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Abstract

Relation classification aims to predict a relation
between two entities in a sentence. The existing
methods regard all relations as the candidate
relations for the two entities. These methods
neglect the restrictions on candidate relations
by entity types, which leads to some inappro-
priate relations being candidate relations. In
this paper, we propose a novel paradigm, RE-
lation Classification with ENtity Type restric-
tion (RECENT), which exploits entity types to
restrict candidate relations. Specially, the mu-
tual restrictions of relations and entity types are
formalized and introduced into relation classi-
fication. Besides, the proposed paradigm, RE-
CENT, is model-agnostic. Based on two repre-
sentative models GCN and SpanBERT respec-
tively, RECENTGCN and RECENTSpanBERT

are trained in RECENT1. Experimental results
on a standard dataset indicate that RECENT
improves the performance of GCN and Span-
BERT by 6.9 and 4.4 F1 points, respectively.
Especially, RECENTSpanBERT achieves a new
state-of-the-art on TACRED.

1 Introduction

Relation classification, a supervised version of rela-
tion extraction, aims to predict a relation between
two entities in a sentence. Relation classification
is an important step to construct knowledge bases
from a large number of unstructured texts (Trisedya
et al., 2019), which benefits many natural language
processing applications, such as natural language
generation (Kang and Hashimoto, 2020) and ques-
tion answering (Zhao et al., 2020).

Recently, the majority of methods make use
of various neural network architectures to learn
a fixed-size representation for a sentence and its
entities with various language features, such as

∗Corresponding author.
1Our code is available at https://github.com/

/Saintfe/RECENT.
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Figure 1: A relation restricts entities with appropriate
types. In the figure, r is who-is-born-when. Different
colored ellipses represent entities with different types.
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Figure 2: Entity type restriction for relation classifica-
tion. According to entity type restriction, the number of
candidate relations reduces from 5 (left) to 2 (right).

part of speech (POS), entity types, and dependency
trees. Dependency trees that are parsed from sen-
tences are exploited by GCN (Kipf and Welling,
2017) to model sentences (Zhang et al., 2018; Guo
et al., 2019). As a sequence of words, a sentence is
modeled by LSTM (Hochreiter and Schmidhuber,
1997) and its entity positions are involved with the
attention mechanism (Zhang et al., 2017). More
recently, pretrained language models (Devlin et al.,
2019; Baldini Soares et al., 2019; Joshi et al., 2020)
achieve good performance in relation classification
since they are pretrained on massive corpora.

To recap, these methods utilize an encoder ar-
chitecture (Badrinarayanan et al., 2017) to obtain
a representation for a sentence. In other words,
they only focus on the modeling of sentences and

https://github.com//Saintfe/RECENT
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Figure 3: Relation classification with entity type restriction. The left part does not consider the restriction of entity
types on relations and only feeds entity types as features into a general classifier. The right part explicitly utilizes
entity types to restrict candidate relations and learns a specific classifier for each pair of entity types.

treat relations as labels2 to be classified. However,
in this process, these methods inevitably lose the
semantics of relations. Take the mutual restrictions
between a relation and entity types as an example.
In Figure 1, the relation who-is-born-when restricts
its first entity to be a person and the second one
to be a time. Conversely, entity types can also re-
strict candidate relations in relation classification.
As illustrated in Figure 2, some inappropriate re-
lations can be discarded from candidate relations
by entity type restriction. However, the current
methods neglect the restriction of entity types on
relations so that some inappropriate relations are
regarded as candidate relations, which further hurts
their performance.

To solve the above problem, a novel paradigm,
RElation Classification with ENtity Type restric-
tion (RECENT), is proposed to exploit entity types
to restrict candidate relations. As the basis of the
paradigm, the mutual restrictions of relations and
entity types are formalized. With the entity type
restriction, some inappropriate relations are dis-
carded from the candidate relations of a specific
pair of entity types, as illustrated in Figure 2. A
specific classifier with a specific set of candidate
relations is individually learned for each pair of
entity types (Figure 3). Therefore, the proposed
paradigm, RECENT, can eliminate the interference
from inappropriate candidate relations.

The contributions are summarized as follows:

• The mutual restrictions of relations and entity
types are formalized.

• A novel paradigm, RECENT, is proposed to
2Specifically, these meaningful relations are treated as

meaningless numbers, such as 0, 1, 2.

exploit entity types to restrict candidate rela-
tions in relation classification.

• A new state-of-the-art is achieved on TA-
CRED.

2 Proposed Paradigm

Before introducing the proposed paradigm RE-
CENT, the mutual restrictions between a relation
and a pair of entities are formalized as the basis of
RECENT.

2.1 Relation Function

When a binary relation is considered as a func-
tion, this relation has two entities as its two ar-
guments. Formally, this relation is formalized as
r(s, o), where r denotes the relation and s, o de-
note the first (subject) entity and the second (object)
entity, respectively. The range of this relation con-
tains two discrete values {0, 1}:

r(s, o) =

{
1 r holds between s and o,

0 otherwise.
(1)

In a broad sense, the domain of this relation
can be any pair of entities. However, when a pair
of entities with inappropriate types is fed into a
specific relation, the relation can directly return 0,
no need to consider the compositional semantics of
the relation and the pair of entities. For example,
a specific relation who-is-born-when expects the
first argument to be a person and the second one
to be a time. Therefore, (apple, Steven Jobs) is
a pair of inappropriate entities for this relation so
that who-is-born-when(apple, Steven Jobs) returns
0 without considering the compositional semantics,
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since apple may refer to either a kind of fruit or a
company (not a person) and Steven Jobs may refer
to a famous person (not a time).

Only when a relation receives a pair of appropri-
ate entities whose types match it, the combination
of the relation and the entities might make sense
(i.e., the function defined in Eq. 1 may return 1).
In this case, it is meaningful to further verify the
correctness of the compositional semantics. From
this perspective, in a narrow sense, the domain (de-
noted by Dr) of a relation (r) is defined as follows:

Dr = {(s, o)|ts ∈ S(r) and to ∈ O(r)}, (2)

where ts and to denote the types of the subject en-
tity (s) and the object entity (o), respectively. S(r)
and O(r) are the appropriate types of r on the sub-
ject entity (s) and the object entity (o), respectively.

2.2 Entity Type Restriction

In the previous subsection, the narrow domain of a
relation restricts entities whose types need to match
the relation. Conversely, given a pair of entities
whose types are known, the candidate relations
of the entities are also restricted, since the match
between relations and entity types is mutual.

Formally, given a pair of entities (s, o) and their
types (ts, to), its candidate relations (denoted by
R(ts,to)) are restricted into a limited set:

R(ts,to) = {r ∈ R|(s, o) ∈ Dr}
= {r ∈ R|ts ∈ S(r) and to ∈ O(r)},

(3)

where R denotes all possible relations. When the
types (ts, to) of a pair of entities (s, o) are explicitly
utilized to restrict its candidate relations, the candi-
date relations reduce from all possible relations R
into a rather smaller set R(ts,to).

2.3 Relation Classification

Unlike traditional methods that classify a sentence
and its entities on all candidate relations R (the left
part of Figure 3), the proposed paradigm, RECENT
learns a specific classifier with smaller and more
precise candidate relations for each pair of entity
types (the right part of Figure 3), based on entity
type restriction in the previous subsection.

The procedure of RECENT is summarized in
Algorithm 1. In the learning phase, all sentences
are first grouped by types of their entities (line 1).
For each group (marked as g) with a specific pair of

entity types (ts,to), the candidate relations R(ts,to)

for the group g are obtained by aggregating the
relations in the group g (line 3). Then, a specific
classifier (marked by fg) that maps sentences and
their entities in g to R(ts,to), is learned for the group
g (line 4). In the prediction phase, given a new
sample (se, s, o, ts, to), a group (marked as g

′
) is

matched by the entity types (ts, to) (line 6). Then,
the classifier fg′ learned on the group g

′
is utilized

to predict a relation according to the input (se, s,
o) (line 7).

From the 4th line of Algorithm 1, the proposed
paradigm RECENT is model-agnostic, which
means that RECENT is theoretically compatible
with many relation classification models.

Algorithm 1 RECENT
Learning Phase:

Input: D = {(sei, si, oi, tsi, toi, ri)|i =
1, 2, ..., N} where the subscript i indicates the
ith sample, se is sentence, s is subject entity, o
is object entity, ts is type of subject entity, to
is type of object entity, r is relation.
Output: Multiple classifiers.

1: Group sentences by entity types.
2: for each group g (enity types (ts, to) ) do
3: aggregate relations in the group as candidate

relations R(ts,to) defined in Eq. 3.
4: learn a classifier (marked as fg) on the group

that maps {(sei, si, oi) ∈ g} to R(ts,to).
5: end for

Prediction Phase:
Input: A new sample {se, s, o, ts, to}, each
specific classifier for each pair of entity types.
Output: A relation.

6: match the sample to a group (marked as g
′
)

according to the entity types (ts, to).
7: Use the classifier (fg′ ) learned on the group to

map (se, s, o) to a relation.
8: return the relation.

3 Experiments

3.1 Dataset
The proposed paradigm RECENT is evaluated on
TACRED3 (Zhang et al., 2017). TACRED con-
tains 41 semantic relations and a special no relation
over 106,264 sentences. The subject entities in TA-
CRED are classified into two types: PERSON and

3https://catalog.ldc.upenn.edu/
LDC2018T24

https://catalog.ldc.upenn.edu/LDC2018T24
https://catalog.ldc.upenn.edu/LDC2018T24
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ORGANIZATION while the object entities are cate-
gorized into 16 fine-grained types, such as LOCA-
TION and TIME. Namely, entity types are known.
By convention, the micro-averaged F1 score (ab-
breviated as F1) is reported on TACRED.

3.2 Experimental Setup

Since no relation is a candidate relation of each
pair of entity types in TACRED, a binary classifier
is first learned to distinguish between 41 semantic
relations and no relation. In this way, each pair
of entity types reduces one candidate relation (i.e.
no relation) in RECENT. If the binary classifier
predicts no relation for a pair of entities, then the
final relation for them is no relation. Otherwise,
their specific semantic relation is further predicted
in RECENT.

Base Models The proposed paradigm RECENT
is model-agnostic. Two representative models that
are GCN (Zhang et al., 2018) and SpanBERT (Joshi
et al., 2020) are selected as base models (line 4 in
Algorithm 1). For a fair comparison with a base
model, all classifiers (including the binary classi-
fier) in RECENT are trained by the base model.
The corresponding models in the paper are denoted
as RECENTGCN and RECENTSpanBERT.

Hyperparameters For RECENTGCN, the path-
centric pruning K is set to 1 as GCN (Zhang
et al., 2018). The learning rates for all clas-
sifiers in RECENTGCN are set to 0.3. For
RECENTSpanBERT, the learning rates for all classi-
fiers are chosen from {5e-6, 1e-5, 2e-5, 3e-5, 5e-5}
as SpanBERT.

Compared Models Extensive models in relation
classification are regarded as comparison models.
They include PA-LSTM (Zhang et al., 2017), C-
GCN (Zhang et al., 2018), AGGCN (Guo et al.,
2019), C-AGGCN (Guo et al., 2019), MTB (Bal-
dini Soares et al., 2019), KnowBert (Peters et al.,
2019), SpanBERT-ALT (Lyu et al., 2020), KE-
PLER (Wang et al., 2020b), K-Adapter (Wang et al.,
2020a), and LUKE (Yamada et al., 2020). To save
space, please refer to the original papers of these
models for details.

3.3 Experimental Results

The experimental results are presented in Table 1.
RECENTGCN achieves a significant performance
increase on the F1 score above its base model GCN.
The absolute increase reaches 6.9 from 64.0 to 70.9.

Model P R F1

PA-LSTM † (Zhang et al., 2017) 65.7 64.5 65.1
C-GCN † (Zhang et al., 2018) 69.9 63.3 66.4
AGGCN † (Guo et al., 2019) 69.9 60.9 65.1
C-AGGCN † (Guo et al., 2019) 71.8 66.4 69.0

GCN † (Zhang et al., 2018) 69.8 59.0 64.0
RECENTGCN (ours) 88.3 59.3 70.9

SpanBERT-ALT † (Lyu et al., 2020) 69.0 73.0 70.9
MTB † (Baldini Soares et al., 2019) - - 71.5
KnowBert † (Peters et al., 2019) 71.6 71.4 71.5
KEPLER †* (Wang et al., 2020b) 71.5 72.5 72.0
K-Adapter †* (Wang et al., 2020a) 70.14 74.04 72.04
LUKE † (Yamada et al., 2020) 70.4 75.1 72.7

SpanBERT † (Joshi et al., 2020) 70.8 70.9 70.8
RECENTSpanBERT (ours) 90.9 64.2 75.2

Table 1: Results on the TACRED dataset. P and R indi-
cate precision and recall, respectively. Bold marks the
highest values among models. † marks results reported
in the original papers. * marks results from preprint
papers.

The main contribution for the F1 increase is the im-
proved precision that greatly increases from 69.8
to 88.3. The great increase in precision, which
might result from the restriction on candidate re-
lations by entity types in RECENT, indicates the
effectiveness of the proposed paradigm RECENT.
Besides, RECENTGCN suppresses the compared
models that do not include pretrained language
models.

Similarly, RECENTSpanBERT overtakes its base
model SpanBERT by absolute 4.4 points on F1.
The great soar (absolute 20.1 points) on precision
contributes the superior F1 of RECENTSpanBERT.
Unfortunately, the decline in recall limits the fur-
ther improvement of F1. This might be due to sam-
ple imbalance of candidate relations, which will
be further studied in future work. On the whole
(i.e. F1), RECENTSpanBERT outperforms all the
compared models. Especially, RECENTSpanBERT

exceeds the state-of-the-art LUKE model4 by 2.5
F1 points and achieves a new state-of-the-art.

3.4 Error Analysis of GCN
This subsection analyzes the influence of a baseline
model (i.e. GCN) that neglects the restriction of
entity types on relations. We retrain a GCN model
and the model achieves 68.4 precision, 60.2 recall,
and 64.1 F1 (Table 2), which are similar to the

4LUKE achieves the state-of-the-art (72.7) on the pub-
lished papers. Cohen et al. (2020) report a new state-of-the-
art (74.8) in the preprint way. Anyway, RECENTSpanBERT

achieves a new state-of-the-art (75.2).



394

Model P R F1 FP FP(ET)

GCN 68.4 60.2 64.1 1,323 144

Table 2: Results of our trained GCN on the TACRED
dataset. P and R indicate precision and recall, respec-
tively. FP indicates the number of false positives and
FP(ET) indicates the number of false positives that break
the entity type restriction.

results in its reported paper (Zhang et al., 2018).
Observing the prediction results of the model, we
find that 1) 1,323 examples are false positives in
the test set of TACRED, 2) 144 (about 11%) false
positives among them break the entity type restric-
tion. Namely, GCN can make about 89% of false
positives meet the entity type restriction, by im-
plicitly using entity types. However, about 11% of
false positives still break the restriction. The false
positives broken down by relations are counted in
Appendix A. In details, false positives broken down
by relations are weakly negatively correlated with
the amount of training data of relations, where the
correlation coefficient is -0.39. This infers that
fewer training examples of relations may lead to
more false positives of relations.

4 Conclusion

In the paper, a novel paradigm, RECENT, is pro-
posed by entity type restriction. RECENT reduces
candidate relations for each pair of entity types by
the mutual restrictions between relations and entity
types. RECENT is model-agnostic. RECENTGCN

and RECENTSpanBERT that are based on two rep-
resentative models GCN and SpanBERT respec-
tively, outperform their counterparts on the stan-
dard dataset TACRED, which empirically indicates
the effectiveness of the proposed paradigm RE-
CENT. Especially, RECENTSpanBERT achieves a
new state-of-the-art on TACRED.
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A The Statistics of False Positives

Table 3 presents false positives broken down by re-
lations of our trained GCN on the TACRED dataset.
In details, false positives broken down by relations
are weakly negatively correlated with the amount
of training data of relations, where the correlation
coefficient is -0.39.

Relation FP

org:alternate names 53
org:city of headquarters 30
org:country of headquarters 70
org:dissolved 2
org:founded 9
org:founded by 46
org:member of 18
org:members 31
org:number of employees/members 9
org:parents 62
org:political/religious affiliation 4
org:shareholders 10
org:stateorprovince of headquarters 16
org:subsidiaries 37
org:top members/employees 61
org:website 1
per:age 13
per:alternate names 11
per:cause of death 37
per:charges 35
per:children 31
per:cities of residence 90
per:city of birth 3
per:city of death 19
per:countries of residence 93
per:country of birth 5
per:country of death 9
per:date of birth 3
per:date of death 36
per:employee of 98
per:origin 46
per:other family 60
per:parents 49
per:religion 16
per:schools attended 13
per:siblings 25
per:spouse 24
per:stateorprovince of birth 4
per:stateorprovince of death 10
per:stateorprovinces of residence 40
per:title 94

Table 3: False positives (FP) broken down by relations
of our trained GCN on the TACRED dataset.

https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/P19-1023
https://doi.org/10.18653/v1/P19-1023
http://arxiv.org/abs/2002.01808
http://arxiv.org/abs/2002.01808
http://arxiv.org/abs/1911.06136
http://arxiv.org/abs/1911.06136
http://arxiv.org/abs/1911.06136
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/2020.emnlp-main.523
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.18653/v1/D17-1004
https://doi.org/10.18653/v1/D17-1004
https://doi.org/10.1145/3366423.3380301
https://doi.org/10.1145/3366423.3380301

