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Abstract

We computationally model the processes of
word borrowing from a donor word to an in-
corporated word, and vice versa, by answer-
ing two questions: (1) what does a word look
like incorporated into another language, and
in the opposite direction (2) where did a word
come from? We employ neural sequence mod-
els, focusing on six specific borrowing rela-
tions: calques, partial calques, semantic loans,
phono-semantic matches, transliterations, and
generic borrowings. We experiment with sev-
eral model variants, including LSTM encoder-
decoders, copy attention, and Transformers. In
both directions, we find that an LSTM model
can beat strong baselines, with the quantity of
data strongly influencing model performance.

1 Introduction

Words are borrowed into a language through vari-
ous processes. For example, the English internet
was incorporated into Welsh as rhyngrwyd (rthyng-
‘between’ + rthwyd ‘net’) through a calqueing pro-
cess where each component is translated literally.
In contrast, the English chimpanzee became the
Welsh tsimpansi through a process of sound corre-
spondences.

Borrowing is prevalent across the world’s lan-
guages, and modeling how and from where words
enter a language are interesting but understudied
tasks under the umbrella of computational etymol-
ogy (Wu and Yarowsky, 2020a). This is a relatively
new field with many downstream applications. Per-
haps the most salient is lexicon expansion: more
comprehensive dictionaries will enable better com-
munication between cultures as well as better train-
ing material for machine translation systems. Com-
putational etymology is also important for histori-
cal linguistics, whose focus is on discovering the
relationships between languages and their words.
An accurate model of word borrowing can also be
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Figure 1: Two borrowing prediction tasks. The pre-
dicted output for each task is in green and orange, re-
spectively.

a boon for language preservation and revitalization,
where models can help coin neologisms for modern
terms.

Owing to recent successes of machine translation
models for similar tasks (Tsvetkov and Dyer, 2015;
Gorman et al., 2020; Wu and Yarowsky, 2020a,b),
this paper investigates the application of neural
sequence-to-sequence models for the task of ety-
mology prediction. Specifically, we focus on word
borrowings, where a word enters a language via a
non-related donor language.! Whereas inherited
words and cognates tend to follow regular sound
shifts and can be modeled well with transliteration
models (Beinborn et al., 2013; Wu and Yarowsky,
2018b), words borrowed from unrelated languages
undergo various processes (Section 3) that may not
preserve the structure or phonetics of the original
word.

We propose to model borrowings in two tasks
(Figure 1), motivated in Section 4. In Task 1, given
a donor word and etymological relation, can we
predict the form of the incorporated word in the
borrowing language? In the opposite direction, in

"This is in contrast to other etymological relations, such
as inheritance, where words enter through a related language,
e.g. from Latin to French.
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Task 2, given the incorporated word, can we predict
the donor word and language? Our experiments
across several experimental scenarios on these two
tasks using data from Wiktionary indicate that mod-
eling borrowings is a challenging task with much
room for future research.

2 Related Work

Though the tasks defined in this paper are new,
there are several related threads of work. In the
task of cognate transliteration, a system is trained
to generate cognates in a different language (Bein-
born et al., 2013; Wu and Yarowsky, 2018b). This
paper uses a multilingual cognate transliteration
approach applied specifically to borrowings. Sim-
ilar approaches have also been applied to the task
of proto-language reconstruction (Meloni et al.,
2021). Related to cognate transliteration is the
task of grapheme-to-phoneme conversion, which
has a long history of research. Cognate translit-
eration can be viewed as G2P across languages,
where the words are cognates, for example in the
case of names (Waxmonsky and Reddy, 2012; Wu
etal., 2018; Wu and Yarowsky, 2018a). Recently,
researchers have studied massively multilingual
versions of these tasks, where single (neural) mod-
els are trained on the combination of hundreds of
languages (e.g. Deri and Knight, 2016; Gorman
et al., 2020; Lewis et al., 2020).

3 Data

We extract etymology information from the En-
glish edition of Wiktionary using Yawipa (Wu and
Yarowsky, 2020a), a recent Wiktionary parser. We
focus on six specific types of borrowings (whose
Wiktionary label is in monospaced font below)
across a spectrum of semantic and phonetic fidelity:

¢ calque: Also called a loan translation. Com-
ponents of the original word are literally trans-
lated into the target language, e.g. the English
brainwash, from the Chinese JEfN xi ‘wash’
+ nao ‘brain’.

* partial calque: A calque where not ev-
ery component is translated, e.g. the English
apple strudel, from the German Apfelstrudel.

* semantic loan: A sense extension is bor-
rowed onto an existing word, e.g. the French
souris ‘mouse’, which borrowed the comput-
ing sense from the English mouse.

Lang Count %
eng 23,142 0.15
lat 18,713 0.12
fra 17,556 0.11
spa 7,123 0.05
ara 6,508 0.04
san 6,393 0.04
grc 6,122 0.04
deu 5,390 0.04
rus 5,109 0.03
ita 4,660 0.03

Table 1: Distribution of top 10 languages extracted
from Wiktionary.

* psm: Phono-semantic matching. Components
of the original word are replaced with pho-
netically and semantically similar words, e.g.
= 4 ‘ s 3 . 5
=R sheng ‘sound’ + na ‘receive’, from the

English sonar.

* transliteration: A deterministic pro-
cess of writing script conversion that seeks to
preserves a word’s orthography.

* bor: A generic borrowing category. The
overwhelming majority of borrowings in Wik-
tionary are labeled as such. In this paper, we
distinguish between bor, this relation as an-
notated in Wiktionary, and “borrowing”, the
word formation process encompassing these
six relations.

The data we extracted consists of over 150K
ground-truth annotated borrowing relationships,
spanning a total of 837 languages. The top 10
languages are shown in Table 1. Note that only
101 languages have more than 100 entries, and 260
languages have more than 10 entries. In this work,
we are also specifically interested in the long tail
of low-resource languages. The distribution of bor-
rowing relations is shown in Figure 2. Note the
log scale, and the fact that that the majority class
(bor) comprises 96% of the entire dataset, which
motivates several of our experimental variants.

4 Tasks

We first establish our terminology for borrowings:
we say etymology is directed relation between a
donor word and an incorporated word.” We experi-

“We eschew the established terms “loanword” and “bor-
rowing” because loaning and borrowing imply an obligation
to return the item being borrowed. In contrast, “borrowed”
words are fully incorporated into the language.
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Figure 2: Distribution of borrowing relations.

ment on two tasks in etymology prediction:

4.1 Task 1: Incorporation Prediction

Given a donor word and a target language, how
would the word be incorporated into that language?
And by what means? This task is motivated by a
real-world example: when deep learning was gain-
ing popularity, researchers were considering how
to best render the term into Japanese. Should it
be a loanword and written in katakana (7~ 4 — 7
5 — =2 7 dipuraningu), or translated using a
calque (ZE/g=zE shinso gakushii ‘deep’ + ‘learn-
ing’)? Besides terminology standardization, this
task has applications in language revitalization and
unknown word translation.

4.2 Task 2: Donor Prediction

In the opposite direction, given a word, from where
and how did it come into the language? If we view
Wiktionary as a directed graph, where the nodes are
words and the edges are etymological relationships,
there are missing edges. The task is to reconstruct
these missing edges. As Wiktionary is a human-
annotated resource, there is much variance in the
quality and completeness of annotations, and good
performance on this task can help fill in etymology
even in high-resource languages like English.

S Experiments

To tackle these two tasks, we employ character
neural sequence-to-sequence models. For Task
1, predicting the incorporated word, the input is
a sequence containing: the donor language, each
character of the donor word, the etymological re-
lation, and the target language. The output is the
characters of the incorporated word.

In: eng ¢ a b b a g e bor abe

Out: k a b i j

For Task 2, the input is a sequence containing

the word’s language and each character of the word,
while the output is the donor language, donor word
characters, and relation.

In: abe k a b i j
Out: eng c¢c a b b a g e bor

For Task 1, we experiment with separate LSTM
models trained for each borrowing relation (LSTM-
sep), a single multi-task LSTM model trained on
the combined data (LSTM), the same model trained
with both the source and target data preprocessed
by the unigram SentencePiece method (Kudo and
Richardson, 2018) with a vocabulary size of 4000
(LSTM-spm), the same model with copy attention
(See et al., 2017) (LSTM-copy), a Transformer
(Vaswani et al., 2017) model (TF), and an ensem-
bling method (Ensemble). This method is a score-
based voting procedure that combines the output
of the LSTM-sep, LSTM, and TF models. Each
model gives 5 votes for their top prediction, 4 votes
for their second place prediction, and so on (1 vote
for fifth place). For each test instance, the votes
are tallied up, and the prediction with the highest
number of votes is the prediction of the ensemble.
Ties are broken by picking the prediction with the
highest model decoder score among all the models.

For Task 2, we experiment with a baseline LSTM
model and the same model with copy attention.

All models were trained using the OpenNMT-
py framework (Klein et al., 2020). The LSTM
models are two-layer encoder-decoders with 500-
dimension hidden state, trained with the ADAM
optimizer. The Transformer model has a 6-layer
encoder and decoder with 8 heads, trained with
ADAM with learning rate scheduling. For repro-
ducibility, we provide the training scripts which
include the full model details. Accounting for the
extreme imbalance in our dataset, we performed a
stratified split of the dataset into a 80-10-10 train-
dev-test split, where each split contains the same
proportion of languages and borrowing relations.

6 Results and Analysis
6.1 Task1

We evaluate each model on a held-out 15,288 ex-
ample test set. Table 2 presents character BLEU
(computed with SacreBLEU Post (2018)) as well as
accuracy and character edit distance from the gold
(CED). We also report 5-best results for accuracy
(was the correct answer in the top 5 results?) and
CED (within the top 5 results, what is the minimum
edit distance to the correct answer?)

At a cursory glance, the single models trained
on all the data performs slightly better compared to
the separate relation-specific models, following a
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Model BLEU Acc CED S5Acc 5CED
LSTM-sep 5377 20.00 242 3351 1.82
LSTM 55.83 2143 231 3498 1.71
LSTM-copy 5590 1992 232 3446 1.69
LSTM-spm 4562 10.68 2.85 20.31 2.13
Transformer 61.30 22.19 2.06 41.54 1.43
Ensemble 60.32 25.67 2.05 49.24 1.18

Table 2: Results for Task 1. Acc is accuracy (higher is
better), CED is average character edit distance (lower
is better). 5 indicates 5-best results.

trend of multi-task training performing better than
models trained on a single task. The Transformer
model performs the best, likely due to its innovative
attention mechanism that has proven successful in
other tasks. However, by examining the results for
each borrowing relation, we see that the successes
of the models are largely on the bor relations. All
the models perform poorly in correctly predicting
any non-bor relations, though we find that the
calque-specific model performs slightly better than
the jointly trained LSTM on calques. For example,
the separate calque model correctly predicted the
German vollschlank borrowed into Dutch as vol-
slank, which the LSTM model could not do. And
even when it generates incorrect answers, often the
predictions look like “good attempts” at calque-
ing. For example, the French Pays d’en Haut gets
translated as Land of the Roud (correct is upcoun-
try), whereas the jointly trained models often do
character substitutions instead.

Copy attention (LSTM-copy), which allows the
model the option to copy characters from the
source, was intended to help the model with sim-
ilarly spelled borrowings, but overall it did not
perform as well as a simple LSTM model. The
subword model (LSTM-spm) also unexpectedly
did not perform well. The goal of using subwords
was to encourage the model to translate larger char-
acter sequences, the idea being that translational
relations such as calques would consist of two sub-
words rather than several individual characters. In-
deed, the LSTM-spm model treats most words as
calques, often translating when it should instead
perform character substitutions or sound shifts. En-
sembling of three models’ outputs is a simple but
effective method resulting in a large increase in
prediction performance. The score-based voting
effectively combines the strengths of individual
models, especially when all models have the same
word in their n-best predictions.

Error Analysis Due to the small quantities of
available training data for partial calques, seman-
tic loans, phonosemantic matches, and transliter-
ations, the models cannot accurately learn to pre-
dict words incorporated by the aforementioned pro-
cesses. This data shortage is exacerbated for the
separately trained systems. Models largely treat
these translational borrowings as generic bors and
perform character substitutions and sound shifts.
This approach, exemplified by cognate translitera-
tion systems, works for the majority of test exam-
ples, because bors are essentially cognates with
small edit distance. All phonosemantic matches are
Chinese, so models will output Chinese characters,
but due to the sparsity of the characters, the model
cannot produce the correct answer. For the remain-
der of this analysis, we will focus on bor and cal
as the main two borrowing relations. We find all the
models show similar patterns of prediction, so the
following examples are from the multi-task LSTM
model.

In many cases, the incorporated word is similar
to the donor, so the model can correctly predict the
borrowing. For example, for the Latin vanitas bor-
rowed into French, the model predicts vanita; the
correct vanité is its second choice. The model can
also handle different writing scripts. For example,
it correctly predicts the Greek mupitic borrowed
into Latin as pyritis. Unfortunately, sound shifts
do not work for the other borrowing relations, like
calques, that require translation of morphemes. In
many cases, the model does not seem to distin-
guish between non-bor relations and merely per-
forms sound shifting. For example, our model pre-
dicts that the English shopping center calqued into
Afrikaans is schoppingsentre (correct is winkelsen-
trum,).

When encountering calques, the model some-
times recognizes that it should translate rather than
transliterate. However, the lack of sufficient train-
ing data prevents the model from learning to ac-
curately translate component morphemes. For ex-
ample, our model predicts the English download
calqued into German is Dunnleut (correct is herun-
terladen). Here, we see that the model picks up on
the fact that German words tend to start with a cap-
ital letter, though in this case the word in question
is a verb which does not need capitalization. We
also find that the model cannot get the word order
correct when languages have different adjective-
noun ordering. For example, our model incorrectly
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predicts that the French mariage blanc borrowed
into English is marriage mank (correct is white
marriage).

Broken down by language, our data contains
numerous low-resource languages, many of which
have just 1-10 words. Training a single model
on such data for a single language would yield
low performance, but our massively multilingual
borrowing models can successfully handle many of
these low-resource languages.

6.2 Task?2

For Task 2, we follow Wu and Yarowsky (2020a),
who used an LSTM model to predict both the lan-
guage and formation mechanism of a word. While
they attempted to predict broader categories of in-
heritance vs borrowing, we focus on six specific
borrowing relations. Because many borrowings
have small edit distance, we also employed an
LSTM model with copy attention. This model’s
performance was slightly worse than the baseline
LSTM, a trend we also observed in Task 1. This
indicates that borrowings are fundamentally differ-
ent from inherited and cognate words, where copy
attention models have seen good performance. Re-
sults grouped by word, language, and relation are
presented in Table 3.

The models for Task 2 are inherently multi-task:
they must predict the donor language, donor word,
as well as the relation. As such, prediction of donor
language and relation can be evaluated as classifi-
cation tasks. We found that our models were able
to generate valid languages and relations in 98%
cases, showing that sequence-to-sequence models
can also be successful in classification tasks.

We briefly analyze the errors of the LSTM model.
Perhaps unsurprisingly, the model gets over 96%
accuracy on predicting the relation by always guess-
ing bor, the majority class. Yet it is able to beat
a strong majority baseline (always predicting bor,
the majority class). Our model is also able to
successfully predict the language of the borrow-
ing in almost half of the test instances (guessing
the majority donor language, English, would only
achieve 14.8% accuracy). Thus a word’s language
and spelling provide sufficient information for iden-
tifying how and from where it entered the language.
In terms of errors, we find some instances where
the model predicts a donor language that is actu-
ally related to the correct language. For example,
the Dutch tabak is borrowed from Spanish tabaco,

Model Rel Lang Word CED
Majority 96.0 148 - -
LSTM 96.1 479 232 29
LSTM-Copy 96.1 47.7 20.8 3.0

Table 3: Results for Task 2: 1-best accuracy grouped by
Relation, Language, and Word. CED is average charac-
ter edit distance for Word prediction.

rather than our model’s French rabac, and many
Dutch words originally from English were pre-
dicted to come from German, and vice versa. We
also see several words like English specify were
predicted to come from French, but are actually
from Old French. Future work can address a cus-
tom loss function that gives “partial credit” to such
predictions rather than marking them as completely
incorrect.

In terms of word prediction, the seemingly low
accuracy of the model is not discouraging. Sup-
ported by the low character edit distance, we see
many examples where the model’s prediction is
close enough to be recognized by a human. For
example, the Chinese [ K47 is borrowed from En-
glish a cappella, but our model predicts acapara,
and the Jersey French thidtre was predicted to be
borrowed from Latin thiatrum (correct is thedatrum).
When providing new entries to an impoverished
etymology dictionary, our prediction model can
suggest possible etymology and even plausible un-
known word forms, which can then be verified by
a human lexicographer.

7 Conclusion

We model word borrowings from a donor to an
incorporated word, and vice versa, using neural
sequence models in a variety of experimental sce-
narios. We find that a single model trained to pre-
dict multiple types of borrowings performs bet-
ter than separate models trained for each borrow-
ing. A Transformer model performs better than an
LSTM model, and a simple ensembling method
results in superior performance, though the amount
of training data is a limiting factor in the perfor-
mance of these models. Predicting the donor lan-
guage and word is a slightly easier task, where
our LSTM model is able to beat a strong majority
baseline. Source code for reproducing our experi-
ments is available at https://github.com/wswu/

borrowings.
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