com/KaiserWhoLearns/Effective-Attention-Interpretability
https://github.com/KaiserWhoLearns/Effective-Attention-Interpretability
https://github.com/KaiserWhoLearns/Effective-Attention-Interpretability
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is satisfied. Specifically, if the left nullspace of the
value matrix V :

LN(V ) := {x> ∈ R1×ds |x>V = 0},

is not trivial (contains vectors other than ~0). This is
satisfied when the maximum input sequence length
is larger than the value matrix dimension (see Ap-
pendix A). The two components are: the compo-
nent in the left nullspace of V (A‖) and the com-
ponent orthogonal to the nullspace (A⊥). Notably,
A‖ does not contribute to the output of the self-
attention sublayer:

AV = (A‖ + A⊥)V = ~0 + A⊥V = A⊥V. (1)

The effective attention matrix is defined as A⊥. If
visualizations of standard and effective attention
differ, interpretation of effective attention is an ac-
curate interpretation because effective attention is
what contributes to the model output (per Eq. 1).

We explain how to compute A⊥ since that was
not described in Brunner et al. (2020). We first
compute the singular value decomposition (SVD)
of the value matrix V = UΣW T . The rows of
U that correspond to singular values equal to zero
span LN(V ):

LN(V ) = span{u1, . . . , uk},

where k is the number of singular values that equal
zero. We project each row ai of the attention matrix
A ∈ Rds×ds to LN(V ) to construct a projection of
the matrix A to LN(V ):

PLN(V )(ai) =

k∑
j=1

〈ai, uj〉uj ,∀i ∈ {1, . . . , ds},

PLN(V )(A) = [PLN(V )(a1), . . . ,PLN(V )(ads)]
>,

where 〈·, ·〉 denotes the dot product. Finally,
effective attention equals to:

A⊥ := A− PLN(V )(A).

Effective attention is not guaranteed to be a prob-
ability distribution as some of its weights might be
negative and larger than 1.

We observe that effective attention is slower to
compute due to the SVD decomposition of V for
each out of 144 BERT-base heads, and additional
matrix multiplications (Table 3; §B). If speed is
bottleneck, we recommend doing quantitative anal-
yses with effective attention on a subset of the dev
set. For qualitative analyses, common practice is
already to select a subset for a manual analysis.

Dataset Task |Train| |Test|

RTE NLI 2.5K 3K
MRPC paraphrase identification 3.7K 1.7K
QNLI QA as NLI 105K 5.4K
SST-2 binary sentiment classification 67K 1.8K
STS-B sentence similarity 7K 1.4K

Table 1: Specifications of the datasets.

3 What Does Effective Attention Reveal?

We compare visualizations of standard and effec-
tive attention following the methodology for analy-
sis of the attention patterns (Kovaleva et al., 2019).
We carry out our analyses using five English-
language datasets in the GLUE benchmark (Wang
et al., 2019): RTE (Dagan et al., 2005; Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009), MRPC (Dolan and Brockett, 2005), QNLI
(Rajpurkar et al., 2016; Wang et al., 2019), SST-
2 (Socher et al., 2013), and STS-B (Cer et al.,
2017).2 See Table 1 for their specifications. For
each dataset, we train BERT-base with standard
attention, a batch size of 8, maximum sequence
length of 128, and 3 training epochs.3 For analyz-
ing effective attention, we replace standard with
effective attention at the test time.

3.1 Classification of Attention Patterns

In this section, we start studying whether effective
attention disregards the delimiter tokens.

The visualizations of attention matrices exhibit
patterns (Clark et al., 2019; Vig and Belinkov,
2019). Kovaleva et al. (2019) identified five fre-
quently occurring pattern categories:
• vertical (associated with the delimiters tokens)
• diagonal (either syntactic features between

neighbouring words in the English language
or the previous/following token attention com-
ing from the language modeling pretraining)
• vertical + diagonal
• block (intra-sentence attention for the tasks

with two distinct sequences; potentially en-
codes semantic and syntactic information)
• heterogeneous (as “block”, more likely to cap-

ture interpretable linguistic features).
They annotated 400 BERT’s attention matrices

using these categories, and used them to train a

2We omit larger datasets (QQP, MNLI), due to the limit of
our computation budget (a single Nvdia GTX1070 with 8GB
memory), and CoLA/WNLI following Kovaleva et al. (2019).

3All other hyperparameters are set to default values in the
transformers library (Wolf et al., 2020).
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Task Attention B D V+D H V

Standard 4.50 7.40 15.20 45.10 27.90
RTE

Effective 32.60 12.80 2.80 40.30 11.50

Standard 3.40 10.20 14.90 39.80 31.80
MRPC

Effective 25.50 17.40 3.60 40.40 13.00

Standard 4.70 7.40 15.20 45.10 27.90
QNLI

Effective 29.30 15.80 3.40 46.40 5.10

Standard 38.50 6.10 0.00 37.80 17.60
SST-2

Effective 33.80 11.50 0.80 39.40 14.60

Standard 4.00 8.20 1.80 50.40 35.50
STS-B

Effective 36.00 10.30 0.60 39.40 13.60

Table 2: Estimated percentage of the attention patterns
(§3.1): block (B), diagonal (D), vertical + diagonal (V +
D), heterogeneous (H), vertical (V). Effective attention
exhibits different patterns than standard attention, i.e.,
less vertical patterns (associated with delimiter tokens)
and more block patterns (associated with task features).

ConvNet for pattern classification of 1K random
test set attention matrices. We replicate their results
for standard attention (using their code), and clas-
sify effective attention matrices for a comparison.4

Results Table 2 (Fig. 4 in Appendix B) shows a
drop in the percentage of the “vertical” and “verti-
cal + diagonal” patterns when we replace the stan-
dard with effective attention. Since the vertical
patterns are associated predominantly with atten-
tion to the delimiters tokens, this result supports the
hypothesis that effective attention disregards the de-
limiter tokens. Moreover, although the amount of
“heterogeneous” patterns did not change notably,
the amount of “block” and “diagonal” patterns in-
creased. This suggests that we are better positioned
to find end-task linguistic features captured by the
model by visualizing effective attention.

As an illustration, Figure 2 presents the attention
matrices for one sentence from one attention head.
In this example, effective attention highlights all
mentions of the noun “antibiotics” that the adjec-
tive “new” modifies and that is also the object of
the preposition “against”, instead of giving promi-
nence to the [SEP] token as standard attention.

3.2 Delimiter Tokens vs. Linguistic Features

We showed that the “vertical” pattern, associated
with the delimiter tokens, is less dominant with
effective attention (§3.1). To verify that both delim-
iter tokens are indeed less relevant with effective
attention, following Kovaleva et al. (2019), we re-

4We thank the authors for sharing their code and model
weights for this experiment.

(a) RTE

(b) MRPC

(c) QNLI

(d) SST-2

(e) STS-B

(f) AVERAGE OVER TASKS

Figure 1: Effective attention “pays less attention” to
[SEP] and punctuation. Per-task and per-head (0–11)
attention when processing [CLS] in the final layer, av-
eraged over test set. The darker colors correspond to
larger attention values. The green plots (two upper
rows in subfigures) illustrate standard, and blue plots
(two lower rows in subfigures) effective attention.
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(a) Standard attention

(b) Effective attention

Figure 2: Visualizations of standard and effective attention from one head for one example from the RTE dataset
(recognizing textual entailment). Only the last few rows are visible; see the full version in Fig. 7 (Appendix §B).

port the standard and effective attention weights of
specific token types when processing the [CLS] to-
ken in the final layer. Namely, the attention weights
of linguistic features (nouns, pronouns, verbs), the
delimiter tokens ([SEP], [CLS]), and punctuation
symbols that are conceptually similar to [SEP].5

Results Figure 1 shows that [SEP] is among the
two most relevant features for all tasks except QNLI

according to standard attention (upper two rows in
each subfigure, colored green). For all but one
task (SST-2), it loses its dominance with effective
attention and its weights are apparently shifted to
linguistic features. This is also the case for punc-
tuation symbols. This result shows that the [SEP]

token and punctuation symbols are not as impor-
tant for understanding how the model solves the
end-task as standard attention suggests.

We observe that [CLS] is attended similarly with
effective and standard attention, contrary to what
Brunner et al. suggested. To rule out this is because
we plot the attention assigned to [CLS] when pro-

5If there are multiple tokens of the same type in the input,
we use the one with the maximum weight. If a word consists of
the multiple subtokens, we use the weight of the first subtoken.

cessing [CLS], we report the attention assigned to
[CLS] when processing other input words (regard-
less of their type) in Fig. 5 in Appendix B. Again,
we do not observe differences between standard
and effective attention, unlike for [SEP] (Fig. 6 in
§B). These results confirm the hypothesis of Brun-
ner et al. that effective attention disregards [SEP],
but not [CLS] as they also hypothesized. Notably,
[SEP] is associated with the LM pretraining and
[CLS] only with the task-specific finetuning.

3.3 Effects of Task-Specific Finetuning
To provide our final evidence that effective atten-
tion captures end-task features, we investigate how
attention changes with finetuning layer-wise; again
following Kovaleva et al. (2019). They calculate
the cosine similarity between pretrained and fine-
tuned flattened attention matrices. The layers that
change the most, encode most task-specific fea-
tures. To reiterate, effective attention is the part of
standard attention that contributes to the model out-
put (Eq. 1; §2), and we showed that it is less asso-
ciated with the pretraining feature [SEP] and more
with linguistic features (§3.1, §3.2). Thus, changes
of standard attention from task-specific finetuning
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Figure 3: Per-task cosine similarity between the pretrained and finetuned attention weights for selected GLUE
tasks, calculated across layers and heads. The darker colors corresponding to larger absolute attention weights.
The top (green) figure is computed with the standard attention, and the bottom (blue) figure with the effective
attention.

should be the product of changes of effective atten-
tion, and the outcome of this analysis should be the
same, regardless of the attention “type”.

Results As expected, we come to the same con-
clusion with effective attention as Kovaleva et al.
did with the standard: the last two layers change
the most with finetuning (Fig. 3). This soundness
check suggests once again that effective attention is
the component of standard attention that manifests
end-task features.

4 Conclusions

We study whether effective attention, the part of
the transformer attention matrix that does not get
canceled out with the value matrix, gives different
interpretations than standard attention. We present
a comparison of the two attentions and show that
they differ in weights assigned to delimiter tokens
such as [SEP] and punctuation marks, but not [CLS]

as it was previously thought. Instead, effective
attention gives more weight to linguistic features.
Given the differences, and that effective attention
is more pertinent to the model output by design, we
urge to use it for studying transformers’ internals.

As an alternative to analyzing attention weights,
Kobayashi et al. (2020) propose anayzing the norm
of vectors produced by multiplying the outputs of
the value matrix with the attention weights. Follow-

ing the experimental setting of Clark et al. (2019),
i.e., by analyzing 992 sequences extracted from
Wikipedia, their norm-based analysis also shows
that the contributions of [SEP] and punctuations
are actually small. However, unlike us, they report
the same observation for [CLS]. Future work might
consider a more formal study between the norm-
based analysis and effective attention, especially
since the norm-based analysis could circumvent
the problem of costly SVD.
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A Background: On The Rank Of The
Value Matrix

The output Z of an individual self-attention head
is given by:

Q = Zl−1W
Q ∈ Rds×dq

K = Zl−1W
K ∈ Rds×dk

V = Zl−1W
V ∈ Rds×dv

A = Softmax
(QKT

√
dk

)
∈ Rds×ds

Z = AV ∈ Rds×dv ,

where ds is the maximum length of the input se-
quence (in number of subtokens), Zl−1 is the output
of the previous transformer layer, WQ,WK ,W V

are the query, key, and value weight matrices, re-
spectively. For BERT-base, dq = dk = dv = 64,
nheads = 12, ds = 512, and dv · nheads = 768.

Brunner et al. (2020) show that the upper bound
of the rank of the value matrix V is given by:

rank(V ) = rank(Zl−1W
V )

≤ min{ds, dv, ds, dv · nheads}
≤ min{ds, dv}.

As a result, the left nullspace of V , defined as:

LN(V ) := {x> ∈ R1×ds |x>V = 0},

is non-trivial (LN(V ) 6= {~0}) when the maximum
input length, ds, is larger than the dimension of the
value matrix dv, i.e., ds > dv. In this case, we can
construct infinitely many matrices A + Ã,

Ã = [x1, . . . , xds ]
>, xi ∈ LN(V ),

which contribute exactly the same to the output as
the attention matrix A:

(A + Ã)V = AV + ÃV = AV +~0 = AV.

This also holds when the weights of A + Ã are
constrained to the probability simplex, and such
constrained matrices A + Ã exist.

B Additional Results

We provide the following additional results that
complement the discussions in Section 3:
• A comparison of the evaluation time with stan-

dard vs. effective attention.
• In Figure 4, visualization of results presented

in Table 2.
• Attention to the [CLS] token in Figure 5.
• Attention to the [SEP] token in Figure 6.
• Complete Figure 2.

RTE MRPC QNLI SST-2 SST-B

standard 0:29 0:45 10:59 1:41 2:54
effective 0:58 1:27 21:05 3:20 5:53

Table 3: A comparison of the evaluation clock time
(minutes:seconds) of BERT models (trained with the
standard attention) evaluated with standard attention
and effective attention separately.

(a) Standard attention.

(b) Effective attention.

Figure 4: Estimated percentage of the attention patterns
(§3.1) for each task.



4134

Figure 5: Per-task attention across layers and heads to the [CLS] token when processing other input tokens, aver-
aged over sequence length and dataset items for the selected GLUE task. The darker colors corresponding to larger
absolute attention weights. The top (green) figure is computed with the standard attention, and the bottom (blue)
figure with the effective attention. Since the effective attention does not have a fixed range as the standard attention
(from 0 to 1), we use the minimum and maximum effective attention weight for each task calculated across all
weights (not only those associated with the [CLS] token).

Figure 6: Per-task attention across layers and heads to the [SEP] token when processing other input tokens, aver-
aged over sequence length and dataset items for the selected GLUE task. The darker colors corresponding to larger
absolute attention weights. The top (green) figure is computed with the standard attention, and the bottom (blue)
figure with the effective attention. Since the effective attention does not have a fixed range as the standard attention
(from 0 to 1), we use the minimum and maximum effective attention weight for each task calculated across all
weights (not only those associated with the [SEP] token).
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(a) Standard attention

(b) Effective attention

Figure 7: Complete Figure 2.


