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Abstract

Detecting what emotions are expressed in
text is a well-studied problem in natural lan-
guage processing. However, research on finer-
grained emotion analysis such as what causes
an emotion is still in its infancy. We present
solutions that tackle both emotion recognition
and emotion cause detection in a joint fash-
ion. Considering that common-sense knowl-
edge plays an important role in understanding
implicitly expressed emotions and the reasons
for those emotions, we propose novel meth-
ods that combine common-sense knowledge
via adapted knowledge models with multi-task
learning to perform joint emotion classifica-
tion and emotion cause tagging. We show per-
formance improvement on both tasks when in-
cluding common-sense reasoning and a multi-
task framework. We provide a thorough analy-
sis to gain insights into model performance.

1 Introduction

Utterance and document level emotion recognition
has received significant attention from the research
community (Mohammad et al., 2018; Poria et al.,
2020a). Given the utterance Sudan protests: Out-
rage as troops open fire on protestors an emotion
recognition system will be able to detect that anger
is the main expressed emotion, signaled by the
word "outrage". However, the semantic informa-
tion associated with expressions of emotion, such
as the cause (the thing that triggers the emotion)
or the target (the thing toward which the emotion
is directed), is important to provide a finer-grained
understanding of the text that might be needed in
real-world applications. In the above utterance, the
cause of the anger emotion is the event “troops
open fire on protestors”, while the target is the en-
tity "troops" (see Figure 1) .

∗Work done during an internship with Amazon AI.

Research on finer-grained emotion analysis such
as detecting the cause for an emotion expressed in
text is in its infancy. Most work on emotion-cause
detection has utilized a Chinese dataset where the
cause is always syntactically realized as a clause
and thus was modeled as a classification task (Gui
et al., 2016). However, recently Bostan et al. (2020)
and Oberländer and Klinger (2020) argued that
in English, an emotion cause can be expressed
syntactically as a clause (as troops open fire on
protestors), noun phrase (1,000 non-perishable
food donations) or verb phrase (jumped into an
ice-cold river), and thus we follow their approach
of framing emotion cause detection as a sequence
tagging task.

We propose several ways in which to approach
the tasks of emotion recognition and emotion cause
tagging. First, these two tasks should not be in-
dependent; because the cause is the trigger for
the emotion, knowledge about what the cause is
should narrow down what emotion may be ex-
pressed, and vice versa. Therefore, we present
a multi-task learning framework to model them
jointly. Second, considering that common-sense
knowledge plays an important role in understand-
ing implicitly expressed emotions and the reasons
for those emotions, we explore the use of common-
sense knowledge via adapted knowledge models
(COMET, Bosselut et al. (2019)) for both tasks. A
key feature of our approach is to combine these
adapted knowledge models (i.e., COMET), which
are specifically trained to use and express common-
sense knowledge, with pre-trained language mod-
els such as BERT, (Devlin et al., 2019).

Our primary contributions are three-fold: (i) an
under-studied formulation of the emotion cause de-
tection problem as a sequence tagging problem; (ii)
a set of models that perform the emotion classifica-
tion and emotion cause tagging tasks jointly while
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using common-sense knowledge (subsection 4.2)
with improved performance (section 6); and (iii)
analysis to gain insight into both model perfor-
mance and the GoodNewsEveryone dataset that
we use (Bostan et al., 2020) (section 7).

2 Related Work

Emotion detection is a widely studied subfield of
natural language processing (Mohammad et al.,
2018; Poria et al., 2020a), and has been applied
to a variety of text genres such as fictional stories
(Alm et al., 2005), news headlines (Strapparava
and Mihalcea, 2010), and social media, especially
microblogs such as Twitter (Abdul-Mageed and
Ungar, 2017; Kiritchenko et al., 2014; Rosenthal
et al., 2019; Mohammad et al., 2018). Earlier work,
including some of the above, focused on feature-
based machine learning models that could leverage
emotion lexicons (Mohammad and Turney, 2013)),
while recent work explores deep learning models
(e.g., Bi-LSTM and BERT) and multi-task learning
(Xu et al., 2018; Demszky et al., 2020).

However, comparatively few researchers have
looked at the semantic roles related to emotion such
as the cause, the target or the experiencer, with few
exceptions for Chinese (Gui et al., 2016; Chen et al.,
2018; Xia and Ding, 2019; Xia et al., 2019; Fan
et al., 2020; Wei et al., 2020; Ding et al., 2020), En-
glish (Mohammad et al., 2014; Ghazi et al., 2015;
Kim and Klinger, 2018; Bostan et al., 2020; Ober-
länder et al., 2020; Oberländer and Klinger, 2020)
and Italian (Russo et al., 2011). We highlight some
of these works here and draw connection to our
work. Most recent work on emotion-cause detec-
tion has been carried out on a Chinese dataset com-
piled by Gui et al. (2016). This dataset character-
izes the emotion and cause detection problems as
clause-level pair extraction problem – i.e., of all the
clauses in the input, one is selected to contain the
expression of an emotion, and one or more (usually
one) are selected to contain the cause of that emo-
tion. Many publications have used this corpus to
develop novel and effective model architectures for
the clause-level classification problem (Chen et al.,
2018; Xia and Ding, 2019; Xia et al., 2019; Fan
et al., 2020; Wei et al., 2020; Ding et al., 2020). The
key difference between this work and ours is that
we perform cause detection as a sequence-tagging
problem: the cause may appear anywhere in the
input, and may be expressed as any grammatical
construction (a noun phrase, a verb phrase, or a

Figure 1: An example of the semantic roles annotated
by Bostan et al. (2020)

clause). Moreover, we use common sense knowl-
edge for both tasks (emotion and cause tagging),
through the use of adapted language models such
as COMET.

For English, several datasets have been intro-
duced (Mohammad et al., 2014; Kim and Klinger,
2018; Ghazi et al., 2015; Bostan et al., 2020; Po-
ria et al., 2020b), and emotion cause detection has
been tackled either as a classification problem (Mo-
hammad et al., 2014), or as a sequence tagging or
span detection problem (Kim and Klinger, 2018;
Ghazi et al., 2015; Oberländer and Klinger, 2020;
Poria et al., 2020b). We particularly note the work
of Oberländer and Klinger (2020), who argue for
our problem formulation of cause detection as se-
quence tagging rather than as a classification task
supported by empirical evidence on several datasets
including the GoodNewsEveryone dataset (Bostan
et al., 2020) we use in this paper. One contribution
we bring compared to these models is that we for-
mulate a multi-task learning framework to jointly
learn the emotion and the cause span. Another
contribution is the use of common-sense knowl-
edge through the use of adapted knowledge models
such as COMET (both in the single models and the
multi-task models). Ghosal et al. (2020) have very
recently shown the usefulness of common-sense
reasoning to the task of conversational emotion
detection.

3 Data

For our experiments, we use the GoodNewsEvery-
one corpus (Bostan et al., 2020), which contains
5,000 news headlines labeled with emotions and
semantic roles such as the target, experiencer, and
cause of the emotion, as shown in Figure 1.1 We
focus on the emotion detection and cause tagging
tasks in this work. To our knowledge, GoodNew-
sEveryone is the largest English dataset labeled for

1While the dataset labels both the most dominant emotion
expressed in text and the reader’s emotion, for this paper we
only focus on the former.
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Figure 2: Distribution of adjudicated emotion labels in
the GoodNewsEveryone train data, as a percentage of
the data points. “Positive” and “Negative” are abbrevi-
ated as + and -.

both of these tasks.
In our experiments, we limit ourselves to the

data points for which a cause span was annotated
(4,798). We also note that this dataset uses a 15-
way emotion classification scheme, an extended set
including the eight basic Plutchik emotions as well
as additional emotions like shame and optimism.
While a more fine-grained label set is useful for cap-
turing subtle nuances of emotion, many external
resources focus on a smaller set of emotions. We
also note that the label distribution of this dataset
heavily favors the more basic emotions, as shown
in Figure 2. Therefore, for our work, we choose to
limit ourselves to the six Ekman emotions (anger,
fear, disgust, joy, surprise, and sadness). We also
choose to keep positive surprise and negative sur-
prise separated, to avoid severely unbalancing the
label distribution for our experiments. We ran-
domly split the remaining data (2,503 data points)
into 80% train, 10% development, and 10% test.

4 Models

An important feature showcased by the Good-
NewsEveryone dataset is that causes of emotions
can be expressed through different syntactic con-
stituents such as clauses, verb phrases, or noun-
phrases. Thus, we approach the cause detection
problem as a sequence tagging problem using the
IOB scheme (Ramshaw and Marcus, 1995): C =
{I-cause,O,B-cause}. Our approach is supported
by very recent results by Oberländer and Klinger
(2020) and Yuan et al. (2020) who show that model-
ing emotion cause detection as a sequence tagging
problem is better suited than a clause classification

problem, although not much current work has yet
adopted this formulation. We tackle the emotion de-
tection task as a seven-way classification task with
E = {anger, disgust, fear, joy, sadness, negative
surprise, positive surprise}.

4.1 Single-Task Models

As a baseline, we train single-task models for
each of emotion classification and cause span tag-
ging. We use a pre-trained BERT language model2

(Devlin et al., 2019), which we fine-tune on our
data, as the basis of this model. Our prepro-
cessing strategy for all of our models consists
of the pretrained BERT vocabulary and Word-
Piece tokenizer3 (Wu et al., 2016) from Hug-
gingface (Wolf et al., 2020). Therefore, for a
sequence of n WordPiece tokens, our input to
the BERT model is a sequence of n + 2 tokens,
X = [[CLS], x1, x2, ...xn, [SEP]], where each xi
is from a finite WordPiece vocabulary and [CLS]
and [SEP] are BERT’s begin and end tokens. Pass-
ing X through BERT yields a sequence of vector
hidden states H = [h[CLS], h1, h2, ..., hn, h[SEP ]]
with dimension dBERT = 768. For emotion classi-
fication, we pool these hidden states and allow hy-
perparameter tuning to select the best type: select-
ing the [CLS] token (hf = h[CLS]), mean pooling

(hf =
∑n

i=1 hi

n ), max pooling (hf,j = maxhi,j), or
attention as formulated by Bahdanau et al. (2015):

hf =

n∑
i=1

αihi (1)

where αi = exp (Wahi+ba)∑n
j=1 exp (Wahj+ba)

for trainable

weights Wa ∈ R1×dBERT and ba ∈ R1. Then, the
final distribution of emotion scores is calculated by
a single dense layer and a softmax:

e = softmax(Wehf + be) (2)

with e ∈ R|E| and for trainable parametersWe ∈
R|E|×dBERT and be ∈ R|E|. For cause tagging, a
tag probability distribution is calculated directly on
each hidden state:

ci = softmax(Wchi + bc) (3)

2We use BERT-BASE-UNCASED. We experimented with
BERT-BASE-CASED, but it underperformed as the headlines
incorporated into GoodNewsEveryone come from different
news sources and have different capitalization styles.

3In the tagging setting, we ignore all tags predicted for
subword tokens and use only the tag of the first subword.
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(a) The MultiC�E model. (b) The MultiE�C model.

Figure 3: Our multi-task models.

with ci ∈ R|C| and for trainable parameters
Wc ∈ R|C|×dBERT and bc ∈ R|C|. We refer to
both of these single-task models as BERT; if the
task is not clear from the context, we will refer to
the emotion detection model as BERTE and the
cause tagging model as BERTC . Our training loss
for emotion classification as well as emotion cause
tagging is the mean negative log-likelihood (NLL)
loss per minibatch of size b:

NLLemo = −1

b

∑
j

∑
k

yjk log ejk (4)

NLLcause = −
1

b

∑
i

∑
j

∑
k

yijk log cijk (5)

where j is the index of the sentence in the mini-
batch, k is the index of the label being consid-
ered (emotion labels for NLLemo and IOB tags for
NLLcause), i is the index of the ith token in the jth

sentence in the minibatch, yjk ∈ {0, 1} is the gold
probability of the kth emotion label for the jth sen-
tence, yijk ∈ {0, 1} is the gold probability of the
kth cause tag for the ith token in the jth sentence,
and ejk and cijk are the output probabilities of the
kth emotion label and of the kth cause label for the
ith token, both for the jth sentence.

4.2 Multi-Task Models

Our hypothesis is that the emotion detection and
cause tagging tasks are closely related and can in-
form each other; therefore we propose three multi-
task learning models to test this hypothesis. For all
multi-task models, we use the same base architec-
ture (BERT) as the single models. Additionally, for
these models, we combine the losses of both tasks
and weight them with a tunable lambda parameter:

λNLLemo + (1 − λ)NLLcause, using NLLemo and
NLLcause from Equation 4 and Equation 5.

Multi. The first model, Multi, is the classical
multi-task learning framework with hard parameter
sharing, where both tasks share the same BERT
layers. Two dense layers for emotion classification
and cause tagging operate at the same time from
the same BERT layers, and we train both of the
tasks simultaneously. That is, we simply calculate
our emotion scores e and cause tag scores c from
the same set of hidden states H .

We further develop two additional multi-task
models with the intuition that we can design more
explicit and concrete task dependencies than simple
parameter sharing in the representation layer.

MultiC�E . We assume that if a certain text span
is given as the cause of an emotion, it should be
possible to classify that emotion correctly while
looking only at the words of the cause span. There-
fore, we propose the MultiC�E model, the architec-
ture of which is illustrated in Figure 3a. This model
begins with the single-task cause detection model,
BERTC , which produces a probability distribution
P (yi|xi) over IOB tags for each token xi, where
P (yi|xi) = ci from Equation 3. Then, for each
token, we calculate the probability that it is part of
the cause as P (Cause|xi) = P (B|xi)+P (I|xi) =
1 − P (O|xi). We feed the resulting probabilities
through a softmax over the sequence and use them
as an attention distribution over the input tokens in
order to pool the hidden representations and per-
form emotion classification: attention is computed
as in Equation 1, where αi =

expP (Cause|xi)∑n
j=1 expP (Cause|xi)

,
and emotion classification as in Equation 2. For
the MultiC�E model, we apply teacher forcing at
training time, and the gold cause spans are used to



3979

Figure 4: The architecture of our proposed
MultiCOMET

C�E model.

create the attention weights before emotion classi-
fication (which means that P (Cause|xi) ∈ {0, 1}).
At inference time, the model uses the predicted
cause span instead.

MultiE�C . Next, we hypothesize that knowledge
of the predicted emotion should help us identify
salient cause words. The MultiE�C model first
performs emotion classification, which results in
a probability distribution over predicted emotion
labels, as in the BERTE model and Equation 2. We
additionally keep an emotion embedding matrix
E, where E[i] is a learnable representation of the
i-th emotion label (see Figure 3b) with dimension
de (in our experiments, we set de = 300). We
use the predicted label probabilities e to calculate
a weighted sum of the emotion embeddings, i.e.,
M =

∑
i ei · E[i]. We then concatenate M to the

hidden representation of each token and perform
emotion cause tagging with a final dense layer, i.e.,
ci = softmax(Wc′ [hi;M ]+bc′), where ; is the con-
catenation operator and Wc′ ∈ R|C|×(dBERT+de)

and bc′ ∈ R|C| are trainable parameters. In the
MultiE�C model, we again do teacher forcing and
use the gold emotion labels before doing the se-
quence tagging for cause detection (i.e., e is a one-
hot vector where the gold emotion label has prob-
ability 1 and all other emotion labels have proba-
bility 0). At inference time, the model will use the
predicted emotion distribution instead.

4.3 Adapted Knowledge Models

Recent work has shown that fine-tuning pre-trained
language models such as GPT-2 on knowledge
graph tuples such as ConceptNet (Li et al.,
2016) or ATOMIC (Sap et al., 2018) allows

these models to express their implicit knowledge
directly (Bosselut et al., 2019). These adapted
knowledge models (e.g., COMET (Bosselut et al.,
2019)) can produce common-sense knowledge
on-demand for any entity, relation or event.
Considering that common-sense knowledge plays
an important role in understanding implicitly
expressed emotions and the reasons for those
emotions, we explore the use of common-sense
knowledge for our tasks, in particular the use of
COMET adaptively pre-trained on the ATOMIC
event-centric knowledge base. ATOMIC’s event
relations include “xReact” and “oReact”, which
describe the feelings of certain entities after the
input event occurs. For example, ATOMIC’s
authors present the example of <PersonX pays
PersonY a compliment, xReact, PersonX will
feel good>. xReact refers to the feelings of the
primary entity in the event, and oReact refers to
the feelings of others (in this instance, oReact
yields “PersonY will feel flattered”). For example,
using the headline “Sudan protests: Outrage as
troops open fire on protestors", COMET-ATOMIC
outputs that PersonX feels justified, PersonX feels
angry, Others feel angry, and so on (Figure 4). To
use this knowledge model in our task, we modify
our approach by reframing our single-sequence
classification task as a sequence-pair classification
task (for which BERT can be used directly). We
feed our input headlines into COMET-ATOMIC
(using the model weights released by the au-
thors), collect the top two outputs for xReact
and oReact using beam search decoding, and
then feed them into BERT alongside the input
headlines, as a second sequence using the SEP
token. That is, our input to BERT is now X =
[[CLS], x1, x2, ..., xn, [SEP], z1, z2, ..., zm, [SEP]],
where zi are the m WordPiece tokens of our
COMET output and are preprocessed in the same
way as xi. We hypothesize that, since pre-trained
BERT is trained with a next sentence prediction
objective, expressing the COMET outputs as a
grammatical sentence will help BERT make better
use of them, so we formulate this second sequence
as complete sentences (e.g., “This person feels...
Others feel...”) (Figure 4).

This approach allows us incorporate informa-
tion from COMET into all our single- and multi-
task BERT-based models; the example shown
in Figure 4 is our MultiC�E model. We
refer to the COMET variants of these mod-
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Emotion Macro F1 Emotion Accuracy Cause Span F1
BERT 37.25 ± 1.30 38.50 ± 0.84 37.49 ± 1.94
BERTCOMET 37.74 ± 0.84 38.50 ± 1.14 39.27 ± 1.85
Multi 36.91 ± 1.48 38.34 ± 1.94 38.35 ± 3.89
MultiC�E 37.74 ± 2.12 38.74 ± 2.07 39.08 ± 3.73
MultiE�C 38.26 ± 3.28 39.69 ± 3.41 38.83 ± 1.60
MultiCOMET 37.06 ± 2.04 39.05 ± 0.98 39.50 ± 2.25
MultiCOMET

C�E 39.26* ± 1.13 40.79 ± 2.17 38.68 ± 1.36
MultiCOMET

E�C 37.44 ± 1.37 38.58 ± 1.44 36.27 ± 1.31

Table 1: The results of our models, averaged over five runs with the same five distinct random seeds. The model
with the highest mean performance under each metric is bolded. Results marked with a * are statistically significant
above the single-task BERT baseline by the paired t-test (p < 0.05).

els as: BERTCOMET (single-task models) and
MultiCOMET , MultiCOMET

C�E , MultiCOMET
E�C for

the three multi-task models.

5 Experimental Setup

Evaluation Metrics For emotion classification,
we report macro-averaged F1 and accuracy. For
cause tagging, we report exact span-level F1 (which
we refer to as span F1), as developed for named
entity recognition (e.g., Tjong Kim Sang and
De Meulder (2003)), where a span is marked as
correct if and only if its type and span boundaries
match the gold exactly4.

Training and Hyperparameter Selection The
classification layers are initialized randomly from
a uniform distribution over [−0.07, 0.07]5, and all
the parameters are trained on our dataset for up
to 20 epochs, with early stopping based on the
performance on the validation data (macro F1 for
emotion, span F1 for cause). All models are trained
with the Adam optimizer (Kingma and Ba, 2015).
We highlight again that for our MultiC�E and
MultiE�C models, we use teacher forced during
training to avoid cascading training error. Because
the subset of the data we use is relatively small, we
follow current best practices for dealing with neural
models on small data and select hyperparameters
and models using the average performance of five
models with different fixed random seeds on the
development set. We then base our models’ per-

4Our cause tagging task has only one type, “cause”, as
GoodNewsEveryone is aggregated such that each data point
has exactly one emotion-cause pair. We note that this problem
formulation leaves open the possibility of multiple emotion-
cause pairs.

5The default initialization from the gluon pack-
age: https://mxnet.apache.org/versions/1.7.
0/api/python/docs/api/gluon/index.html

formance on the average of the results from these
five runs (e.g., reported emotion F1 is the average
of the emotion F1 scores for each of our five runs).
For our joint models, since our novel models re-
volve around using one task as input for the other,
we separately tune two sets of hyperparameters for
each model, one based on each of the single-task
metrics, yielding, for example, one Multi model op-
timized for predicting emotion and one optimized
for predicting cause. The hyperparameters we tune
are dropout in our linear layers, initial learning rate
of the optimizer, COMET relation type, lambda
weight for our multi-task models, and the type of
pooler for emotion classification (enumerated in
subsection 4.1).

6 Results

We present the results of our models in Table 16.
We see that the overall best model for each
task is a multi-task adapted knowledge model,
with MultiCOMET

C�E performing best for emotion
(which is a statistically significant improvement
over BERT by the paired t-test, p < 0.05) and
MultiCOMET performing best for cause. These re-
sults seem to support our two hypotheses: 1) emo-
tion recognition and emotion cause detection can
inform each other and 2) common-sense knowledge
is helpful to infer the emotion and the cause for that
emotion expressed in text. Specifically, we notice
that MultiC�E alone does not outperform BERT on
either cause or emotion, but MultiCOMET

C�E outper-
forms both BERT and MultiC�E on both tasks. For
cause, we also see additional benefits of common-

6Oberländer and Klinger (2020) report an F1 score of 34
in this problem setting on this dataset, but on a larger subset
of the data (as they do not limit themselves to the Ekman
emotions) and so we cannot directly compare our work to
theirs.

https://mxnet.apache.org/versions/1.7.0/api/python/docs/api/gluon/index.html
https://mxnet.apache.org/versions/1.7.0/api/python/docs/api/gluon/index.html
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Figure 5: Performance of the BERT and MultiCOMET
C�E

models on emotion classification.

sense reasoning alone: BERTCOMET outperforms
BERT (multi-task modeling alone, Multi, also out-
performs BERT for this task) and MultiCOMET

outperforms Multi. These results speak to the dif-
ferences between the two tasks, suggesting that
common-sense reasoning, which aims to generates
implicit emotions, and cause information may be
complementary for emotion detection, but that for
cause tagging, common-sense reasoning and given
emotion information may overlap. The common-
sense reasoning we have used in this task (xReact
and oReact from ATOMIC) is expressed as possi-
ble emotional reactions to an input situation, so this
makes intuitive sense.

Finally, we also present per-emotion results for
our best model for each task (MultiCOMET

C�E for
emotion and MultiCOMET for cause) against the
single-task BERT baselines in Figure 5 and Fig-
ure 6; these per-emotion scores are again the av-
erage performance of models trained with each of
our five random seeds. We see that each task im-
proves on a different set of emotions: for emotion
classification MultiCOMET

C�E consistently improves
over BERT by a significant margin on joy and to a
lesser extent on anger and sadness. Meanwhile, for
cause tagging, MultiCOMET improves over BERT
on anger, disgust, and fear, while yielding very
similar performance on the rest of the emotions.

7 Analysis and Discussion

In order to understand the impact of common-sense
reasoning and multi-task modeling for the two
tasks, we provide several types of analysis in ad-
dition to our results in section 6. First, we include
examples of our various models’ outputs showcas-
ing the impact of our methods (subsection 7.1).

Figure 6: Performance of the BERT and MultiCOMET

models on cause tagging, broken down by emotion.

Second, we carry out an analysis of the dataset,
focusing on the impact of label variation among
multiple annotators on the models’ performance
(subsection 7.2).

7.1 Example Outputs

We provide some example outputs from our sys-
tems for both cause and emotion in Table 2; the
various Multi models have been grouped together
for readability and because they often produce
similar outputs, but the outputs for every model
are available in the appendix. In the first exam-
ple, the addition of COMET to BERT informs the
model enough to choose the gold emotion label;
in the third and fourth, either COMET or multi-
task learning is enough to help the model select
key words that should be included in the cause (re-
turn and triple shooting). We also particularly note
the second example, in which multi-task learning
is needed both for the BERT and BERTCOMET

models to be able to correctly predict the gold emo-
tion. This suggests that for cause, both common-
sense reasoning and emotion classification may
carry overlapping useful information for cause tag-
ging, while for emotion, different instances may be
helped more by different aspects of our models.

7.2 Label Agreement

Upon inspection of the GoodNewsEveryone data,
we discover significant variation in the emotion la-
bels produced by annotators as cautioned by the
authors in their original publication7. From our
inspection of the development data, we see recur-

7While the authors selected data according to agreement
on the emotion labeling task, they found that in only 75% of
cases do at least 3 annotators agree, with diminishing rates of
agreement for more annotators.
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BERT Multitask BERTCOMET MultitaskCOMET

Mexico reels from shooting attack in El Paso
fear

negative surprise negative surprise fear fear
Insane video shows Viking Sky cruise ship thrown into chaos at sea

fear
negative surprise fear negative surprise fear

Durant could return for Game 3
positive surprise

for game could return for game
Dan Fagan: Triple shooting near New Orleans School yet another sign of city’s crime problem

negative surprise
school yet another sign

of city’s crime
: triple shooting near new orleans school yet another sign of city’s

crime

Table 2: Example outputs from our systems. For each example, the gold cause is highlighted in yellow and the
gold emotion is given under the text; the first two examples give our models’ emotion outputs; the latter two,
their causes. Joined cells show that multiple models produced the same output. To make this table easier to read,
“Multitask” here may refer to Multi, MultiE�C , or MultiC�E (details on selection and results for each individual
model available in appendix; most multi-task models gave similar outputs).

Metric BERT BERTCOMET Multi MultiE�C MultiC�E MultiCOM MultiCOMET
E�C MultiCOMET

C�E

Acc.
(Gold) 38.50 38.50 38.34 39.68 38.74 39.05 38.58 40.79

Acc.
(¬Gold) 23.48 23.24 22.37 21.11 22.85 21.26 22.45 20.08

Table 3: Comparison of gold accuracy and non-gold (¬gold) accuracy for our emotion classification models.

ring cases where different annotators give directly
opposing labels for the same input, depending on
how they interpret the headline and whose emo-
tions they choose to focus on. For example, our
development set includes the following example:
Simona Stuns Serena at Wimbledon: Game, Set
and “Best Match” for Halep. The gold adjudi-
cated emotion label for this example is negative
surprise, but annotators actually included multiple
primary and secondary emotion labels including
joy, negative surprise, positive surprise, pride, and
shame, which can be understood as various emo-
tions felt by the two entities participant in the event
(Simona Halep and Serena Williams). For this in-
put, COMET suggests xReact may be happy or
proud and oReact may be happy — these reactions
are likely most appropriate for tennis player Si-
mona Halep, but not the only possible emotion that
can be inferred from the headline.

Inspired by the variation in the data, we com-
pute also models’ accuracy using the human an-
notations that did not agree with the gold (i.e., a
predicted emotion label is correct if it was sug-
gested by a human annotator but was not part of

a majority vote to be included in the gold). We
denote this ¬Gold, and we compare the perfor-
mance of our models with respect to Gold and
¬Gold. We present the results of this analysis in
Table 38. In this table, a higher ¬Gold accuracy
means that the model is more likely to produce
emotion labels that were not the gold but were sug-
gested by some annotator. First of all, we note that
all models have a relatively high ¬Gold accuracy
(about half the magnitude of their gold accuracy);
we believe this reflects the wide variety of anno-
tations given by the annotators. We see a trade-
off between the Gold and ¬Gold accuracy, and
we note that generally the single-task models have
higher ¬Gold accuracy and the COMET-enhanced
multi-task models have higher Gold accuracy. This
suggests that our language models have general
knowledge about emotion already, but that apply-
ing common-sense knowledge helps pare down the
space of plausible outputs to those that are most
commonly selected by human annotators. Recall

8Note that we perform this analysis on just one of our five
runs of the model, so the accuracy numbers do not exactly
correspond to those in Table 1.
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that this dataset was annotated by taking the most
frequent of the annotator-provided emotion labels.
Further, since the multi-task models have higher
Gold accuracy and lower ¬Gold accuracy than the
single-task models, this suggests that also predict-
ing the cause of an emotion causes the model to
narrow down the space of possible emotion labels
to only those that are most common.

8 Conclusions and Future Work

We present a common-sense knowledge-enhanced
multi-task framework for joint emotion detection
and emotion cause tagging. Our inclusion of
common-sense reasoning through COMET, com-
bined with multi-task learning, yields performance
gains on both tasks including significant gains on
emotion classification. We highlight the fact that
this work frames the cause extraction task as a span
tagging task, allowing for the future possibility of
including multiple emotion-cause pairs per input or
multiple causes per emotion and allowing the cause
to take on any grammatical role. Finally, we present
an analysis of our dataset and models, showing that
labeling emotion and its semantic roles is a hard
task with annotator variability, but that common-
sense knowledge helps language models focus on
the most prominent emotions according to human
annotators. In future work, we hope to explore
ways to integrate common-sense knowledge more
innately into our classifiers and ways to apply these
models to other fine-grained emotion tasks such as
detecting the experiencer or the target of an emo-
tion.
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Ethical Considerations

Our intended use for this work is as a tool to help
understand emotions expressed in text. We propose
that it may be useful for things like product reviews
(where producers and consumers can rapidly assess
reviews for aspects of their products to improve or
expand), disaster relief (where those in need of help
from any type of disaster can benefit if relief agents
can understand what events are causing negative
emotions, during and after the initial disaster), and
policymaking (where constituents can benefit if
policymakers can see real data about what policies

are helpful or not and act in their interests). These
applications do depend on the intentions of the user,
and a malicious actor may certainly misuse the abil-
ity to (accurately or inaccurately) detect emotions
and their causes. We do not feel it responsible to
publicly list the ways in which this may happen
in this paper. We also believe that regulators and
operators of this technology should be aware that it
is still in its nascent stages and does not represent
an infallible oracle — the predictions of this and
any model should be reviewed by humans in the
loop, and we feel that general public awareness of
the limitations and mistakes of these models may
help mitigate any possible harm. If these models
are inaccurate, they will output either the incorrect
emotion or the incorrect cause; blindly trusting the
model’s predictions without examining them may
lead to unfair consequences in any of the above
applications (e.g., failure to help someone whose
text is misclassified as positive surprise during a
natural disaster or a worsened product or policy if
causes are incorrectly predicted). We additionally
note that in its current form, this work is intended
to detect the emotions that are expressed in text
(headlines), and not those of the reader.

We concede that the data used in this work con-
sists of news headlines and may not be the most
adaptable to the use cases we describe above; we
caution that models trained on these data will likely
require domain adaptation to perform well in other
settings. Bostan et al. (2020) report that their data
comes from the Media Bias Chart9, which reports
that their news sources contain a mix of political
views, rated by annotators who also self-reported a
mix of political views. We note that these data are
all United States-based and in English. Bostan et al.
(2020) do sub-select the news articles according to
impact on Twitter and Reddit, which have their own
user-base biases10, typically towards young, white
American men; therefore, the data is more likely to
be relevant to these demographics. The language
used in headlines will likely most resemble Stan-
dard American English as well, and therefore our
models will be difficult to use directly on other
dialects and vernaculars.

9https://www.adfontesmedia.com/
about-the-interactive-media-bias-chart/

10https://www.pewresearch.org/internet/
fact-sheet/social-media/

https://www.adfontesmedia.com/about-the-interactive-media-bias-chart/
https://www.adfontesmedia.com/about-the-interactive-media-bias-chart/
https://www.pewresearch.org/internet/fact-sheet/social-media/
https://www.pewresearch.org/internet/fact-sheet/social-media/
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A Appendix

A.1 Hyperparameter Tuning
We include descriptions of our hyperparameter tun-
ing setup and the selected hyperparmeters for each
of our models in Table 4; we note that single-task
cause models (BERTC and COMETC) do not tune
the pooler, all single-task models do not tune
the lambda parameter, and all non-common-sense
models do not tune comet_relations. The pa-
rameters selected by all of our models can be seen
in Table 5, Table 6, and Table 7. All of our models
are trained with minibatches of size b = 32.

We used Bayesian optimization as implemented
by Amazon SageMaker11 to tune these parameters,
giving the learning rate a logarithmic scale and the
dropout and lambda a linear one and allowing 75
iterations of parameter choice before selecting the
setting with the best performance on the develop-
ment set. Each individual instance of each model
consisted of five different restarts with five distinct
random seeds; one of these instances took approxi-
mately five minutes on a single Tesla V100 GPU,
for a total of about 6.25 GPU-hours per model and
thus 87.5 GPU-hours overall (since each multi-task
model was trained twice: once optimized for emo-
tion and once optimized for cause).

A.2 Model Sizes
Our models’ sizes are dominated by BERT-base,
which has 110 million trainable parameters (Devlin
et al., 2019). We note that our trainable dense layers
that interface with BERT have sizes 768 × 7 for
emotion classification, 768 × 3 for cause tagging,
and 1068 × 7 for our MultiE�C models, while our
emotion embedding matrixE has 300× 7 trainable
parameters. Our fine-tuning process does continue
to tune all of BERT’s parameters.

A.3 Extended Examples
We include the output of all models for our four
selected examples in subsection 7.1 in Table 8, Ta-
ble 9, Table 10, and Table 11.

11https://aws.amazon.com/sagemaker/

https://aws.amazon.com/sagemaker/
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Parameter Name Type Range or Values
pooler Categorical [cls, mean, max, attention]
learning rate Continuous [10−6, 10−4]
dropout Continuous [0, 0.9]
lambda Continuous [0.1, 0.9]
comet_relations Categorical [xReact, oReact, both]

Table 4: Our hyperparameter search ranges.

Model Target Task Parameter Name Parameter Value

BERTE Emotion
pooler cls
dropout 0.8999992513311351
lr 2.0872134970009262× 10−5

BERTC Cause
dropout 0.04011659404129298
lr 9.609926650689472× 10−5

BERTCOMET
E Emotion

pooler cls
dropout 0.6467089448672897
lr 3.548213539029209× 10−5

comet_relations both

BERTCOMET
C Cause

dropout 0.8806119007595122
lr 9.913585728926367× 10−5

comet_relations xReact

Table 5: The selected hyperparameter values for our single-task models.

Model Target Task Parameter Name Parameter Value

Multi

Emotion

pooler mean
dropout 0.1438975482079587
lr 2.170218150294524× 10−5

lambda 0.3736515054477897

Cause

pooler cls
dropout 0.8929935089177194
lr 9.929740332732521× 10−5

lambda 0.6103686494768474

MultiE�C

Emotion

pooler max
dropout 0.2511612834815036
lr 3.179072019077849× 10−5

lambda 0.4938386162506444

Cause

pooler max
dropout 0.763419047616446
lr 8.680439371509037× 10−5

lambda 0.1341940851689314

MultiC�E

Emotion

pooler max
dropout 0.8138762283528274
lr 4.2586257586160994× 10−5

lambda 0.8531247637209994

Cause

pooler mean
dropout 0.6992099059226856
lr 9.859155309987275× 10−5

lambda 0.4855821360212248

Table 6: The selected hyperparameter values for our multi-task BERT models.
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Model Target Task Parameter Name Parameter Value

MultiCOMET

Emotion

pooler max
dropout 0.22350077887111716
lr 3.137385699389837× 10−5

lambda 0.7676911585403968
comet_relations both

Cause

pooler mean
dropout 0.8891347000216091
lr 8.123006047625093× 10−5

lambda 0.1
comet_relations both

MultiCOMET
E�C

Emotion

pooler mean
dropout 0.1372637910712323
lr 3.0408118480380588× 10−5

lambda 0.8968243966922735
comet_relations both

Cause

pooler max
dropout 0.5319636087561394
lr 7.581334242472624× 10−5

lambda 0.10896064677810494
comet_relations both

MultiCOMET
C�E

Emotion

pooler cls
dropout 0.7359624181177503
lr 1.9853909769532754× 10−5

lambda 0.7947522633173147
comet_relations both

Cause

pooler max
dropout 0.01896406469706125
lr 8.360862387915605× 10−5

lambda 0.14588492191321054
comet_relations oReact

Table 7: The selected hyperparameter values for our multi-task COMET models.

Mexico reels from shooting attack in El Paso
fear

Model Output
BERT negative surprise
BERTCOMET fear
Multi negative surprise
MultiC�E negative surprise
MultiE�C negative surprise
MultiCOMET fear
MultiCOMET

C�E fear
MultiCOMET

E�C fear

Table 8: Full model outputs for our first provided example.
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Insane video shows Viking Sky cruise ship thrown into chaos at sea
fear

Model Output
BERT negative surprise
BERTCOMET negative surprise
Multi fear
MultiC�E negative surprise
MultiE�C fear
MultiCOMET fear
MultiCOMET

C�E fear
MultiCOMET

E�C negative surprise

Table 9: Full model outputs for our second provided example.

Durant could return for Game 3
positive surprise

Model Output
BERT for game
BERTCOMET could return for game
Multi could return for game
MultiC�E could return for game
MultiE�C could return for game
MultiCOMET could return for game
MultiCOMET

C�E could return for game
MultiCOMET

E�C could return for game

Table 10: Full model outputs for our third provided example.

Dan Fagan: Triple shooting near New Orleans School yet another sign of city’s crime problem
negative surprise

Model Output
BERT school yet another sign of city’s crime
BERTCOMET : triple shooting near new orleans school yet another sign of city’s crime
Multi shooting near new orleans school yet another sign of city’s crime
MultiC�E : triple shooting near new orleans school yet another sign of city’s crime
MultiE�C : triple shooting near new orleans school yet another sign of city’s crime
MultiCOMET : triple shooting near new orleans school yet another sign of city’s crime
MultiCOMET

C�E : triple shooting near new orleans school yet another sign of city’s crime
MultiCOMET

E�C : triple shooting near new orleans school yet another sign of city’s crime

Table 11: Full model outputs for our fourth provided example.


