
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 3921–3931
August 1–6, 2021. ©2021 Association for Computational Linguistics

3921

Scaling Within Document Coreference to Long Texts

Raghuveer Thirukovalluru1, Nicholas Monath1, Kumar Shridhar2,
Manzil Zaheer3, Mrinmaya Sachan2and Andrew McCallum1

1UMass Amherst, 2ETH Zurich, 3Google
rthirukovall@umass.edu, {nmonath,mccallum}@cs.umass.edu

{shridhar.kumar,mrinmaya.sachan}@inf.ethz.ch
manzilzaheer@google.com

Abstract

State of the art end-to-end coreference reso-
lution models use expensive span representa-
tions and antecedent prediction mechanisms.
These approaches are expensive both in terms
of their memory requirements as well as com-
pute time, and are particularly ill-suited for
long documents. In this paper, we propose
an approximation to end-to-end models which
scales gracefully to documents of any length.
Replacing span representations with token rep-
resentations, we reduce the time/memory com-
plexity via token windows and nearest neigh-
bor sparsification methods for more efficient
antecedent prediction. We show our ap-
proach’s resulting reduction of training and
inference time compared to state-of-the-art
methods with only a minimal loss in accuracy.

1 Introduction

Recent advances in coreference resolution (Lee
et al., 2018; Joshi et al., 2019, 2020; Wu et al.,
2020) have been largely based on the end-to-end
model proposed by Lee et al. (2017). However,
these models are costly both in terms of training
and inference time, as well as memory require-
ments, especially for long documents. The large
computational cost makes the models infeasible to
run for a typical user on large document collections
in domains such as blogs, stories, books, etc. More-
over, a reduction in energy use of these models can
be of benefit to cloud service providers’ costs and
there can also be environmental benefits (Strubell
et al., 2019; Schwartz et al., 2020).

There are two main computational bottlenecks
in using end-to-end coreference models on long
documents: (i) span and span-pair representations
for all spans in the document are simultaneously
considered, and (ii) the coreference decision for

a mention requires considering all candidate an-
tecedent spans.

In this paper, we propose an approximation to
the end-to-end coreference model (Lee et al., 2017)
that scales to long documents by addressing both
these bottlenecks. Our proposed approach operates
at the token level instead of the span level, remov-
ing the quadratic dependence on the number of
mention spans in a document and addressing bottle-
neck (i). We propose token level scoring functions
for the bilinear inference model originally proposed
by Lee et al. (2018). To address bottleneck (ii), we
use token windows, token-level k-nearest neighbor
relationships along with low-rank matrix approxi-
mations of the token similarity matrix thereby im-
proving time/memory efficiency. We also propose
an approach to drop token representations from
memory to reduce memory requirements while still
maintaining the accuracy.

We evaluate our approach on three coreference
datasets: CoNLL-2012 (Pradhan et al., 2012), Lit-
bank (Bamman et al., 2019), and MedMentions
(Mohan and Li, 2019) and observe competitive ac-
curacy to state of the art coreference models based
on end-to-end training while achieving both faster
training and inference running times. Our approach
is also more memory efficient and up to 10x faster
than the recently proposed memory-based incre-
mental coreference resolution model on Litbank
(Toshniwal et al., 2020b). Finally, we demonstrate
the scalability of our approach by running it on a
novel of two million tokens in 14 minutes while
requiring just 12GB of GPU RAM, while previous
work can only scale to documents of just around
eleven thousand tokens even with up to 48GB of
GPU RAM.

Concurrent to our work, Kirstain et al. (2021)
also proposes a bilinear token level scoring function
for coreference. The focus of our work however

3922

is on long documents and we further introduce a
token k-nn graph approximation, a low-rank matrix
factorization and an approach to drop non essen-
tial candidate antecedents to improve mem/time
scalablity.

2 Background: End-to-end
Within-Document Coreference

End-to-end within-document coreference resolu-
tion models jointly discover a set of mentions,
M in a document D and determine which of the
mentions are coreferent. We use D to refer to
the ordered set of tokens in the document D =
{x1, x2, . . . , xT }. Each mention is a token span
s = xi, . . . , xj

1. We use xi to refer to the contex-
tualized embedding of the token i (see Section 4.1
for more details on the encoder). The model com-
prises of two parts which are jointly trained: (a) a
mention-proposer, and (b) an antecedent-predictor.
The mention-proposer model evaluates all spans
S in the dataset and proposes a small set of po-
tential mentionsM ⊂ S. The antecedent predic-
tion model evaluates the mentions suggested by
the mention proposer and produces coreference
clusters (chains) C ⊂ P(M), where P(·) is the
powerset.

Recent work (Lee et al., 2018; Joshi et al., 2020;
Xu and Choi, 2020, inter alia) has built upon the
first neural, end-to-end coreference model (Lee
et al., 2017). Each of these models introduce two
scoring functions sm(s) and sa(m1,m2). sm(s)
represents the scores that a span s is a mention, and
sa(m1,m2) is the score for mention m1 being an
antecedent of mentionm2. These scoring functions
are used to define the joint mention proposal and
antecedent prediction model for coreference.

Mention proposer: The previous works use a neu-
ral network for sm : S → R. The architecture
takes in a mention span and outputs a score. For
each mention span s, the model computes a vector
representation gs ∈ Rd. The scoring functions take
these vector representations as input:

sm(s) = wm · FFNNm(gs) (1)

and gs is computed as:

gs = [xSTART(s),xEND(s), x̂s, φ(s)] (2)
1In our work as well as most work on within document

coreference (Lee et al., 2017, 2018; Joshi et al., 2019) we only
consider contiguous mention spans rather than allowing spans
to be arbitrary sets of tokens (non-contiguous).

where xSTART(s),xEND(s) are the boundary represen-
tations of span s, x̂s is a self-attention representa-
tion of span s, and φ(s) encodes the width (number
of tokens) of span s. For efficiency, the model se-
lects top 0.4T scoring mention spans where T is
the number of tokens of the document. We refer to
this set of selected mention spans asM. We use
an ordering of the mentions m ∈M based on their
start/end offsets.

Antecedent Prediction: Previous work has ex-
plored several models for antecedent prediction.
The most computationally efficient being a bilinear
scoring model (Lee et al., 2018):

sbi
a (m1,m2) = gsm1

W Tgsm2
(3)

Higher-order inference models, which use deep
models to capture coreference relationships be-
tween mentions, have also been considered (Lee
et al., 2018). For example,

shoi
a (m1,m2) = wa · FFNNa([gm1 ; gm2 ; (4)

gm1 � gm2 , φm1,m2])

We refer the reader to Xu and Choi (2020) for a
detailed analysis of higher order inference models.

The prediction of the antecedent of each men-
tion, which we refer to as inference, is done by
backwards chaining. Clusters of mentions are de-
termined by finding for each mention, the highest
scoring antecedent among the mentions appearing
earlier in the document and adding the mention to
the antecedent’s cluster. This can be described as
finding the connected components of a graph G.
Coarse-to-fine inference (Lee et al., 2018) and the
standard bi-linear model can be differentiated by
different ways of constructing the adjacency matrix
of the graph G with nodes being the mentionsM.
We refer to this adjacency matrix as A, and use
Ai,j = 1 to indicate the existence of an edge be-
tween mention mi and mj . The adjacency matrix
of the bilinear model can be written as:

Abi
i,j = I[j = argmax

h≤i
sbi(mi,mh)] (5)

sbi(mi,mj) = sbi
a (mi,mj) + sm(mi) (6)

+ sm(mj)

The adjacency matrix of the higher-order model
can be written as:

Ahoi
i,j = I[j = argmax

h≤i
shoi(mi,mh)] (7)

× I[j ∈ argtopk
h≤i

sbi(mi,mh)]

3923

shoi(mi,mj) = shoi
a (mi,mj) + sbi

a (mi,mj) (8)

+ sm(mi) + sm(mj)

where k for argtopk is a hyperparameter.

End-to-end training The mention proposal and
antecedent prediction models are trained by relax-
ing the adjacency matrix A, replacing the argmax
operation with a softmax (i.e., setting a weighted
edge between i and j with weight s(mi,mj)). The
training objective is to maximize the log-likelihood
of a ground truth adjacency matrix A?, where
A?

i,j = 1 if mi and mj are coreferent and i < j
under the relaxed adjacency matrix. The argtopk
operation is not relaxed. A nil antecedent is intro-
duced, which provides similarity (sa) of 0 to any
mention span is incorporated in the training objec-
tive. The number of candidate antecedents is also
restricted by a hyperparameter (Lee et al., 2018).

3 Efficient Approximations for
End-to-End Coreference

We describe our proposed approach for efficiently
approximating the span-based end-to-end corefer-
ence model with a token-level model. Our model
jointly predicts which tokens are in the same men-
tion spans (i.e., mention proposal) and what tokens
are coreferent with one another (i.e., antecedent
prediction). By operating at the token level, we
remove the dependence on considering quadrati-
cally many phrases. We show the structure of our
approximation allows for a sparsification technique
that reduces the number of antecedent predictions
that need to be considered using k-nearest neighbor
relationships between tokens and by splitting doc-
uments into windows with certain computations
made independently for each window. We describe
how low-rank matrix approximations can be used
to improve inference efficiency.

3.1 Mention Proposer

Observe that computing the setM requires us to
evaluate sm(·) for all candidate spans S in the doc-
ument (which grows roughly quadratically with the
number of tokens). Recall that sm(·) is a function
of the start and end tokens of each span, producing
a score that is high if the pair of tokens likely form
a span. This approach can be thought of as hav-
ing each token t in the document predict whether
or not another token u is the last token in a span
beginning with t.

We first model for each token t whether it is a
start (st) or end (en) token of some phrase using a
linear model:

Mst
t = wT

stxt Men
t = wT

enxt (9)

These terms weighs each token by how likely it is
to be part of some mention span.

Following Kirstain et al. (2021), we find that
there can an empirical benefit(described in Section
6) to additionally modelling the relationship be-
tween u and t, i.e., whether it is reasonable for the
span beginning with t to end in u. To do this we use
a asymmetric (bilinear) scoring function. Further,
we restrict the spans to be contiguous and follow
the rule-based span criteria of previous work (Lee
et al., 2017).

Mt,u =

{
xT
t WMxu t to u is a valid span
−∞ otherwise

(10)

For each token, we predict candidate end-tokens
for a mention span starting at the given token. We
assign a score per span by sum of Eq. 9 & 10 and
follow previous work to select the top 0.4T scoring
spans (mentions). We can replace the mention scor-
ing mechanism used in previous works sm(·) with
an approximation based on the token level score:

sm
∧

(mi) =Mst
START(mi)

+Men
END(mi)

(11)

+MSTART(mi),END(mi)

Rather than having to instantiate a d-dimensional
span representation for all |S| spans, our approach
simply uses the output token representations from
the encoder. This requires O(T) space compared
to O(|S|) space. Note that computing sm

∧
(mi) for

all mentions requires at most two matrix multipli-
cations, each with just T rows. Observe that this
leads to a drastic reduction in time and space com-
plexity. As noted by previous work (Toshniwal
et al., 2020b), the mention proposal step requires
the most memory usage because of the quadratic
dependency. We validate the reduction in time and
memory requirements of our token level mention
detection in Section 4.5 & 4.6.

Pretraining For Mention Detection Previous
work (Wu et al., 2020; Toshniwal et al., 2020b)
has shown that pre-training models for mention
detection is beneficial, especially in cases where

3924

predicting singleton mentions is required (e.g., Lit-
Bank (Bamman et al., 2019)). Given a set of ground
truth mentionsM? and the set of mentions from
a given documentM, we use a mention detection
loss which minimizes:

−
∑

mi∈M
log σ(sm

∧
(mi))I[mi ∈M?]

+ log σ(1− sm
∧

(mi))I[mi 6∈ M?] (12)

We use it as a multi-task objective in training the
models and as well as a pre-training objective. We
detect singleton mentions by using a threshold on
the mention score value sm

∧
(mi) which is tuned on

the development set according to the downstream
performance.

3.2 Antecedent Scoring

Next, we would like to model coreference relation-
ships between tokens to approximate the span-level
scoring function (sa, Eq. 3, 5). We predict for each
token, the other tokens with which it is coreferent.
These predictions are then aggregated to make span
level predictions.

First, we consider approximating bilinear scor-
ing function at the token level (sbi

a). We use a
bilinear model applied to the encoded token repre-
sentations. We parameterize four asymmetric simi-
larity functions. Note that the backwards-chaining
property of inference motivates our use of the asym-
metric function. We model the similarity between
tokens that are the start or end tokens of phrases
separately:

Sss
i,j = xSTART(i)W

T
st xSTART(j) (13)

Ses
i,j = xEND(i)W

T
st xSTART(j) (14)

Sse
i,j = xSTART(i)W

T
enxEND(j) (15)

See
i,j = xEND(i)W

T
enxEND(j) (16)

We use these similarities to approximate the bilin-
ear antecedent scoring function (Eq. 3) as:

sbi
a

∧

(mi,mj) = Sss
i,j + Ses

i,j + Sse
i,j + See

i,j (17)

Observe how sbi
a

∧

(·, ·) reduces the memory re-
quirements compared to sbi

a (·, ·). We do not need
to instantiate the span representations, only use
the encoded token representations. Computing

sbi
∧

(mi,mj) requires at most O(T 2) instead of
O(|S|2) work. We can compute each of the S·i,j

(Eq. 16) in space O(T 2) and as matrix multiplica-
tion between matrices of O(T) rows.

For training and inference in our model, we de-
fine the adjacency matrix A with Â:

Abi
∧

i,j = I[j = argmax
h≤i

sbi
∧

(mi,mh)] (18)

sbi
∧

(mi,mj) =sbi
a

∧

(mi,mj) + sm
∧

(mi) (19)

+ sm
∧

(mj)

Inference can then be done as exactly as before,
using connected-components based inference.

3.3 Token Windows & Sparsifying
Antecedent Scoring with k-NN Graphs

We can use the backwards-chaining structure of
the inference procedure and divide a document into
smaller token windows (non-overlapping), reduc-
ing the number of tokens that need to be encoded
in any one component. We can propose mentions
independently in each window. We then perform
antecedent scoring using the K-NN sparsification
described below for each window. By batching the
long document into these windows, we never need
to store more than the final encoded token repre-
sentations for the tokens appearing in some entity
cluster.

The approximation method presented thus far
reduces the complexity of end-to-end coreference
approaches from depending on the number of spans
to the number of tokens. However, for long doc-
uments scaling quadratically in the number of to-
kens is still prohibitively expensive, both in terms
of time complexity and also in terms of memory.
Observe that computing and storing each of the

sbi
∧

(·, ·) may become prohibitively expensive for all
pairs of tokens in the document. We would like
to reduce the time and space complexity of this
approach.

We propose to approximate the top scoring pairs

of mention spans according to sbi
∧

(·, ·) (i.e., further
approximating sbi(·, ·)). We do this by only allow-
ing two mentions mi and mj to be coreferent if the
start/end tokens of mj are in the k-nearest neigh-
bors of the start/end tokens of mi. More precisely,
we will maintain the k nearest neighbors of each
token for each of the four similarity functions Sss,
Sse, Ses, See (Eq. 16). To align with inference

3925

procedure, we select these k nearest neighbors for
each token only from the preceding tokens in the
document. we define Sss

knni,j to be non-zero only if
j is in the top-k values of Sss

i,·

Sss
knni,j =

{
Sss
i,j if j ∈ argtopkh S

ss
i,h

0 otherwise
(20)

We define Sse
knni,j , S

es
knni,j , S

ee
knni,j analogously.We

then build an further approximation of sbi
∧

using
these S·knn values:

sbi
a

∧

knn(mi,mj) = Sss
knni,j + Ses

knni,j (21)

+ Sse
knni,j + See

knni,j

Observe that storing Sss
knni,j can use sparse matrices

and therefore provide better scalability to long doc-
uments for which storing O(4Tk) is advantageous
over O(T 2).

End-to-end Training We use the same end-to-end
training procedure that was used by previous work
(Section 2) using our approximated mention pro-
posal and antecedent scoring procedures. We note
that the use of token windows and KNN sparsifica-
tion of the antecedent scoring term do not change
training at all, this is only applied at inference time.

3.4 Low-dimensional Approximations

Much of the computation time of the k-NN graph
approximation model comes from the computation
of the top-k nearest tokens. The computation bottle-
neck mostly depends on the high dimensionality of
the encoded token representations, which are from
transformer-based language models (Joshi et al.,
2020).

To produce lower dimensional embeddings of
each token, which preserve similarities in the orig-
inal space, we use low-rank matrix approxima-
tion methods, specifically the Nyström method
(Williams and Seeger, 2001; Musco and Musco,
2017, inter alia). We hope to approximate the ma-
trices Sss

i,j , S
se
i,j , S

es
i,j , S

ee
i,j . While these are asym-

metric, we can consider an equivalent symmetrized
version where each token appears two times (on
left/right of bilinear term) to apply Nyström.
The lower dimensional embedding produced by
Nyström is done

The Nyström method provides a low-rank ap-
proximation of a symmetric pairwise similarity

matrix S ∈ RRN×N , by selecting ` landmark
points uniformly at random among the N rows
of S. We use Li to be column vector one-hot
representation of the ith landmark. We assume
L ∈ RN×` to be a matrix of such one-hot repre-
sentations. The approximation of S is given by:
Ŝ = LS(LTSL)−1LTS. The term LS is a ` di-
mensional embedding of the rows, which is defined
by the similarity of each row with each of the `
landmarks (` is the reduced dimension). Similarly,
(LTSL)−1LTS can be thought of as providing a
` dimensional embedding of each column of S,
which is based on the similarity and the (inverse)
of the landmark similarities.

3.5 Limiting Num. of Candidate Antecedents

In the aforementioned approach, the number of
candidate antecedents scales with the document
length. We would like to determine a mechanism
for using a fixed number of candidate antecedents
if desired. Previous work other work uses entity-
level representations to achieve this (Toshniwal
et al., 2020b; Xia et al., 2020).

In our work, we operate at the mention level, re-
moving mentions as candidate antecedents. We de-
fine a hyperparameter, ρ, which is maximum num-
ber of antecedents that would be kept after process-
ing each window of the document. Our approach
removes mentions as candidate antecedents which
(1) belong to large coreference clusters (2) are not
frequently selected as antecedents. We achieve
this by dropping mentions in the order of |Cm| -∑

iAi,m, where |Cm| is the size of the cluster of
the mention m and

∑
iAi,m is the degree of the

mention in the antecedent graph.

4 Experiments

In this section, we compare our proposed ap-
proach for scalable coreference on long documents
to various state-of-the-art methods in terms of ac-
curacy as well as efficiency of training and infer-
ence. We perform a detailed scalability analysis,
which characterizes the time/memory used by each
method as a function of the length of documents.
We also report timing results on novels of ∼ 2
million tokens.

4.1 Datasets

We evaluate each method on the following datasets:
CoNLL-2012 Shared Task: The CoNLL-2012

3926

shared task (Pradhan et al., 2012) uses the v5.0
of the OntoNotes corpus for the task of corefer-
ence resolution in English, Chinese, and Arabic
languages. We use only the English version for our
experiments. The training set contains 2802 train-
ing, 343 development, and 348 test documents. The
training documents contain on average of 454 to-
kens and a maximum of 4009 tokens. Litbank: We
also use the Litbank dataset (Bamman et al., 2019)
which consists of 210,532 tokens evenly drawn
from 100 different English language literary texts.
The average document length in Litbank is much
longer (around 2,000 tokens). Following (Bamman
et al., 2019; Toshniwal et al., 2020b), we use a 10-
fold cross-validation setup with 80% of the data as
training data and rest 10% each as validation and
test data. The final evaluation is reported as the av-
erage of all 10 test runs. Note that the family of end-
to-end approaches that we are approximating with
our method do not predict singletons as is typically
done for Litbank. Mention pretraining is performed
as described in Section 3.1 MedMentions We also
repurpose MedMentions (Mohan and Li, 2019) an
existing entity linking dataset in the biomedical do-
main for coreference resolution. We treat the entity
labels as the ground truth cluster assignments of
each mention for coreference training/analysis. We
use the ST21PV subset that is recommended by
(Mohan and Li, 2019). Artamène ou le Grand
Cyrus (Artamène, or Cyrus the Great). To fur-
ther asses the scalability of our approach, we run
our method on an English translation of the 17th
century French novel that is one of the longest
books available in English the public domain (Scud-
ery, 1601). The work contains 1.99 million tokens
and over two million sub-tokens. We use this data
to illustrate the scalability of our approach to really
long documents.

4.2 Methods

We compare our end-to-end coreference approx-
imation with and without the token windows, KNN
sparsification approach (i.e. Ours and Ours (Sp.),
Section 3.3). We denote the number of neighbors
used in the sparsification approach as k and the
size of the window used as w. We compare these to
the methods that they are approximating: the bilin-
ear scoring function-based method (E2E (bi)) (Lee
et al., 2017) as described in Eq. 3 and the coarse-to-
fine higher-order inference based approach (E2E
(hoi)) (Lee et al., 2018). All models use spanbert-

large (Joshi et al., 2020) to encode tokens. The
encoder parameters are trained along with the coref-
erence specific model parameters (see Section 4.4
for details). E2E (bi), E2E (hoi) use additional fea-
tures such as speaker and genre, we do not use this
metadata in our proposed approximation approach.

4.3 Coreference Performance

In Table 1, we report the coreference performance
(along with the running time and memory usage)
for each method on the three datasets. We observe
that our approximate approach is achieves compara-
ble performance to the E2E approaches on CoNLL-
2012 and MedMentions, performing slightly worse
on Litbank. We hypothesize that the token level
representations can be effective at these tasks due
to the expressiveness of the contextualized embed-
dings. We observe that the performance of our
model is relatively unchanged with and without the
sparsification approach applied.

Recently, Toshniwal et al. (2020b); Xia et al.
(2020) have proposed memory-based models op-
timising memory usage. Toshniwal et al. (2020b)
trains for improve mention detection by another
pretraining process. These papers achieve state-of-
the-art results on Litbank and are focused on reduc-
ing the running time and memory usage of coref-
erence models by storing entity representations in-
stead of mention representations in a bounded mem-
ory architecture. We compare inference running
time and coreference performance of our method
with them in Table 1. We find that our models
run 10x faster and are slightly more memory effi-
cient than UMem(Toshniwal et al., 2020b) while
matching their performance on litbank.

4.4 Experimental Details

We use the hyperparameter settings from (Xu and
Choi, 2020) in all applicable cases. We use 512 as
the segment length. On CoNLL and Medmentions
we train all models for 24 epochs with maximum
training sentences set to 3. On Litbank, we train for
120 epochs and pick parameters from (Toshniwal
et al., 2020b). We use 0.4 as the ratio to pick the
top spans(mentions) among all candidate spans.

4.5 Inference Time and Memory Usage

In Figure 1, we compare the time and memory
used by the end-to-end coreference models and our

3927

Inference Overall MUC CEAF B3

Mem. Time F1 R P F1 R P F1 R P F1
C

oN
L

L E2E (hoi) 7.77 30 79.6 84.8 86.1 85.4 77.3 79.3 78.3 74.7 76 75.4
E2E (bi) 4.31 28.2 78.4 85.03 84.1 84.56 76.7 76.56 76.63 75.98 72.44 74.17
Ours 1.78 24.79 78.03 84.22 84.28 84.25 74.43 72.63 73.52 75.93 76.68 76.3
Ours (Sp.) 1.5 26.81 77.59 83.34 84.43 83.88 74.39 72.13 73.24 74.36 76.99 75.65

L
itb

an
k

E2E (hoi) 2.78 8.12 78.44 91.92 87.24 89.50 66.47 68.90 67.59 80.33 76.28 78.21
E2E (bi) 2.68 5.2 77.77 91.72 86.73 89.15 64.82 68.72 66.67 78.74 76.33 77.48
UMem 3.00 23.46 76.5 85.7 90.8 88.2 66.0 65.1 65.5 72.1 80.0 75.9
Ours 2.12 2.1 75.93 89.53 86.28 87.86 65.09 65.38 65.18 73.65 76.00 74.75
Ours (Sp.) 2.39 1.57 74.71 87.90 86.14 86.99 65.19 63.67 64.36 70.82 74.95 72.77

M
ed

M
en

t. E2E (hoi) 3.9 57.08 60.86 63.26 65.75 64.48 57.6 61.29 59.38 60.1 57.37 58.71
E2E (bi) 2.64 54.48 60.67 64.69 64.5 64.6 59.21 59.53 59.37 61.05 55.32 58.04
Ours 1.69 43.9 61.76 67.92 63.02 65.38 59.78 59.55 59.67 63.60 57.17 60.21
Ours (Sp.) 1.57 45.3 61.49 66.87 63.48 65.13 59.65 59.34 59.49 62.12 57.69 59.82

Table 1: Accuracy & Efficiency on the three benchmarks. Memory in GB, time in seconds.

0.0 0.5 1.0 1.5 2.0
Document Length (Subtokens)1e4

0

1

2

3

4

5

Ti
m

e
(s

)

Ours
E2E (hoi)
E2E (bi)
Ours (k=50, w=512)

0.0 0.5 1.0 1.5 2.0
Document Length (Tokens) 1e4

0

10

20

30

40

M
em

or
y

(G
B)

Figure 1: Time and GPU Memory Comparison of
different models on the book “Little Women”.

proposed family of approximations. We select a
book at random from the Litbank corpus (Little
Women) and report the time and memory used by
each method to perform coreference as a function
of the number tokens analyzed. We plot a curve for
each, reporting the statistics until the method runs
out of GPU memory (48GB). We cut off the x-axis
of the graph where our proposed approach without
the backwards chaining runs out of memory. Our
token level models only scales upto 24K tokens.
We note that Ours (Sp.) is able to run on the entire
book requiring only marginally higher memory for
higher document lengths. This is in contrast with
previous E2E methods which run out of memory
for documents longer than 1e4 tokens.

4.6 Training Time and Memory Usage

We report in Table 2 the training time and memory
requirements for each of the methods. For each
dataset, we train all the methods in focus for the
same number of epochs/updates. We train for 24
epochs on CoNLL, 120 epochs on Litbank and 24
epochs on MedMentions. We observe that our ap-
proach greatly reduces GPU memory requirements
and are also slightly faster. This gap is wider for

Training
Time Mem.

C
oN

L
L Ours 6.8 13.69

E2E (hoi) 11.75 19.39
E2E (bi) 7.5 15.7

L
itb

an
k Ours 2.9 19.43

E2E (bi) 3.2 22.7
E2E (hoi) 5 27.0

M
ed

M
. Ours 5.5 13.8

E2E (hoi) 8.75 18.5
E2E (bi) 6.25 15.6

Table 2: Training time(hours) and memory(GB) us-
age. Our approach requires less time and memory than
the competing end-to-end approaches.

datasets containing longer documents as shown by
the numbers on LitBank. Note that the sparsifi-
cation approximation is simply an inference time
approximation and uses the same trained model as
our approach with the K-NN approximation.

4.7 Scaling to Long Documents

We run Ours (Sp.) on the full text of Artamène or
Cyrus the Great, which has 1.99M tokens (> 2M
subtokens). To our knowledge, this is the largest
single document a neural within document corefer-
ence system has been applied to. In Figure 2, we
show that our approach runs in about 14 minutes.
Further, we demonstrate how the hyperprameters
of the sparsification can be adjusted depending on
the system requirements. We show that the window
size parameter can be set to be the minimal amount
(w=512) to require just 13 GB of GPU RAM. Ta-
ble 3 suggests using small window sizes are also
advantageous in terms of accuracy.

3928

0.0 0.5 1.0 1.5 2.0
Doc. Length (Subtokens) 1e6

0.2

0.4

0.6

0.8

1.0
Ti

m
e

pe
r W

in
do

w
(s

)

k=50, w=512
k=50, w=1024
k=50, w=1536
k=50, w=2048

0.0 0.5 1.0 1.5 2.0
Doc. Length (Subtokens) 1e6

0

200

400

600

800

To
ta

l T
im

e
(s

)

0.0 0.5 1.0 1.5 2.0
Doc. Length (Subtokens) 1e6

5

10

15

20

25

30

M
em

or
y

(G
B)

Figure 2: Scalability to 2 million tokens Time and
memory usage of our K-NN based methods on Ar-
taméne a book with millions of tokens.

0 200 400 600 800 1000
Reduced Embedding Dimension

50

55

60

65

70

75

Co
NL

L
F1

Fixed Number of Antecedents

5
25
50
75
100

0.0 0.5 1.0 1.5 2.0
Number of Tokens 1e6

0

5000

10000

15000

20000

25000

30000

35000

To
ta

l T
im

e
(s

)

KNN, Dim. 100
KNN, Dim. 100, Ant. 75
KNN

0.0 0.5 1.0 1.5 2.0
Number of Tokens 1e6

2

4

6

8

10

M
em

or
y

(G
B)

KNN, Dim. 100
KNN, Dim. 100, Ant. 75
KNN

Figure 3: Reduced Dimensionality & Candidate An-
tecedents. We report CoNLL F1 on CoNLL and Time
and Memory Usage on Artamène or Cyrus the Great.

5 Model Analysis

K-NN Sparsification Performance Analysis
In Table 3, we show the CoNLL F1 as a function
of the number of neighbors k and window size w
in Ours (Sp.). We observe that we can achieve high
quality results even with a small number of neigh-
bors, providing an empirical justification for our
approximation. In our case, using just 10 nearest
neighbors (k = 10) puts Ours (Sp.) within 99%
of the performance of the version of our approach
without sparsification. Litbank however required
to use a higher value of K due to the presence of
long distance coreference links in literary texts.

Dimensionality Reduction & Limiting Number
of Antecedents

Window Size 512 1024 1536

k=10 77.16 77.33 77.25
k=50 77.59 77.55 77.56
k=80 77.68 77.62 77.61
k=∞ 78.03 78.03 78.03

Table 3: Sensitivity to Approximation in K-NN spar-
sified approach on CoNLL (F1).

Type E2E (hoi) E2E (bi) Ours Ours (Sp.)
Pronoun 33.74 34.57 33.62 33.50
Noun 40.59 39.98 40.36 40.00

Table 4: Performance on mention types (F1).

Figure 3, shows the performance of the reduced di-
mensionality method 3.4 and limiting antecedents
3.5. A reduced dimension of 200 can match the
performance of encoder embeddings dimension
while significantly improving running time. Fur-
ther, the model performs well while just keeping
75 mentions from each window of size 512(com-
prises squared number of possible mention spans)
in the memory. We note that a reduction in memory
can be achieved by dropping antecedents and using
sparse matrices. However, this is not as efficient as
using dense matrices on the gpu.

6 Performance Analysis

Comparisons with Baselines
To give a sense of how the proposed approxima-
tions work, we performed a simple analysis among
E2E (hoi), Ours and Ours (Sp.) on the last fold of
Litbank dataset. In the first experiment, we keep
only the pronomial mentions in the predicted clus-
ters and evaluate coref scores. In the second exper-
iment we keep all mentions containing atleast one
noun. Table 4 shows the final numbers. The gap in
performance between E2E (hoi) and Ours seems to
be equal in both categories. Ours (Sp.) and Ours
have similar performance gap in both categories as
well. Thus our models seem to be approximating
fairly across different categories.

Table 5 shows the analysis of distance between
antecedents predicted by each model on the last
litbank fold. Our models seem to have a higher
average distance between antecedents. This shows
that the models proposed are capable to identifying
long distance links. Note that distance between
antecedent does not determine accuracy. A mention
linked to any mention in its golden coreference
cluster will have the same effect.

3929

Type E2E (hoi) E2E (bi) Ours Ours (Sp.)
Mean 149 189.7 301.19 447.8
Max 2117 2104 2303 2303
Std. 296.8 342.9 403.01 588

Table 5: Analysis of distance between mention and
antecedent for all models in subtoken units.

P R F

C
N

L Ours 78.19 77.86 78.03
Ours - SS 78.14 77.54 77.84
Ours - BM 78.84 77.26 78.04

L
itb

an
k Ours 76.09 75.89 75.93

Ours - SS 75.21 76.22 75.58
Ours - BM 70.81 74.40 72.18
Ours - SS - MT 68.35 68.22 68.24

M
M Ours 63.77 59.92 61.76

Ours - SS 63.4 59.2 61.13
Ours - BM 60.84 62.35 61.58

Table 6: Effect of the removal of different compo-
nents in Ours. CNL - CoNLL, MM - Medmentions

Effects of model components
We further analyse the effect of other heuristics that
went into the model. We use a Subtoken Strategy
(SS) where we restrict the candidate mentions to
align with subtoken starts, ends. As shown in Table
6, (SS) seems to have improved the results on all the
datasets. Also, for litbank, mention pretraining &
mention training (MT) seem to have helped signifi-
cantly. Mention training forces the score of golden
mentions to be higher thereby making it easy to
use a threshold for singletons at inference. Bilinear
mention (BM) term described in Eq.10 seemed to
have helped in litbank and medmentions.

7 Related Work
With the growing computational cost of deep learn-
ing, NLP researchers have started to focus on more
efficient models (Strubell et al., 2019; Schwartz
et al., 2020). As coreference is a document-level
phenomena, it is particularly challenging to scale,
especially for long documents. While most of the
work in coreference has focused on genres of text
with short documents such as news articles and
blogs (Pradhan et al., 2012), there has been re-
newed focus in long text documents such as novels
(Bamman et al., 2019; Toshniwal et al., 2020b).
Coreference in long text is particularly interesting
due to the introduction of long-range anaphora.

Span based end-to-end coreference systems
(Lee et al., 2017, 2018; Joshi et al., 2020; Wu
et al., 2020) have been the state-of-the-art in
short-document coreference resolution (Lu and Ng,

2020). These systems avoid training a separate
mention detector. However, end-to-end corefer-
ence models are challenging to scale to long text
documents due to their large memory footprint as
well as slow training and inference. Thus, research
on long-document coreference so far has focused
on incremental (memory-based) coreference reso-
lution (Xia et al., 2020; Toshniwal et al., 2020a,b).
Memory-based approaches model coreference as
online clustering by picking the most similar entity
to every new mention where the cluster representa-
tions (i.e., entity representations) are also updated.
However, the underlying recurrent nature of these
models and the frequent read-write memory oper-
ations make these models slow. In this work, we
focus on the end-to-end coreference system and
show gains both in speed as well as memory.

We note that this paper’s novel token-level model
ideas presented in this paper were concurrently
introduced by Kirstain et al. (2021). We also in-
troduce token windows, k-nearest neighbor based
sparsification techniques. Furthermore, we pro-
vide empirical results on documents with about
two million tokens, which we believe to be one of
the longest documents to which neural coreference
models have been applied. We also note that Wu
et al. (2020) hold state-of-the-art results on CoNLL
(83F1). Wu et al. (2020) uses a question-answering
cross-encoder style model to perform coreference.
However, the method is very computationally ex-
pensive and so it is difficult to scale to the long
documents which is the focus of this paper.

8 Conclusion

In this paper, we introduce a new scalable approach
for performing coreference that scales to long doc-
uments. Our approach replaces costly span-based
operations with token-level decisions for propos-
ing mentions and determining antecedents. Our
approach uses token similarity in the form of k-
nearest neighbor graphs along with processing doc-
uments in span windows to reduce the time and
memory complexity. We evaluate our proposed ap-
proach empirically and demonstrate that it achieves
competitive coreference F1 scores while improving
time and memory usage requirements. We demon-
strate the scalability of our method by applying it
to novels with about two million tokens. We further
propose and demonstrate the use of low rank ap-
proximations and dropping of non essential tokens
to improve memory/time efficiency.

3930

Broader Impact and Discussion of Ethics

While our model is not tuned for any specific real-
world application, our method could be used in
sensitive contexts such as legal or health-care set-
tings, and it is essential that any work using our
method undertake extensive quality-assurance and
robustness testing before using it in their setting.
The datasets used in our work do not contain any
sensitive information to the best of our knowledge.

Replicability: As part of our contributions, we
will release the code used for training and eval-
uation in this work, as well as all the trained
models at https://github.com/raghavlite/Scalable-
Coreference.

References

David Bamman, Olivia Lewke, and Anya Mansoor.
2019. An annotated dataset of coreference in english
literature. arXiv preprint arXiv:1912.01140.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel S Weld. 2019. Bert for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5807–5812.

Yuval Kirstain, Ori Ram, and Omer Levy. 2021.
Coreference resolution without span representations.
arXiv preprint arXiv:2101.00434.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687–692, New Orleans, Louisiana. Association for
Computational Linguistics.

Jing Lu and Vincent Ng. 2020. Conundrums in entity
coreference resolution: Making sense of the state
of the art. In Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 6620–6631, Online. Associa-
tion for Computational Linguistics.

Sunil Mohan and Donghui Li. 2019. Medmentions: a
large biomedical corpus annotated with umls con-
cepts. arXiv preprint arXiv:1902.09476.

Cameron Musco and Christopher Musco. 2017. Re-
cursive sampling for the Nyström method. In 2017,
pages 3833–3845.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-
2012 shared task: Modeling multilingual unre-
stricted coreference in ontonotes. In Joint Confer-
ence on EMNLP and CoNLL-Shared Task, pages 1–
40.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and
Oren Etzioni. 2020. Green ai. Commun. ACM,
63(12):54–63.

Madeleine de Scudery. 1601. Artamenes.
https://quod.lib.umich.edu/e/eebo/
A70988.0001.001.

Emma Strubell, Ananya Ganesh, and Andrew Mc-
Callum. 2019. Energy and policy considera-
tions for deep learning in nlp. arXiv preprint
arXiv:1906.02243.

Shubham Toshniwal, Allyson Ettinger, Kevin Gimpel,
and Karen Livescu. 2020a. Petra: A sparsely super-
vised memory model for people tracking. In Pro-
ceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2020, On-
line, July 5-10, 2020, pages 5415–5428. Association
for Computational Linguistics.

Shubham Toshniwal, Sam Wiseman, Allyson Ettinger,
Karen Livescu, and Kevin Gimpel. 2020b. Learning
to ignore: Long document coreference with bounded
memory neural networks. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8519–8526.

Christopher Williams and Matthias Seeger. 2001. Us-
ing the Nyström method to speed up kernel ma-
chines. In 2001.

Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Ji-
wei Li. 2020. Corefqa: Coreference resolution as
query-based span prediction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6953–6963.

Patrick Xia, João Sedoc, and Benjamin Van Durme.
2020. Incremental neural coreference resolution in
constant memory. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8617–8624, Online. As-
sociation for Computational Linguistics.

https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/2020.emnlp-main.536
https://doi.org/10.18653/v1/2020.emnlp-main.536
https://doi.org/10.18653/v1/2020.emnlp-main.536
https://doi.org/10.1145/3381831
https://quod.lib.umich.edu/e/eebo/A70988.0001.001
https://quod.lib.umich.edu/e/eebo/A70988.0001.001
https://doi.org/10.18653/v1/2020.emnlp-main.695
https://doi.org/10.18653/v1/2020.emnlp-main.695

3931

Liyan Xu and Jinho D. Choi. 2020. Revealing the myth
of higher-order inference in coreference resolution.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8527–8533, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/2020.emnlp-main.686
https://doi.org/10.18653/v1/2020.emnlp-main.686

