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Abstract

Knowledge base question answering (KBQA)
is an important task in Natural Language Pro-
cessing. Existing approaches face significant
challenges including complex question under-
standing, necessity for reasoning, and lack
of large end-to-end training datasets. In this
work, we propose Neuro-Symbolic Question
Answering (NSQA), a modular KBQA system,
that leverages (1) Abstract Meaning Repre-
sentation (AMR) parses for task-independent
question understanding; (2) a simple yet ef-
fective graph transformation approach to con-
vert AMR parses into candidate logical queries
that are aligned to the KB; (3) a pipeline-based
approach which integrates multiple, reusable
modules that are trained specifically for their
individual tasks (semantic parser, entity and
relationship linkers, and neuro-symbolic rea-
soner) and do not require end-to-end training
data. NSQA achieves state-of-the-art per-
formance on two prominent KBQA datasets
based on DBpedia (QALD-9 and LC-QuAD
1.0). Furthermore, our analysis emphasizes
that AMR is a powerful tool for KBQA sys-
tems.

1 Introduction

Knowledge base question answering (KBQA) is
a sub-field within Question Answering with de-
sirable characteristics for real-world applications.
KBQA requires a system to answer a natural lan-
guage question based on facts available in a Knowl-
edge Base (KB) (Zou et al., 2014; Vakulenko et al.,
2019; Diefenbach et al., 2020; Abdelaziz et al.,
2021). Facts are retrieved from a KB through
structured queries (in a query language such as
SPARQL), which often contain multiple triples that
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represent the steps or antecedents required for ob-
taining the answer. This enables a transparent and
self-explanatory form of QA, meaning that inter-
mediate symbolic representations capture some of
the steps from natural language question to answer.

With the rise of neural networks in NLP, various
KBQA models approach the task in an end-to-end
manner. Many of these approaches formulate text-
to-query-language as sequence-to-sequence prob-
lem, and thus require sufficient examples of paired
natural language and target representation pairs.
However, labeling large amounts of data for KBQA
is challenging, either due to the requirement of
expert knowledge (Usbeck et al., 2017), or arti-
facts introduced during automated creation (Trivedi
et al., 2017). Real-world scenarios require solving
complex multi-hop questions i.e. secondary un-
knowns within a main question and questions em-
ploying unusual expressions. Pipeline approaches
can delegate language understanding to pre-trained
semantic parsers, which mitigates the data prob-
lem, but are considered to suffer from error prop-
agation. However, the performance of semantic
parsers for well-established semantic representa-
tions has greatly improved in recent years. Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013; Dorr et al., 1998) parsers recently reached
above 84% F-measure (Bevilacqua et al., 2021),
an improvement of over 10 points in the last three
years.

In this paper we propose Neuro-Symbolic Ques-
tion Answering (NSQA), a modular knowledge
base question answering system with the follow-
ing objectives: (a) delegating the complexity of
understanding natural language questions to AMR
parsers; (b) reducing the need for end-to-end (text-
to-SPARQL) training data with a pipeline architec-
ture where each module is trained for its specific
sub-task; (c) facilitating the use of an independent
reasoner via an intermediate logic form.
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Figure 1: Real NSQA prediction for the sentence Which actors starred in Spanish movies produced by Benicio del
Toro?. In underlined, we show the representation for the two unknown variables across all stages including: AMR-
aligned tokens in sentence (Which, movies), AMR graph (unknown, movie), paths representation (same as AMR),
logical representation (actor, movie) and SPARQL interpretation (?actor, ?movie). Displayed stage outputs: AMR
(green), Entity Linking (blue), Relation Linking (orange)

The contributions of this work are as follows:

• The first system to use Abstract Meaning Rep-
resentation for KBQA achieving state of the
art performance on two prominent datasets on
DBpedia (QALD-9 and LC-QuAD 1.0).

• A novel, simple yet effective path-based ap-
proach that transforms AMR parses into inter-
mediate logical queries that are aligned to the
KB. This intermediate logic form facilitates
the use of neuro-symbolic reasoners such as
Logical Neural Networks (Riegel et al., 2020),
paving the way for complex reasoning over
knowledge bases.

• A pipeline-based modular approach that in-
tegrates multiple, reusable modules that are
trained specifically for their individual tasks
(e.g. semantic parsing, entity linking, and re-
lationship linking) and hence do not require
end-to-end training data.

2 Approach Overview

Figure 1 depicts the pipeline of our NSQA system.
Given a question in natural language, NSQA: (i)
parses questions into an Abstract Meaning Repre-
sentation (AMR) graph; (ii) transforms the AMR

graph to a set of candidate KB-aligned logical
queries, via a novel but simple graph transforma-
tion approach; (iii) uses a Logical Neural Network
(LNN) (Riegel et al., 2020) to reason over KB facts
and produce answers to KB-aligned logical queries.
We describe each of these modules in the following
sections.

2.1 AMR Parsing

NSQA utilizes AMR parsing to reduce the com-
plexity and noise of natural language questions.
An AMR parse is a rooted, directed, acyclic graph.
AMR nodes represent concepts, which may include
normalized surface symbols, Propbank frames
(Kingsbury and Palmer, 2002) as well as other
AMR-specific constructs to handle named entities,
quantities, dates and other phenomena. Edges in
an AMR graph represent the relations between con-
cepts such as standard OntoNotes roles but also
AMR specific relations such as polarity or mode.

As shown in Figure 1, AMR provides a represen-
tation that is fairly close to the KB representation.
A special amr-unknown node, indicates the miss-
ing concept that represents the answer to the given
question. In the example of Figure 1, amr-unknown
is a person, who is the subject of act-01. Further-
more, AMR helps identify intermediate variables
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that behave as secondary unknowns. In this case, a
movie produced by Benicio del Toro in Spain.

NSQA utilizes a stack-Transformer transition-
based model (Naseem et al., 2019; Astudillo
et al., 2020) for AMR parsing. An advantage of
transition-based systems is that they provide ex-
plicit question text to AMR node alignments. This
allows encoding closely integrated text and AMR
input to multiple modules (Entity Linking and Rela-
tion Linking) that can benefit from this joint input.

2.2 AMR to KG Logic

The core contribution of this work is our next step
where the AMR of the question is transformed to a
query graph aligned with the underlying knowledge
graph. We formalize the two graphs as follows:

AMR graph G is a rooted edge-labeled directed
acyclic graph 〈VG , EG〉. The edge set EG consists
of non-core roles, quantifiers, and modifiers. The
vertex set VG ∈ amr-unknown ∪ AP ∪ AC where
where AP are set of propbank predicates and AC
are rest of the nodes. 1. Propbank predicates are n-
ary with multiple edges based on their definitions.
amr-unknown is a special concept node in the AMR
graph indicating wh-questions.

Further, we enrich the AMR Graph G with ex-
plicit links to entities in the KG. For example, the
question in Figure 1 contains two entities Spain
and Benicio Del Toro that need to be identified
and linked to DBpedia entries, dbr:Spain and
dbr:Benicio del toro. Linking these entities is ab-
solutely necessary for any KBQA system (Zou
et al., 2014; Vakulenko et al., 2019). To do so,
we trained a BERT-based neural mention detection
model and used BLINK (Devlin et al., 2018) for
disambiguation. The entities are linked to AMR
nodes based on the AMR node-text alignment in-
formation. The linking is a bijective mapping from
Ve → E where Ve is the set of AMR entity nodes,
and E is the set of entities in the underlying KG.

Query graph Q is a directed edge-labeled graph
〈VQ, EQ〉, which has a similar structure to the un-
derlying KG. VQ ∈ VE ∪ V where VE is a set of
entities in the KG and (V) is a set of unbound vari-
ables. EQ is a set of binary relations among VQ
from the KG. The Query Graph Q is essentially the
WHERE clause2 in the SPARQL query.

1https://www.isi.edu/˜ulf/amr/help/
amr-guidelines.pdf

2The Query Graph does not include the type constraints in
the SPARQL WHERE Clause.

Our goal is to transform the AMR graph G into
its corresponding query graph Q. However such
transformation faces the following challenges:
N-ary argument mismatch: Query graph Q rep-
resents information using binary relations, whereas
AMR graph contain Propbank framesets that are
n-ary. For example, the node produce-013 from
AP in G has four possible arguments, whereas its
corresponding KG relation in Q (dbo:producer) is
a binary relation.
Structural and Granular mismatch: The vertex
set of the query graph Q represent entities (or
unbound variables). On the other hand, AMR
Graph G contains nodes that are concepts or Prop-
Bank predicates which can correspond to both en-
tities and relationships. For example in Figure 1,
produce-01, star-01, and Spain are nodes in the
AMR graph. So the AMR graph G has to be trans-
formed such that nodes primarily correspond to
entities and edges (edge labels) correspond to rela-
tionships. Furthermore, it is possible for multiple
predicates and concepts from G to jointly represent
a single binary relation in Q because the underly-
ing KG uses a completely different vocabulary. An
example of such granular mismatch is shown in
Figure 2.

2.2.1 Path-based Graph Transformation
We address the challenges mentioned above by
using a path-based approach for the construction
of Query Graphs. In KBQA, query graphs (i.e.
SPARQL queries) constrain the unknown variable
based on paths to the grounded entities. In Fig-
ure 1, the constraints in the SPARQL query are based
on paths from ?actor to dbr:Benicio del toro and
dbr:Spain as shown below.

• ?actor → dbo:starring → ?movie →
dbo:country → dbr:Spain

• ?actor → dbo:starring → ?movie →
dbo:producer → dbr:Benicio del Toro

Based on this intuition of finding paths from
the unknown variable to the grounded entities, we
have developed a path-based approach depicted in
Algorithm 1 that shows the steps for transform-
ing the AMR Graph G into Query Graph Q. As
amr-unknown is the unknown variable in the AMR
Graph, we retrieve all shortest paths (line 11 in Al-
gorithm 1) between the amr-unknown node and the
nodes VE of the AMR Graph G that have mappings

3http://verbs.colorado.edu/propbank/
framesets-english-aliases/produce.html

https://www.isi.edu/~ulf/amr/help/amr-guidelines.pdf
https://www.isi.edu/~ulf/amr/help/amr-guidelines.pdf
http://verbs.colorado.edu/propbank/framesets-english-aliases/produce.html
http://verbs.colorado.edu/propbank/framesets-english-aliases/produce.html
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Figure 2: An example of granularity and structural mis-
match between AMR and query graphs of the ques-
tion In which ancient empire could you pay with cocoa
beans?. The binary relation dbo:currency corresponds
to the combination of two edges (location, instrument)
and one node (pay-01) in the AMR graph.

to the KG entity set. Figure 1 shows an example
of both the AMR and query graph for the question
“Which actors starred in Spanish movies produced
by Benicio del Toro?” Selecting the shortest paths
reduces the n-ary predicates of AMR graph to only
the relevant binary edges. For instance, the edge
(act-01, arg0, person) in the AMR graph in Figure 1
will be ignored because it is not in the path between
amr-unknown and any of the entities dbr:Spain and
dbr:Benicio del Toro.

Structural and granularity mismatch between
the AMR and query graph occurs when multiple
nodes and edges in the AMR graph represent a
single relationship in the query graph. This is
shown in Figure 2. The path consists of one AMR
node and 2 edges between amr-unknown and cocoa
bean: (amr-unknown, location, pay-01, instrument,
cocoa-bean)4. In such cases, we collapse all nodes
that represent predicates (like pay-01, star-01, etc.)
into an edge, and combine it with surrounding edge
labels, giving (location | pay-01 | instrument). This
is done by line 18 of Algorithm 1 where the even-
tual query graph Q will have one edge with merged
predicated from AMR graph G between the non-
predicates (AC).

Returning to the example in Figure 1, Algorithm
1 (line 25) outputs the query graph Q with the fol-
lowing two paths, which bear structural similarity
to the knowledge graph:

4Nodes are indicated by boldface, and the rest are edges.
For the purposes of path generation, the nodes amr-unknown
and empire are considered equivalent because the mod edge is
a descriptor in AMR (line 8 in Algorithm 1)

Algorithm 1: AMR to triples
1 Input : Question text t, AMR graph G : 〈VG , EG〉

having a set of nodes Ve ∈ VG , each linked to a
named entity in the KG

2 Returns : Query graph Q : 〈VQ, EQ〉
Initialize Q : 〈VQ, EQ〉,VQ := {}, EQ := {}

3 if t is imperative then
4 let source node (imperative predicate) be r
5 set q as amr-unknown where

edge(r, q, ‘arg1’) ∈ GE
6 delete r and its edges from G
7 a := amr-unknown node
8 if ∃ b : edge(a, b, ‘mod’) ∈ EG then
9 a := b

10 for e in Ve do
11 amrPath := getShortestPath(G, a, e)
12 let amrPath be [a, n1, n2, ..., nk], where

nk = e
13 collapsedPath := [a]
14 n′ := a
15 relBuilder := ‘ ’
16 for i : 1 → k do
17 if ni ∈ AP then
18 relBuilder :=

relBuilder + getRelG(n
′, ni)

19 else if ni ∈ AC then
20 append ni to collapsedPath
21 add node n′ to VQ
22 add edge(n′, ni, relBuilder) to EQ
23 n′ := ni

24 relBuilder := ‘ ’
end

end
25 Q := doRelLinking(Q)
26 return Q

• amr-unknown → star-01 → movie →
country → Spain

• amr-unknown → star-01 → movie →
produce-01 → Benicio del Toro

Note that in the above paths, edge labels re-
flect the predicates from the AMR graph (star-01,
produce-01, and mod). Our next step is to resolve
these edge labels to its corresponding relationships
from the underlying KG. To do so, we perform
relation linking as described below.
Relationship Linking. NSQA uses Sem-
REL (Naseem et al., 2021), a state-of-the-art re-
lation linking system that takes in the question text
and AMR predicate as input and returns a ranked
list of KG relationships for each triple. The carte-
sian product of this represents a ranked list of can-
didate query graphs, and we choose the highest-
ranked valid query graph (a KG subgraph with
unbound variables). As shown in Figure 1, the out-
put of this module produces query graph Q with
star-01 and produce-01 mapped to DBpedia rela-
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tions dbo:starring and dbo:producer. This will be
the WHERE clause of the final SPARQL query.

2.2.2 Logic Generation
Our query graph can be directly translated to the
WHERE clause of the SPARQL. We use existential
first order logic (FOL) as an intermediate represen-
tation, where the non-logical symbols consist of
the binary relations and entities in the KB as well
as some additional functions to represent SPARQL

query constructs (e.g. COUNT). We use existential
FOL instead of directly translating to SPARQL be-
cause: (a) it enables the use of any FOL reasoner
which we demonstrate in our next Section 2.3; (b)
it is compatible with reasoning techniques beyond
the scope of typical KBQA, such as temporal and
spatial reasoning; (c) it can also be used as a step
towards query embedding approaches that can han-
dle incompleteness of knowledge graphs (Ren and
Leskovec, 2020; Cohen et al., 2020; Sun et al.,
2020). The Query Graph from Section 2 can be
written as a conjunction in existential first order
logic as shown in Figure 1.

The current logic form supports SPARQL con-
structs such as SELECT, COUNT, ASK, and SORT

which are reflected in the types of questions that
our system is able to answer in Table 4. The heuris-
tics to determine these constructs from AMR are
as follows:
Query Type: This rule determines if the query
will use the ASK or SELECT construct. Boolean
questions will have AMR parses that either have
no amr-unknown variable or have an amr-unknown
variable connected to a :polarity edge (indicating a
true/false question). In such cases, the rule returns
ASK, otherwise it returns SPARQL.
Target Variable: This rule determines what un-
bound variable follows a SPARQL statement. As
mentioned in Section 2, the amr-unknown node
represents the missing concept in a question, so it
is used as the target variable for the query. The one
exception is for questions that have an AMR pred-
icate that is marked as imperative, e.g. in Figure
3 (middle) a question beginning with “Count the
awards ...” will have count-01 marked as impera-
tive. In these cases, the algorithm uses the arg1 of
the imperative predicate as the target variable (see
Algorithm 1, line 3).
Sorting: This rule detects the need for sorting by
the presence of superlatives and quantities in the
query graph prior to relation linking. Superlatives
are parsed into AMR with most and least nodes

and quantities are indicated by the PropBank frame
have-degree-91, whose arguments determine: (1)
which variable in V represents the quantity of inter-
est, and (2) the direction of the sort (ascending or
descending).
Counting: This rule determines if the COUNT ag-
gregation function is needed by looking for Prop-
Bank frame count-01 or AMR edge :quant con-
nected to amr-unknown, indicating that the ques-
tion seeks a numeric answer. However, ques-
tions such as “How many people live in London?”
can have :quant associated to amr-unknown even
though the correct query will use dbo:population
to directly retrieve the numeric answer without the
COUNT aggregation function. We therefore exclude
the COUNT aggregation function if the KB relation
corresponding to :quant or count-01 has a numeric
type as its range.

2.3 Reasoner

With the motivation of utilizing modular, generic
systems, NSQA uses a First Order Logic, neuro-
symbolic reasoner called Logical Neural Networks
(LNN) (Riegel et al., 2020). This module currently
supports two types of reasoning: type-based, and
geographic. Type-based reasoning is used to elimi-
nate queries based on inconsistencies with the type
hierarchy in the KB. On the other hand, a question
like “Was Natalie Portman born in United States?”
requires geographic reasoning because the entities
related to dbo:birthPlace are generally cities, but
the question requires a comparison of countries.
This is addressed by manually adding logical ax-
ioms to perform the required transitive reasoning
for property dbo:birthPlace. We wish to emphasize
that the intermediate logic and reasoning module
allow for NSQA to be extended for such complex
reasoning in future work.

3 Experimental Evaluation

The goal of the work is to show the value of AMR
as a generic semantic parser on a modular KBQA
system. In order to evaluate this, we first perform
an end-to-end evaluation of NSQA (Section 3.2).
Next, we discuss some qualitative and quantitative
results on the value of AMR for different aspects
of our KBQA system (Section 3.3). Finally, in
support of our modular architecture, we evaluate
the individual modules that are used in comparison
to other state of the art approaches (Section 3.4).
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Dataset P R F
WDAqua QALD-9 26.09 26.7 24.99
gAnswer QALD-9 29.34 32.68 29.81
NSQA QALD-9 31.89 32.05 31.26

WDAqua LC-QuAD 1.0 22.00 38.00 28.00
QAMP LC-QuAD 1.0 25.00 50.00 33.00
NSQA LC-QuAD 1.0 44.76 45.82 44.45

Table 1: NSQA performance on QALD-9 and LC-
QuAD 1.0

3.1 Datasets and Metrics

To evaluate NSQA, we used two standard KBQA
datasets on DBpedia.
QALD - 9 (Usbeck et al., 2017) dataset has 408
training and 150 test questions in natural language,
from DBpedia version 2016-10. Each question has
an associated SPARQL query and gold answer set.
Table 4 shows examples of all the question types
in the QALD dev set.
LC-QuAD 1.0 (Trivedi et al., 2017) is a dataset
with 5,000 questions based on templates and more
than 80% of its questions contains two or more
relations. Our modules are evaluated against a ran-
dom sample of 200 questions from the training set.
LC-QuAD 1.0 predominantly focuses on the multi-
relational questions, aggregation (e.g. COUNT) and
simple questions from Table 4.
Dev Set. We also created a randomly chosen devel-
opment set of 98 QALD-9 and 200 LC-QuAD 1.0
questions for evaluating individual modules.
Metrics. We report performance based on standard
precision, recall and F-score metrics for the KBQA
system and other modules. For the AMR parser we
use the standard Smatch metric (Cai and Knight,
2013).

3.2 End-to-end Evaluation

Baselines: We evaluate NSQA against four sys-
tems: GAnswer (Zou et al., 2014), QAmp (Vaku-
lenko et al., 2019), WDAqua-core1 (Diefenbach
et al., 2020), and a recent approach by (Liang
et al., 2021). GAnswer is a graph data-driven ap-
proach and is the state-of-the-art on the QALD
dataset. QAmp is another graph-driven approach
based on message passing and is the state-of-the-
art on LC-QuAD 1.0 dataset. WDAqua-core1 is
knowledge base agnostic approach that, to the best
of our knowledge, is the only technique that has
been evaluated on both QALD-9 and LC-QuAD
1.0 on different versions of DBpedia. Lastly, Liang
et al. (Liang et al., 2021) is a recent approach

AMR3.0 QALD-9 LC-QuAD 1.0
stack-Transformer 80.00 87.91 84.03

Table 2: AMR parsing performance (Smatch) on the
AMR3.0 test and QALD-9, LC-QuAD 1.0 dev sets.

that uses an ensemble of entity and relation linking
modules and train a Tree-LSTM model for query
ranking.
Results: Table 1 shows the performance of
NSQA compared to state-of-the-art approaches on
QALD and LC-QuAD 1.0 datasets. On QALD-9
and LC-QuAD 1.0, NSQA achieves state-of-the-art
performance. It outperforms WDAqua and gAn-
swer on QALD-9. Furthermore, NSQA’s perfor-
mance on LC-QuAD 1.0 significantly outperforms
QAmp by 11.45 percentage points on F1.

Due to difference in evaluation setup in Liang
et al. (2021), we reevaluated their system on the
same setup and metrics as the above systems.
Given the test set and the evaluation, (Liang et al.,
2021)’s F1 score reduces to 29.2%5. We exclude
this work from our comparison due to lack of stan-
dard evaluation.

3.3 Performance Analysis of AMR
AMR Parsing. We manually created AMRs for
the train and dev sets of QALD and LC-QuAD
1.0 questions. The performance of our stack-
transformer parser on both of these datasets is
shown in Table 2. The parser is trained on the com-
bination of human annotated treebanks and a syn-
thetic AMR corpus. Human annotated treebanks
include AMR3.0 and 877 questions sentences (250
QALD train + 627 LC-QuAD 1.0 train sentences)
annotated in-house. The synthetic AMR corpus
includes 27k sentences obtained by parsing LC-
QuAD 1.0 and LC-QuAD 2.0 (Dubey et al., 2019)
training sentences, along the lines of (Lee et al.,
2020).
AMR-based Query Structure NSQA leverages
many of the AMR features to decide on the cor-
rect query structure. As shown in Section 2.2.2,
NSQA relies on the existence of certain PropBank
predicates in the AMR parse such as have-degree-
91, count-01, amr-unknown to decide on which
SPARQL constructs to add. In addition, the AMR
parse determines the structure of the WHERE clause.
In Table 3, we show the accuracy of each one of

5 Liang et al. (2021) report an F1 score of 68% on a differ-
ent subset of LC-QuAD 1.0. They also consider only questions
that returns an answer which is a different setup from the rest
of the systems.



3890

amr-unknownmake-01
dbo:ingredient

use-01

make-01

product

Acer Nigrum

arg0

name

arg1

arg2

amr-unknown

arg1

dbr:Acer_nigrum_bean

count-01

imperative

mode

award-01

receive-01

Battle of France

person

fight-01

war

arg1

arg0

arg1

name

arg0

you arg0

arg2

dbr:Battle_of_France

dbr:Acer_nigrum_bean

personfight-01
dbo:battledbr:Battle_of_France

award
rec
ieve

-01

dbo
:aw
ard

locate-01

sidecity

amr-unknown

mod part-of

location

sea

arg1

dbr:Mediterranean_Sea

Mediterranean Sea

name

sidepart.side
dbp:citiesdbr:Mediterranean_Sea

locate
-01|loc

ation

dbp:ci
ties

amr-unknown

Figure 3: AMR and query graphs for the questions “Acer nigrum is used in making what?”, “Count the awards
received by the ones who fought the battle of france?” and “What cities are located on the sides of mediterranean
sea?” from LC-QuAD 1.0 dev set

Query Feature Correct Total Correct (%)

SELECT 164 186 88.2
ASK 14 9 64.3
COUNT 25 31 80.6

1-Hop 50 63 79.4
2-Hop 96 137 70.1

Table 3: Query constructs prediction (LC-QuAD 1.0
dev)

these rules on LC-QuAD 1.0 dev dataset. Overall,
NSQA identified 64% of ASK (boolean) questions
correctly and achieved more than 80% accuracy
for COUNT and SELECT questions. Using AMR
and the path-based approach, NSQA was able to
correctly predict the total number of constraints
with comparable accuracies of 79% and 70% for
single and two-hops, respectively. NSQA finds the
correct query structure for complex questions al-
most as often as for simple questions, completely
independent of the KG.

Figure 3 shows two examples illustrating how
AMR lends itself to an intuitive transformation to
the correct query graph, as well as a third example
where we fail. Here the AMR semantic parse can
not be matched to the underlying KG, since ‘side’
is an extra intermediate variable that leads to an
additional constraint in the query graph.

Supported Question Types. Table 4 shows the
reasoning and question types supported by NSQA .
Our transformation algorithm applied to AMR
parses supports simple, multi-relational, count-
based, and superlative question types. LNN per-
forms geographic reasoning as well as type-based
reasoning to rank candidate logic forms. Address-
ing comparative and temporal reasoning is a part

of our future work.

3.4 Individual Module Evaluation

Entity and Relation Linking. NSQA’s EL mod-
ule (NMD+BLINK) consists of a BERT-based neu-
ral mention detection (NMD) network, trained
on LC-QuAD 1.0 training dataset comprising of
3,651 questions with manually annotated men-
tions, paired with an off-the-shelf entity disam-
biguation model – BLINK (Wu et al., 2019b). We
compare the performance of NMD+BLINK ap-
proach with Falcon (Sakor et al., 2019) in Table 5.
NMD+BLINK performs 24% better on F1 than
Falcon (state-of-the-art) on LC-QuAD 1.0 dev set
and 3% better on QALD-9 dev set. Similarly, we
evaluate Relation Linking on both QALD and LC-
QuAD 1.0 dev sets. In particular, we used Sem-
REL (Naseem et al., 2021); state-of-the-art relation
linking approach which performs significantly bet-
ter compared to both Falcon (Sakor et al., 2019)
and SLING (Mihindukulasooriya et al., 2020) on
various datasets. On LC-QuAD 1.0 dev, SemREL
acheives F1 = 0.55 compared to 0.43 by SLING and
0.42 by Falcon. On QALD-9, SemREL achieves
0.54 compared to 0.64 and 0.46 F1 for SLING and
Falcon, respectively.
Reasoner. We investigate the effect of using LNN
as a reasoner equipped with axioms for type-based
and geographic reasoning. We evaluated NSQA’s
performance under two conditions: (a) with an
LNN reasoner with intermediate logic form and
(b) with a deterministic translation of query graphs
to SPARQL. On LC-QuAD 1.0 dev set, NSQA
achieves an F1 score of 40.5 using LNN com-
pared to 37.6 with the deterministic translation to
SPARQL. Based on these initial promising results,
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Question Type/Reasoning Example Supported

Simple Who is the mayor of Paris
Multi-relational Give me all actors starring in movies directed by William Shatner.
Count-based How many theories did Albert Einstein come up with?
Superlative What is the highest mountain in Italy?
Comparative Does Breaking Bad have more episodes than Game of Thrones?
Geographic Was Natalie Portman born in the United States?
Temporal When will start [sic] the final match of the football world cup 2018?

Table 4: Question types supported by NSQA , with examples from QALD

Dataset P R F1
Falcon QALD-9 0.81 0.83 0.82
NMD+BLINK QALD-9 0.82 0.90 0.85

Falcon LC-QuAD 1.0 0.56 0.69 0.62
NMD+BLINK LC-QuAD 1.0 0.87 0.86 0.86

Table 5: Performance of Entity Linking modules com-
pared to SOTA Falcon on our dev sets

we intend to explore more uses of such reasoners
for KBQA in the future.

4 Related Work

Early work in KBQA focused mainly on design-
ing parsing algorithms and (synchronous) gram-
mars to semantically parse input questions into
KB queries (Zettlemoyer and Collins, 2007; Berant
et al., 2013), with a few exceptions from the infor-
mation extraction perspective that directly rely on
relation detection (Yao and Van Durme, 2014; Bast
and Haussmann, 2015). All the above approaches
train statistical machine learning models based on
human-crafted features and the performance is usu-
ally limited.
Deep Learning Models. The renaissance of neu-
ral models significantly improved the accuracy
of KBQA systems (Yu et al., 2017; Wu et al.,
2019a). Recently, the trend favors translating the
question to its corresponding subgraph in the KG
in an end-to-end learnable fashion, to reduce the
human efforts and feature engineering. This in-
cludes two most commonly adopted directions: (1)
embedding-based approaches to make the pipeline
end-to-end differentiable (Bordes et al., 2015; Xu
et al., 2019); (2) hard-decision approaches that gen-
erate a sequence of actions that forms the subgraph
(Xu et al., 2018; Bhutani et al., 2019).

On domains with complex questions, like QALD
and LC-QuAD, end-to-end approaches with hard-
decisions have also been developed. Some
have primarily focused on generating SPARQL

sketches (Maheshwari et al., 2019; Chen et al.,

2020) where they evaluate these sketches (2-hop)
by providing gold entities and ignoring the evalu-
ation of selecting target variables or other aggre-
gation functions like sorting and counting. (Zheng
and Zhang, 2019) generates the question subgraph
via filling the entity and relationship slots of 12 pre-
defined question template. Their performance on
these datasets show significant improvement due to
the availability of these manually created templates.
Having the advantage of predefined templates does
not qualify for a common ground to be compared
to generic and non-template based approaches such
as NSQA, WDAqua, and QAmp.

Graph Driven Approaches. Due to the lack of
enough training data for KBQA, several systems
adopt a training-free approach. WDAqua (Diefen-
bach et al., 2017) uses a pure rule-based method
to convert a question to its SPARQL query. gAn-
swer (Zou et al., 2014) uses a graph matching algo-
rithm based on the dependency parse of question
and the knowledge graph. QAmp (Vakulenko et al.,
2019) is a graph-driven approach that uses message
passing over the KG subgraph containing all iden-
tified entities/relations where confidence scores get
propagated to the nodes corresponding to the cor-
rect answers. Finally, (Mazzeo and Zaniolo, 2016)
achieved superior performance on QALD-5/6 with
a hand-crafted automaton based on human anal-
ysis of question templates. A common theme of
these approaches, is that the process of learning the
subgraph of the question is heavily KG specific,
while our approach first delegates the question un-
derstanding to KG-independent AMR parsing.

Modular Approaches. Frankenstein (Singh et al.,
2018) is a system that emphasize the aspect of
reusuability where the system learns weights for
each reusuable component conditioned on the ques-
tions. They neither focus on any KG-independent
parsing (AMR) not their results are comparable to
any state of the art approaches. (Liang et al., 2021)
propose a modular approach for KBQA that uses
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an ensemble of phrase mapping techniques and a
TreeLSTM-based model for ranking query candi-
dates which requires task specific training data.

5 Discussion

The use of semantic parses such as AMR compared
to syntactic dependency parses provides a number
of advantages for KBQA systems. First, indepen-
dent advances in AMR parsing that serve many
other purposes can improve the overall perfor-
mance of the system. For example, on LC-QUAD-
1 dev set, a 1.4% performance improvement in
AMR Smatch improved the overall system’s perfor-
mance by 1.2%. Recent work also introduces multi-
lingual and domain-specific (biomedical) AMR
parsers, which expands the possible domains of
application for this work. Second, AMR provides
a normalized form of input questions that makes
NSQA resilient to subtle changes in input questions
with the same meaning. Finally, AMR also trans-
parently handles complex sentence structures such
as multi-hop questions or imperative statements.

Nevertheless, the use of AMR semantic parses
in NSQA comes with its own set of challenges:
1) Error propagation: Although AMR parsers are
very performant (state-of-the-art model achieves
an Smatch of over 84%), inter-annotator agreement
is only 83% on newswire sentences, as noted in
(Banarescu et al., 2013). Accordingly, AMR er-
rors can propagate in NSQA’s pipeline and cause
errors in generating the correct answer, 2) Gran-
ularity mismatch: our proposed path-based AMR
transformation is generic and not driven by any
domain-specific motivation, but additional adjust-
ments to the algorithm may be needed in new
domains due to the different granularity between
AMR and SPARQL 3) Optimization mismatch:
Smatch, the optimization objective for AMR train-
ing, is sub-optimal for KBQA. NSQA requires a
particular subset of paths to be correctly extracted,
whereas the standard AMR metric Smatch focuses
equally on all edge-node triples. We are therefore
exploring alternative metrics and how to incorpo-
rate them into model training.

6 Conclusion and Future Work

To the best of our knowledge, NSQA is the first
system that successfully harnesses a generic se-
mantic parser, particularly AMR, for a KBQA task.
Our path-based approach to map AMR to the un-
derlying KG such as DBpedia is first of its kind

with promising results in handling compositional
queries. NSQA is a modular system where each
modules are trained separately for its own task,
hence not requiring end-to-end KBQA training. In
future, we will explore the potential of the more
expressive intermediate logic form with the neuro-
symbolic reasoner for KBQA. Particularly, we in-
tend to focus on extending NSQA for temporal
reasoning and making it robust to handle incom-
pleteness and inconsistencies in knowledge bases.
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