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Abstract

Humans have been shown to give contrastive
explanations, which explain why an observed
event happened rather than some other coun-
terfactual event (the contrast case). De-
spite the influential role that contrastivity
plays in how humans explain, this property
is largely missing from current methods for
explaining NLP models. We present MIN-
IMAL CONTRASTIVE EDITING (MICE), a
method for producing contrastive explanations
of model predictions in the form of edits
to inputs that change model outputs to the
contrast case. Our experiments across three
tasks—binary sentiment classification, topic
classification, and multiple-choice question
answering—show that MICE is able to pro-
duce edits that are not only contrastive, but
also minimal and fluent, consistent with human
contrastive edits. We demonstrate how MICE
edits can be used for two use cases in NLP sys-
tem development—debugging incorrect model
outputs and uncovering dataset artifacts—and
thereby illustrate that producing contrastive ex-
planations is a promising research direction for
model interpretability.

1 Introduction

Cognitive science and philosophy research has
shown that human explanations are contrastive
(Miller, 2019): People explain why an observed
event happened rather than some counterfactual
event called the contrast case. This contrast case
plays a key role in modulating what explanations
are given. Consider Figure 1. When we seek an ex-
planation of the model’s prediction “by train,” we
seek it not in absolute terms, but in contrast to an-
other possible prediction (i.e. “on foot”). Addition-
ally, we tailor our explanation to this contrast case.
For instance, we might explain why the prediction
is “by train” and not “on foot” by saying that the
writer discusses meeting Ann at the train station

Figure 1: An example MICE edit for a multiple-choice
question from the RACE dataset. MICE generates con-
trastive explanations in the form of edits to inputs that
change model predictions to target (contrast) predic-
tions. The edit (bolded in red) is minimal and fluent,
and it changes the model’s prediction from “by train” to
the contrast prediction “on foot” (highlighted in gray).

instead of at Ann’s home on foot; such information
is captured by the edit (bolded red) that results in
the new model prediction “on foot.” For a differ-
ent contrast prediction, such as “by car,” we would
provide a different explanation. In this work, we
propose to give contrastive explanations of model
predictions in the form of targeted minimal edits, as
shown in Figure 1, that cause the model to change
its original prediction to the contrast prediction.

Given the key role that contrastivity plays in
human explanations, making model explanations
contrastive could make them more user-centered
and thus more useful for their intended purposes,
such as debugging and exposing dataset biases
(Ribera and Lapedriza, 2019)—purposes which re-
quire that humans work with explanations (Alvarez-
Melis et al., 2019). However, many currently pop-
ular instance-based explanation methods produce
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highlights—segments of input that support a pre-
diction (Zaidan et al., 2007; Lei et al., 2016; Chang
et al., 2019; Bastings et al., 2019; Yu et al., 2019;
DeYoung et al., 2020; Jain et al., 2020; Belinkov
and Glass, 2019) that can be derived through gradi-
ents (Simonyan et al., 2014; Smilkov et al., 2017;
Sundararajan et al., 2017), approximations with
simpler models (Ribeiro et al., 2016), or attention
(Wiegreffe and Pinter, 2019; Sun and Marasović,
2021). These methods are not contrastive, as they
leave the contrast case undetermined; they do not
tell us what would have to be different for a model
to have predicted a particular contrast label.1

As an alternative approach to NLP model expla-
nation, we introduce MINIMAL CONTRASTIVE
EDITING (MICE)—a two-stage approach to gen-
erating contrastive explanations in the form of tar-
geted minimal edits (as shown in Figure 1). Given
an input, a fixed PREDICTOR model, and a contrast
prediction, MICE generates edits to the input that
change the PREDICTOR’s output from the original
prediction to the contrast prediction. We formally
define our edits and describe our approach in §2.

We design MICE to produce edits with prop-
erties motivated by human contrastive explana-
tions. First, we desire edits to be minimal, alter-
ing only small portions of input, a property which
has been argued to make explanations more intel-
ligible (Alvarez-Melis et al., 2019; Miller, 2019).
Second, MICE edits should be fluent, resulting
in text natural for the domain and ensuring that
any changes in model predictions are not driven
by inputs falling out of distribution of naturally
occurring text. Our experiments (§3) on three
English-language datasets, IMDB, NEWSGROUPS,
and RACE, validate that MICE edits are indeed
contrastive, minimal, and fluent.

We also analyze the quality of MICE edits (§4)
and show how they may be used for two use cases
in NLP system development. First, we show that
MICE edits are comparable in size and fluency to
human edits on the IMDB dataset. Next, we illus-
trate how MICE edits can facilitate debugging in-
dividual model predictions. Finally, we show how
MICE edits can be used to uncover dataset artifacts
learned by a powerful PREDICTOR model.2

1Free-text rationales (Narang et al., 2020) can be con-
trastive if human justifications are collected by asking “why...
instead of...” which is not the case with current benchmarks
(Camburu et al., 2018; Rajani et al., 2019; Zellers et al., 2019).

2Our code and trained EDITOR models are publicly avail-
able at https://github.com/allenai/mice.

2 MICE: Minimal Contrastive Editing

This section describes our proposed method, MINI-
MAL CONTRASTIVE EDITING, or MICE, for ex-
plaining NLP models with contrastive edits.

2.1 MICE Edits as Contrastive Explanations

Contrastive explanations are answers to questions
of the form Why p and not q? They explain why
the observed event p happened instead of another
event q, called the contrast case.3 A long line of
research in the cognitive sciences and philosophy
has found that human explanations are contrastive
(Van Fraassen, 1980; Lipton, 1990; Miller, 2019).
Human contrastive explanations have several hall-
mark characteristics. First, they cite contrastive
features: features that result in the contrast case
when they are changed in a particular way (Chin-
Parker and Cantelon, 2017). Second, they are min-
imal in the sense that they rarely cite the entire
causal chain of a particular event, but select just a
few relevant causes (Hilton, 2017). In this work,
we argue that a minimal edit to a model input that
causes the model output to change to the contrast
case has both these properties and can function as
an effective contrastive explanation. We first give
an illustration of contrastive explanations humans
might give and then show how minimal contrastive
edits offer analogous contrastive information.

As an example, suppose we want to explain why
the answer to the question “Q: Where can you find
a clean pillow case that is not in use?” is “A: the
drawer.”4 If someone asks why the answer is not
“C1: on the bed,” we might explain: “E1: Because
only the drawer stores pillow cases that are not
in use.” However, E1 would not be an explana-
tion of why the answer is not “C2: in the laundry
hamper,” since both drawers and laundry hampers
store pillow cases that are not in use. For contrast
case C2, we might instead explain: “E2: Because
only laundry hampers store pillow cases that are
not clean.” We cite different parts of the original
question depending on the contrast case.

In this work, we propose to offer contrastive ex-
planations in the form of minimal edits that result
in the contrast case as model output. Such edits are
effective contrastive explanations because, by con-
struction, they highlight contrastive features. For

3Related work also calls it the foil (Miller, 2019).
4Inspired by an example in Talmor et al. (2019): Question:

“Where would you store a pillow case that is not in use?”
Choices: “drawer, kitchen cupboard, bedding store, england.”

https://github.com/allenai/mice
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Figure 2: An overview of MICE, our two-stage approach to generating edits. In Stage 1 (§2.3), we train the
EDITOR to make edits targeting specific predictions from the PREDICTOR. In Stage 2 (§2.4), we make contrastive
edits with the EDITOR model from Stage 1 such that the PREDICTOR changes its output to the contrast prediction.

example, a contrastive edit of the original question
for contrast case C1 would be: “Where can you find
a clean pillow case that is not in use?”; the informa-
tion provided by this edit—that it is whether or not
the pillow case is in use that determines whether
the answer is “the drawer” or “on the bed”—is anal-
ogous to the information provided by E1. Similarly,
a contrastive edit for contrast case C2 that changed
the question to “Where can you find a clean dirty
pillow case that is not in use?” provides analogous
information to E2.

2.2 Overview of MICE
We define a contrastive edit to be a modifica-
tion of an input instance that causes a PREDIC-
TOR model (whose behavior is being explained)
to change its output from its original prediction
for the unedited input to a given target (contrast)
prediction. Formally, for textual inputs, given a
fixed PREDICTOR f , input x = (x1, x2, ..., xN )
of N tokens, original prediction f(x) = yp and
contrast prediction yc 6= yp, a contrastive edit is a
mapping e : (x1, ..., xN ) ! (x01, ..., x

0
M ) such that

f(e(x)) = yc.
We propose MICE, a two-stage approach to gen-

erating contrastive edits, illustrated in Figure 2. In
Stage 1, we prepare a highly-contextualized EDI-
TOR model to associate edits with given end-task
labels (i.e., labels for the task of the PREDICTOR)
such that the contrast label yc is not ignored in
MICE’s second stage. Intuitively, we do this by
masking the spans of text that are “important” for
the given target label (as measured by the PREDIC-
TOR’s gradients) and training our EDITOR to recon-
struct these spans of text given the masked text and

target label as input. In Stage 2 of MICE, we gener-
ate contrastive edits e(x) using the EDITOR model
from Stage 1. Specifically, we generate candidate
edits e(x) by masking different percentages of x
and giving masked inputs with prepended contrast
label yc to the EDITOR; we use binary search to
find optimal masking percentages and beam search
to keep track of candidate edits that result in the
highest probability of the contrast labels p(yc|e(x))
given by the PREDICTOR.

2.3 Stage 1: Fine-tuning the EDITOR

In Stage 1 of MICE, we fine-tune the EDITOR to
infill masked spans of text in a targeted manner.
Specifically, we fine-tune a pretrained model to in-
fill masked spans given masked text and a target
end-task label as input. In this work, we use the
TEXT-TO-TEXT TRANSFER TRANSFORMER (T5)
model (Raffel et al., 2020) as our pretrained EDI-
TOR, but any model suitable for span infilling can
in principle be the EDITOR in MICE. The addition
of the target label allows the highly-contextualized
EDITOR to condition its predictions on both the
masked context and the given target label such that
the contrast label is not ignored in Stage 2. What to
use as target labels during Stage 1 depends on who
the end-users of MICE are. The end-user could
be: (1) a model developer who has access to the
labeled data used to train the predictor, or (2) lay-
users, domain experts, or other developers without
access to the labeled data. In the former case, we
could use the gold label as targets, and in the latter
case, we could use the labels predicted by PREDIC-
TOR. Therefore, during fine-tuning, we experiment
with using both gold labels and original predictions
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yp of our PREDICTOR model as target labels. To
provide target labels, we prepend them to inputs
to the EDITOR. For more information about how
these inputs are formatted, see Appendix B. Results
in Table 2 show that fine-tuning with target labels
results in better edits than fine-tuning without them.

The above procedure allows our EDITOR to con-
dition its infilled spans on both the context and the
target label. But this still leaves open the ques-
tion of where to mask our text. Intuitively, we
want to mask the tokens that contribute most to
the PREDICTOR’s predictions, since these are the
tokens that are most strongly associated with the
target label. We propose to use gradient attribu-
tion (Simonyan et al., 2014) to choose tokens to
mask. For each instance, we take the gradient of
the predicted logit for the target label with respect
to the embedding layers of f and take the `1 norm
across the embedding dimension. We then mask
the n1% of tokens with the highest gradient norms.
We replace consecutive tokens (i.e., spans) with
sentinel tokens, following Raffel et al. (2020). Re-
sults in Table 1 show that gradient-based masking
outperforms random masking.

2.4 Stage 2: Making Edits with the EDITOR

In the second stage of our approach, we use our fine-
tuned EDITOR to make edits using beam search
(Reddy, 1977). In each round of edits, we mask
consecutive spans of n2% of tokens in the original
input, prepend the contrast prediction to the masked
input, and feed the resulting masked instance to the
EDITOR; the EDITOR then generates m edits. The
masking procedure during this stage is gradient-
based as in Stage 1.

In one round of edits, we conduct a binary search
with s levels over values of n2 between values
n2 = 0% to n2 = 55% to efficiently find a value
of n2 that is large enough to result in the contrast
prediction while also modifying only minimal parts
of the input. After each round of edits, we get f ’s
predictions on the edited inputs, order them by con-
trast prediction probabilities, and update the beam
to store the top b edited instances. As soon as an
edit e⇤ = e(t) is found that results in the contrast
prediction, i.e., f(e⇤) = yc, we stop the search
procedure and return this edit. For generation, we
use a combination of top-k (Fan et al., 2018) and
top-p (nucleus) sampling (Holtzman et al., 2020).5

5We use this combination because we observed in prelimi-
nary experiments that it led to good results.

3 Evaluation

This section presents empirical findings that MICE
produces minimal and fluent contrastive edits.

3.1 Experimental Setup
Tasks We evaluate MICE on three English-
language datasets: IMDB, a binary sentiment clas-
sification task (Maas et al., 2011), a 6-class ver-
sion of the 20 NEWSGROUPS topic classification
task (Lang, 1995), and RACE, a multiple choice
question-answering task (Lai et al., 2017).6

PREDICTORS MICE can be used to make con-
trastive edits for any differentiable PREDICTOR
model, i.e., any end-to-end neural model. In this
paper, for each task, we train a PREDICTOR model
f built on ROBERTA-LARGE (Liu et al., 2019),
and fix it during evaluation. The test accuracies
of our PREDICTORS are 95.9%, 85.3% and 84%
for IMDB, NEWSGROUPS, and RACE, respectively.
For training details, see Appendix A.1.

EDITORS Our EDITORS build on the base ver-
sion of T5. For fine-tuning our EDITORS (Stage 1),
we use the original training data used to train PRE-
DICTORS. We randomly split the data, 75%/25%
for fine-tuning/validation and fine-tune until the
validation loss stops decreasing (for a max of 10
epochs) with n1% of tokens masked, where n1 is
a randomly chosen value in [20, 55]. For more
details, see Appendix A.2. In Stage 2, for each
instance, we set the label with the second highest
predicted probability as the contrast prediction. We
set beam width b = 3, consider s = 4 search levels
during binary search over n2 in each edit round,
and run our search for a max of 3 edit rounds. For
each n2, we sample m = 15 generations from our
fine-tuned EDITORS with p = 0.95, k = 30.7

Metrics We evaluate MICE on the test sets of
the three datasets. The RACE and NEWSGROUPS
test sets contain 4,934 and 7,307 instances, respec-
tively.8 For IMDB, we randomly sample 5K of the

6We create this 6-class version by mapping the 20 exist-
ing subcategories to their respective larger categories—i.e.
“talk.politics.guns” and “talk.religion.misc” ! “talk.” We do
this in order to make the label space smaller. The resulting
classes are: alt, comp, misc, rec, sci, and talk.

7We tune these hyperparameters on a 50-instance subset
of the IMDB validation set prior to evaluation. We note that
for larger values of n2, the generations produced by the T5
EDITORS sometimes degenerate; see Appendix C for details.

8For the NEWSGROUPS test set, there are 7,307 instances
remaining after filtering out empty strings.
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MICE
VARIANT

IMDB NEWSGROUPS RACE
" # ⇡ 1 " # ⇡ 1 " # ⇡ 1

Flip Rate Minim. Fluen. Flip Rate Minim. Fluen. Flip Rate Minim. Fluen.

*PRED + GRAD 1.000 0.173 0.981 0.992 0.261 0.968 0.915 0.331 0.981
*GOLD + GRAD 1.000 0.185 0.979 0.992 0.271 0.966 0.945 0.335 0.979

PRED + RAND 1.000 0.257 0.958 0.968 0.378 0.928 0.799 0.440 0.953
GOLD + RAND 1.000 0.302 0.952 0.965 0.370 0.929 0.801 0.440 0.955

NO-FINETUNE 0.995 0.360 0.960 0.941 0.418 0.938 – – –

Table 1: Efficacy of the MICE procedure. We evaluate MICE edits on three metrics (described in §3.1): flip rate,
minimality, and fluency. We report mean values for minimality and fluency. * marks full MICE variants; others
explore ablations. For each property (i.e., column), the best value across MICE variants is bolded. We experiment
with PREDICTOR’s predictions (PRED) and gold labels (GOLD) as target labels during Stage 1. Across datasets,
our GRAD MICE procedure achieves a high flip rate with small and fluent edits.

25K instances in the test set for evaluation because
of the computational demands of evaluation.9

For each dataset, we measure the following three
properties: (1) flip rate: the proportion of in-
stances for which an edit results in the contrast
label; (2) minimality: the “size” of the edit as
measured by the word-level Levenshtein distance
between the original and edited input, which is the
minimum number of deletions, insertions, or sub-
stitutions required to transform one into the other.
We report a normalized version of this metric with
a range from 0 to 1—the Levenshtein distance di-
vided by the number of words in the original in-
put; (3) fluency: a measure of how similarly dis-
tributed the edited output is to the original data. We
evaluate fluency by comparing masked language
modeling loss on both the original and edited inputs
using a pretrained model. Specifically, given the
original N -length sequence, we create N copies,
each with a different token replaced by a mask to-
ken, following Salazar et al. (2020). We then take
a pretrained T5-BASE model and compute the aver-
age loss across these N copies. We compute this
loss value for both the original input and edited
input and report their ratio—i.e., edited / original.
We aim for a value of 1.0, which indicates equiva-
lent losses for the original and edited texts. When
MICE finds multiple edits, we report metrics for
the edit with the smallest value for minimality.

3.2 Results

Results are shown in Table 1. Our proposed GRAD
MICE procedure (upper part of Table 1) achieves a

9A single contrastive edit is expensive and takes an average
of ⇡ 15 seconds per IMDB instance (⇡ 230 tokens). Calculat-
ing the fluency metric adds an additional average of ⇡ 16.5
seconds per IMDB instance. For more details, see Section 5.

high flip rate across all three tasks. This is the out-
come regardless of whether predicted target labels
(first row, 91.5–100% flip rate) or gold target labels
(second row, 94.5–100% flip rate) are used for fine-
tuning in Stage 1. We observe a slight improvement
from using the gold labels for the RACE PREDIC-
TOR, which may be explained by the fact that it is
less accurate (with a training accuracy of 89.9%)
than the IMDB and NEWSGROUPS classifiers.

MICE achieves a high flip-rate while its edits
remain small and result in fluent text. In particular,
MICE on average changes 17.3–33.1% of the origi-
nal tokens when predicted labels are used in Stage 1
and 18.5–33.5% with gold labels. Fluency is close
to 1.0 indicating no notable change in mask lan-
guage modeling loss after the edit—i.e., edits fall
in distribution of the original data. We achieve the
best results across metrics on the IMDB dataset, as
expected since IMDB is a binary classification task
with a small label space. These results demonstrate
that MICE presents a promising research direction
for the generation of contrastive explanations; how-
ever, there is still room for improvement, especially
for more challenging tasks such as RACE.

In the rest of this section, we provide results
from several ablation experiments.

Fine-tuning vs. No Fine-tuning We investigate
the effect of fine-tuning (Stage 1) with a base-
line that skips Stage 1 altogether. For this NO-
FINETUNE baseline variant of MICE, we use the
vanilla pretrained T5-BASE as our EDITOR. As
shown in Table 1, the NO-FINETUNE variant un-
derperforms all other (two-stage) variants of MICE
for the IMDB and NEWSGROUPS datasets.10 Fine-

10We leave RACE out from our evaluation with the NO-
FINETUNE baseline because we observe that the pretrained
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IMDB Condition " # ⇡ 1
Stage 1 Stage 2 Flip Rate Minim. Fluen.

No Label No Label 0.994 0.369 0.966
No Label Label 0.997 0.362 0.967
Label No Label 0.999 0.327 0.968

Label Label 1.000 0.173 0.981

Table 2: Effect of using target end-task labels during
the two stages of PRED+GRAD MICE on the IMDB
dataset. When end-task labels are provided, they are
original PREDICTOR labels during Stage 1 and contrast
labels during Stage 2. The best values for each property
(column) are bolded. Using end-task labels during both
Stage 1 (EDITOR fine-tuning) and Stage 2 (making ed-
its) of MICE outperforms all other conditions.

tuning particularly improves the minimality of ed-
its, while leaving the flip rate high. We hypothesize
that this effect is due to the effectiveness of Stage
2 of MICE at finding contrastive edits: Because
we iteratively generate many candidate edits using
beam search, we are likely to find a prediction-
flipping edit. Fine-tuning allows us to find such an
edit at a lower masking percentage.

Gradient vs. Random Masking We study the
impact of using gradient-based masking in Stage
1 of the MICE procedure with a RAND variant,
which masks spans of randomly chosen tokens. As
shown in the middle part of Table 1, gradient-based
masking outperforms random masking when using
both predicted and gold labels across all three tasks
and metrics, suggesting that the gradient-based at-
tribution used to mask text during Stage 1 of MICE
is an important part of the procedure. The differ-
ences are especially notable for RACE, which is the
most challenging task according to our metrics.

Targeted vs. Un-targeted Infilling We investi-
gate the effect of using target labels in both stages
of MICE by experimenting with removing target
labels during Stage 1 (EDITOR fine-tuning) and
Stage 2 (making edits). As shown in Table 2, we
observe that giving target labels to our EDITORS
during both stages of MICE improves edit qual-
ity. Fine-tuning EDITORS without labels in Stage 1
(“No Label”) leads to worse flip rate, minimality,
and fluency than does fine-tuning EDITORS with la-
bels (“Label”). Minimality is particularly affected,
and we hypothesize that using target end-task la-

T5 model does not generate text formatted as span infills; we
hypothesize that this model has not been trained to generate
infills for masked inputs formatted as multiple choice inputs.

bels in both stages provides signal that allows the
EDITOR in Stage 2 to generate prediction-flipping
edits at lower masking percentages.

4 Analysis of Edits

In this section, we compare MICE edits with hu-
man contrastive edits. Then, we turn to a key mo-
tivation for this work: the potential for contrastive
explanations to assist in NLP system development.
We show how MICE edits can be used to debug
incorrect predictions and uncover dataset artifacts.

4.1 Comparison with Human Edits
We ask whether the contrastive edits produced by
MICE are minimal and fluent in a meaningful
sense. In particular, we compare these two met-
rics for MICE edits and human contrastive edits.
We work with the IMDB contrast set created by
Gardner et al. (2020), which consists of original
test inputs and human-edited inputs that cause a
change in true label. We report metrics on the sub-
set of this contrast set for which the human-edited
inputs result in a change in model prediction for our
IMDB PREDICTOR; this subset consists of 76 in-
stances. The flip rate of MICE edits on this subset
is 100%. The mean minimality values of human
and MICE edits are 0.149 (human) and 0.179
(MICE), and the mean fluency values are 1.01 (hu-
man) and 0.949 (MICE). The similarity of these
values suggests that MICE edits are comparable to
human contrastive edits along these dimensions.

We also ask to what extent human edits overlap
with MICE edits. For each input, we compute the
overlap between the original tokens changed by hu-
mans and the original tokens edited by MICE. The
mean number of overlapping tokens, normalized by
the number of original tokens edited by humans, is
0.298. Thus, while there is some overlap between
MICE and human contrastive edits, they gener-
ally change different parts of text.11 This analysis
suggests that there may exist multiple informative
contrastive edits for a single input. Future work
can investigate and compare the different kinds of
insight that can be obtained through human and
model-driven contrastive edits.

4.2 Use Case 1: Debugging Incorrect Outputs
Here, we illustrate how MICE edits can be used to
debug incorrect model outputs. Consider the RACE

11MICE edits explain PREDICTORS’ behavior and therefore
need not be similar to human edits, which are designed to
change gold labels.
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IMDB

Original pred yp = positive Contrast pred yc = negative

An interesting pairing of stories, this little flick manages to bring together seemingly different characters and
story lines all in the backdrop of WWII and succeeds in tying them together without losing the audience.
I was impressed by the depth portrayed by the different characters and also by how much I really felt I
understood them and their motivations, even though the time spent on the development of each character was
very limited. The outstanding acting abilities of the individuals involved with this picture are easily noted. A
fun, stylized movie with a slew of comic moments and a bunch more head shaking events. 7/10 4/10

RACE

Question: Mark went up in George’s plane .
(a) twice (b) only once (c) several times (d) once or twice.

Original pred yp = (a) twice Contrast pred yc = (b) only once

When George was thirty-five, he bought a small plane and learned to fly it. He soon became very good and
made his plane do all kinds of tricks. George had a friend, whose name was Mark. One day George offered to
take Mark up in his plane. Mark thought, "I’ve traveled in a big plane several times, but I’ve never been in a
small one, so I’ll go." They went up, and George flew around for half an hour and did all kinds of tricks in the
air. When they came down again, Mark was glad to be back safely, and he said to his friend in a shaking voice,
"Well, George, thank you very much for those two trips tricks in your plane." George was very surprised and
said, "Two trips? tricks." Yes, That’s my first and my last time, George." answered said Mark.

Table 3: Examples of edits produced by MICE. Insertions are bolded in red. Deletions are struck through. yp is
the PREDICTOR’s original prediction, and yc the contrast prediction. True labels for original inputs are underlined.

input in Table 3, for which the RACE PREDICTOR
gives an incorrect prediction. In this case, a model
developer may want to understand why the model
got the answer wrong. This setting naturally brings
rise to a contrastive question, i.e., Why did the
model predict the wrong choice (“twice”) instead
of the correct one (“only once”)?

The MICE edit shown offers insight into this
question: Firstly, it highlights which part of
the paragraph has an influence on the model
prediction—the last few sentences. Secondly, it
reveals that a source of confusion is Mark’s joke
about having traveled in George’s plane twice, as
changing Mark’s dialogue from talking about a
“first and...last” trip to a single trip results in a cor-
rect model prediction.

MICE edits can also be used to debug model
capabilities by offering hypotheses about “bugs”
present in models: For instance, the edit in Table
3 might prompt a developer to investigate whether
this PREDICTOR lacks non-literal language under-
standing capabilities. In the next section, we show
how insight from individual MICE edits can be
used to uncover a bug in the form of a dataset-level
artifact learned by a model. In Appendix D, we fur-
ther analyze the debugging utility of MICE edits
with a PREDICTOR designed to contain a bug.

4.3 Use Case 2: Uncovering Dataset Artifacts
Manual inspection of some edits for IMDB suggests
that the IMDB PREDICTOR has learned to rely heav-
ily on numerical ratings. For instance, in the IMDB
example in Table 3, the MICE edit results in a neg-

yc = positive yc = negative
Removed Inserted Removed Inserted

4/10 excellent 10/10 awful
ridiculous enjoy 8/10 disappointed
horrible amazing 7/10 1

4 entertaining 9 4
predictable 10 enjoyable annoying

Table 4: Top 5 IMDB tokens edited by MICE at a higher
rate than expected given their original frequency (§4.3).
Results are separated by contrast predictions.

ative prediction from the PREDICTOR even though
the edited text is overwhelmingly positive. We test
this hypothesis by investigating whether numerical
tokens are more likely to be edited by MICE.

We analyze the edits produced by MICE (GOLD
+ GRAD) described in §3.1. We limit our analy-
sis to a subset of the 5K instances for which the
edit produced by MICE has a minimality value of
0.05, as we are interested in finding simple arti-
facts driving the predictions of the IMDB PREDIC-
TOR; this subset has 902 instances. We compute
three metrics for each unique token, i.e., type t:

p(t) = #_occurrences(t)/ #_all_tokens,
pr(t) = #_removals(t)/ #_all_removals,

pi(t) = #_insertions(t)/ #_all_insertions,

and report the tokens with the highest values for
the ratios pr(t)/p(t) and pi(t)/p(t). Intuitively,
these tokens are removed/inserted at a higher rate
than expected given the frequency with which they
appear in the original IMDB inputs. We exclude
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tokens that occur <10 times from our analysis.
Results from this analysis are shown in Table

4. In line with our hypothesis, we observe a bias
towards removing low numerical ratings and insert-
ing high ratings when the contrast prediction yc is
positive, and vice versa when yc is negative. In
other words, in the presence of a numerical score,
the PREDICTOR may ignore the content of the re-
view and base its prediction solely on the score (as
in the IMDB example in Table 3).

5 Discussion
In this section, we reflect on MICE’s shortcom-
ings. Foremost, MICE is computationally expen-
sive. Stage 1 requires fine-tuning a large pretrained
generation model as the EDITOR. More signifi-
cantly, Stage 2 requires multiple rounds of forward
and backward passes to find a minimal edit: Each
edit round in Stage 2 requires b⇥ s⇥m decoded
sequences with the EDITOR, as well as b⇥s⇥m for-
ward passes and b backward passes with the PRE-
DICTOR (with b = 1 the first edit round), where b
is the beam width, s is the number of search levels
in binary search over the masking percentages, and
m is the number of generations sampled for each
masking percentage. Our experiments required
180 forward passes, 180 decoded sequences, and 3
backward passes for edit rounds after the first.

While efficient search for targeted edits is an
open challenge in other fields of machine learning
(Russell, 2019; Dandl et al., 2020), this problem
is even more challenging for language data, as the
space of possible perturbations is much larger than
for tabular data. An important future direction is to
develop more efficient methods of finding edits.

This shortcoming prevents us from finding edits
that are minimal in a precise sense. In particular,
we may be interested in a constrained notion of min-
imality that defines an edit e(x) as minimal if there
exists no subset of e(x) that results in the contrast
prediction. Future work might consider creating
methods to produce edits with this property.

6 Related Work
The problem of generating minimal contrastive
edits, also called counterfactual explanations
(Wachter et al., 2017),12 has previously been ex-
plored for tabular data (Karimi et al., 2020) and

12Formally, methods for producing targeted counterfactual
explanations solve the same task as MICE. However, not all
contrastive explanations are counterfactual explanations; con-
trastive explanations can take forms beyond contrastive edits,

images (Hendricks et al., 2018; Goyal et al., 2019;
Looveren and Klaise, 2019) but less for language.
Recent work explores the use of minimal edits
changing true labels for evaluation (Gardner et al.,
2020) and data augmentation (Kaushik et al., 2020;
Teney et al., 2020), whereas we focus on minimal
edits changing model predictions for explanation.

Contrastive Explanations within NLP There
exist limited methods for automatically generating
contrastive explanations of NLP models. Jacovi
and Goldberg (2020) define contrastive highlights,
which are determined by the inclusion of con-
trastive features; in contrast, our contrastive edits
specify how to edit (vs. whether to include) features
and can insert new text.13 Li et al. (2020a) generate
counterfactuals using linguistically-informed trans-
formations (LIT), and Yang et al. (2020) generate
counterfactuals for binary financial text classifi-
cation using grammatically plausible single-word
edits (REP-SCD). Because both methods rely on
manually curated, task-specific rules, they cannot
be easily extended to tasks without predefined label
spaces, such as RACE.14 Most recently, Jacovi et al.
(2021) propose a method for producing contrastive
explanations in the form of latent representations;
in contrast, MICE edits are made at the textual
level and are therefore more interpretable.

This work also has ties to the literature on causal
explanation (Pearl, 2009). Recent work within
NLP derives causal explanations of models through
counterfactual interventions (Feder et al., 2021; Vig
et al., 2020). The focus of our work is the largely
unexplored task of creating targeted interventions
for language data; however, the question of how to
derive causal relationships from such interventions
remains an interesting direction for future work.

Counterfactuals Beyond Explanations Con-
current work by Madaan et al. (2021) applies con-

such as free-text rationales (Liang et al., 2020) or highlights
(Jacovi and Goldberg, 2020). In this paper, we choose to refer
to MICE edits as “contrastive” rather than “counterfactual”
because we seek to argue for the utility of contrastive expla-
nations of model predictions more broadly; we present MICE
as one method for producing contrastive explanations of a
particular form and hope future work will explore different
forms of contrastive explanations.

13See Appendix D for a longer discussion about the ad-
vantage of inserting new text in explanations, which MICE
edits can do but methods that attribute feature importance (i.e.
highlights) cannot.

14LIT relies on hand-crafted transformation for NLI
tasks based on linguistic knowledge, and REP-SCD makes
antonym-based edits using manually curated, domain-specific
lexicons for each label.
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trolled text generation methods to generate targeted
counterfactuals and explores their use as test cases
and augmented examples in the context of clas-
sification. Another concurrent work by Wu et al.
(2021) presents POLYJUICE, a general-purpose, un-
targeted counterfactual generator. Very recent work
by Sha et al. (2021), introduced after the submis-
sion of MICE, proposes a method for targeted con-
trastive editing for Q&A that selects answer-related
tokens, masks them, and generates new tokens. Our
work differs from these works in our novel frame-
work for efficiently finding minimal edits (MICE
Stage 2) and our use of edits as explanations.

Connection to Adversarial Examples Adver-
sarial examples are minimally edited inputs that
cause models to incorrectly change their predic-
tions despite no change in true label (Jia and Liang,
2017; Ebrahimi et al., 2018; Pal and Tople, 2020).
Recent methods for generating adversarial exam-
ples also preserve fluency (Zhang et al., 2019; Li
et al., 2020b; Song et al., 2020)15; however, ad-
versarial examples are designed to find erroneous
change in model outputs; contrastive edits place no
such constraint on model correctness. Thus, cur-
rent approaches to generating adversarial examples,
which can exploit semantics-preserving operations
(Ribeiro et al., 2018) such as paraphrasing (Iyyer
et al., 2018) or word replacement (Alzantot et al.,
2018; Ren et al., 2019; Garg and Ramakrishnan,
2020), cannot be used to generate contrastive edits.

Connection to Style Transfer The goal of style
transfer is to generate minimal edits to inputs to
result in a target style (sentiment, formality, etc.)
(Fu et al., 2018; Li et al., 2018; Goyal et al., 2020).
Most existing approaches train an encoder to learn
style-agnostic latent representation of inputs and
train attribute-specific decoders to generate text
reflecting the content of inputs but exhibiting a
different target attribute (Fu et al., 2018; Li et al.,
2018; Goyal et al., 2020). Recent works by Wu
et al. (2019) and Malmi et al. (2020) adopt two-
stage approaches that first identify where to make
edits and then make them using pretrained language
models. Such approaches can only be applied to
generate contrastive edits for classification tasks
with well-defined “styles,” which exclude more
complex tasks such as question answering.

15Song et al. (2020) propose a method to produce fluent se-
mantic collisions, which they call the “inverse” of adversarial
examples.

7 Conclusion

We argue that contrastive edits, which change the
output of a PREDICTOR to a given contrast pre-
diction, are effective explanations of neural NLP
models. We propose MINIMAL CONTRASTIVE
EDITING (MICE), a method for generating such
edits. We introduce evaluation criteria for con-
trastive edits that are motivated by human con-
trastive explanations—minimality and fluency—
and show that MICE edits for the IMDB, NEWS-
GROUPS, and RACE datasets are contrastive, flu-
ent, and minimal. Through qualitative analysis of
MICE edits, we show that they have utility for
robust and reliable NLP system development.

8 Broader Impact Statement

MICE is intended to aid the interpretation of NLP
models. As a model-agnostic explanation method,
it has the potential to impact NLP system devel-
opment across a wide range of models and tasks.
In particular, MICE edits can benefit NLP model
developers in facilitating debugging and exposing
dataset artifacts, as discussed in §4. As a conse-
quence, they can also benefit downstream users of
NLP models by facilitating access to less biased
and more robust systems.

While the focus of our work is on interpreting
NLP models, there are potential misuses of MICE
that involve other applications. Firstly, malicious
actors might employ MICE to generate adversarial
examples; for instance, they may aim to generate
hate speech that is minimally edited such that it
fools a toxic language classifier. Secondly, naively
applying MICE for data augmentation could plau-
sibly lead to less robust and more biased models:
Because MICE edits are intended to expose issues
in models, straightforwardly using them as addi-
tional training examples could reinforce existing
artifacts and biases present in data. To mitigate
this risk, we encourage researchers exploring data
augmentation to carefully think about how to select
and label edited instances.

We also encourage researchers to develop more
efficient methods of generating minimal contrastive
edits. As discussed in §5, a limitation of MICE is
its computational demand. Therefore, we recom-
mend that future work focus on creating methods
that require less compute.



3849

References
David Alvarez-Melis, Hal Daumé III, Jennifer Wort-

man Vaughan, and Hanna Wallach. 2019. Weight
of evidence as a basis for human-oriented expla-
nations. In Workshop on Human-Centric Machine
Learning at the 33rd Conference on Neural Informa-
tion Processing Systems (NeurIPS 2019), Vancouver,
Canada.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890–2896, Brussels, Belgium. Association
for Computational Linguistics.

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. 2019.
Interpretable neural predictions with differentiable
binary variables. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2963–2977, Florence, Italy. Associa-
tion for Computational Linguistics.

Yonatan Belinkov and James Glass. 2019. Analysis
Methods in Neural Language Processing: A Survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Nat-
ural language inference with natural language expla-
nations. In Advances in Neural Information Process-
ing Systems, volume 31, pages 9539–9549. Curran
Associates, Inc.

Shiyu Chang, Yang Zhang, Mo Yu, and Tommi
Jaakkola. 2019. A game theoretic approach to class-
wise selective rationalization. In Advances in Neural
Information Processing Systems, volume 32, pages
10055–10065. Curran Associates, Inc.

Seth Chin-Parker and Julie A Cantelon. 2017. Con-
trastive constraints guide explanation-based cate-
gory learning. Cognitive Science, 41 6:1645–1655.

Susanne Dandl, Christoph Molnar, Martin Binder, and
Bernd Bischl. 2020. Multi-objective counterfactual
explanations. In Parallel Problem Solving from Na-
ture – PPSN XVI, pages 448–469, Cham. Springer
International Publishing.

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,
Eric Lehman, Caiming Xiong, Richard Socher, and
Byron C. Wallace. 2020. ERASER: A benchmark to
evaluate rationalized NLP models. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4443–4458. Asso-
ciation for Computational Linguistics.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages

31–36, Melbourne, Australia. Association for Com-
putational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898, Melbourne, Australia. Association
for Computational Linguistics.

Amir Feder, Nadav Oved, Uri Shalit, and Roi Re-
ichart. 2021. CausaLM: Causal Model Explanation
Through Counterfactual Language Models. Compu-
tational Linguistics, pages 1–54.

Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao,
and Rui Yan. 2018. Style transfer in text: Explo-
ration and evaluation. In AAAI Conference on Artifi-
cial Intelligence.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
Nitish Gupta, Hannaneh Hajishirzi, Gabriel Ilharco,
Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel-
son F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer
Singh, Noah A. Smith, Sanjay Subramanian, Reut
Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou.
2020. Evaluating models’ local decision boundaries
via contrast sets. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1307–1323. Association for Computational Linguis-
tics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Siddhant Garg and Goutham Ramakrishnan. 2020.
BAE: BERT-based adversarial examples for text
classification. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 6174–6181. Associa-
tion for Computational Linguistics.

Navita Goyal, Balaji Vasan Srinivasan, N. Anand-
havelu, and Abhilasha Sancheti. 2020. Multi-
dimensional style transfer for partially annotated
data using language models as discriminators.
ArXiv, arXiv:2010.11578.

Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi
Parikh, and Stefan Lee. 2019. Counterfactual vi-
sual explanations. In Proceedings of the 36th In-
ternational Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Re-
search, pages 2376–2384, Long Beach, California,
USA. PMLR.

Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell,
and Zeynep Akata. 2018. Grounding visual expla-
nations. In Computer Vision – ECCV 2018, pages
269–286, Cham. Springer International Publishing.

https://www.microsoft.com/en-us/research/publication/weight-of-evidence-as-a-basis-for-human-oriented-explanations/
https://www.microsoft.com/en-us/research/publication/weight-of-evidence-as-a-basis-for-human-oriented-explanations/
https://www.microsoft.com/en-us/research/publication/weight-of-evidence-as-a-basis-for-human-oriented-explanations/
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/P19-1284
https://doi.org/10.18653/v1/P19-1284
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://proceedings.neurips.cc/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5ad742cd15633b26fdce1b80f7b39f7c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5ad742cd15633b26fdce1b80f7b39f7c-Paper.pdf
https://onlinelibrary.wiley.com/doi/epdf/10.1111/cogs.12405
https://onlinelibrary.wiley.com/doi/epdf/10.1111/cogs.12405
https://onlinelibrary.wiley.com/doi/epdf/10.1111/cogs.12405
https://arxiv.org/pdf/2004.11165.pdf
https://arxiv.org/pdf/2004.11165.pdf
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.18653/v1/P18-1082
https://doi.org/10.1162/coli_a_00404
https://doi.org/10.1162/coli_a_00404
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17015/15745
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17015/15745
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2020.findings-emnlp.117
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://arxiv.org/pdf/2010.11578.pdf
https://arxiv.org/pdf/2010.11578.pdf
https://arxiv.org/pdf/2010.11578.pdf
http://proceedings.mlr.press/v97/goyal19a.html
http://proceedings.mlr.press/v97/goyal19a.html
https://www.ecva.net/papers/eccv_2018/papers_ECCV/papers/Lisa_Anne_Hendricks_Grounding_Visual_Explanations_ECCV_2018_paper.pdf
https://www.ecva.net/papers/eccv_2018/papers_ECCV/papers/Lisa_Anne_Hendricks_Grounding_Visual_Explanations_ECCV_2018_paper.pdf


3850

Denis Hilton. 2017. Social Attribution and Explana-
tion. Oxford University Press.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learn-
ing Representations.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1875–1885, New
Orleans, Louisiana. Association for Computational
Linguistics.

Alon Jacovi and Y. Goldberg. 2020. Aligning faithful
interpretations with their social attribution. ArXiv,
arXiv:2006.01067.

Alon Jacovi, Swabha Swayamdipta, Shauli Ravfogel,
Yanai Elazar, Yejin Choi, and Yoav Goldberg. 2021.
Contrastive explanations for model interpretability.
ArXiv:2103.01378.

Sarthak Jain, Sarah Wiegreffe, Yuval Pinter, and By-
ron C. Wallace. 2020. Learning to faithfully rational-
ize by construction. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 4459–4473. Association for Com-
putational Linguistics.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031, Copenhagen, Denmark. Association for
Computational Linguistics.

Amir-Hossein Karimi, G. Barthe, B. Balle, and
I. Valera. 2020. Model-agnostic counterfactual ex-
planations for consequential decisions. Proceedings
of the 23rd International Conference on Artificial In-
telligence and Statistics (AISTATS).

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton.
2020. Learning the difference that makes a differ-
ence with counterfactually-augmented data. In Inter-
national Conference on Learning Representations.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
785–794, Copenhagen, Denmark. Association for
Computational Linguistics.

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 331–339.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 107–117, Austin,
Texas. Association for Computational Linguistics.

Chuanrong Li, Lin Shengshuo, Zeyu Liu, Xinyi Wu,
Xuhui Zhou, and Shane Steinert-Threlkeld. 2020a.
Linguistically-informed transformations (LIT): A
method for automatically generating contrast sets.
In Proceedings of the Third BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for
NLP, pages 126–135, Online. Association for Com-
putational Linguistics.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 1865–1874, New Orleans, Louisiana. Associ-
ation for Computational Linguistics.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020b. BERT-ATTACK: Adver-
sarial attack against BERT using BERT. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6193–6202. Association for Computational Linguis-
tics.

Weixin Liang, James Zou, and Zhou Yu. 2020. ALICE:
Active learning with contrastive natural language ex-
planations. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 4380–4391, Online. Associa-
tion for Computational Linguistics.

Peter Lipton. 1990. Contrastive explanation. Royal
Institute of Philosophy Supplement, 27:247–266.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, M. Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. ArXiv, arXiv:1907.11692.

Arnaud Van Looveren and Janis Klaise. 2019. Inter-
pretable counterfactual explanations guided by pro-
totypes. ArXiv, arXiv:1907.02584.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Nishtha Madaan, Inkit Padhi, Naveen Panwar, and Dip-
tikalyan Saha. 2021. Generate your counterfactu-
als: Towards controlled counterfactual generation
for text. In Proceedings of the AAAI Conference on
Artificial Intelligence.

https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199399550.001.0001/oxfordhb-9780199399550-e-33
https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199399550.001.0001/oxfordhb-9780199399550-e-33
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.18653/v1/N18-1170
https://doi.org/10.18653/v1/N18-1170
https://arxiv.org/pdf/2006.01067.pdf
https://arxiv.org/pdf/2006.01067.pdf
https://arxiv.org/abs/2103.01378
https://doi.org/10.18653/v1/2020.acl-main.409
https://doi.org/10.18653/v1/2020.acl-main.409
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
https://arxiv.org/pdf/1905.11190.pdf
https://arxiv.org/pdf/1905.11190.pdf
https://openreview.net/forum?id=Sklgs0NFvr
https://openreview.net/forum?id=Sklgs0NFvr
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=DADEF4D2488BD3A182CD53F5EA9CFB5C?doi=10.1.1.22.6286&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=DADEF4D2488BD3A182CD53F5EA9CFB5C?doi=10.1.1.22.6286&rep=rep1&type=pdf
https://doi.org/10.18653/v1/D16-1011
https://doi.org/10.18653/v1/2020.blackboxnlp-1.12
https://doi.org/10.18653/v1/2020.blackboxnlp-1.12
https://doi.org/10.18653/v1/N18-1169
https://doi.org/10.18653/v1/N18-1169
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.355
https://doi.org/10.18653/v1/2020.emnlp-main.355
https://doi.org/10.18653/v1/2020.emnlp-main.355
https://doi.org/10.1017/S1358246100005130
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.02584.pdf
https://arxiv.org/pdf/1907.02584.pdf
https://arxiv.org/pdf/1907.02584.pdf
https://www.aclweb.org/anthology/P11-1015
https://www.aclweb.org/anthology/P11-1015
https://arxiv.org/pdf/2012.04698.pdf
https://arxiv.org/pdf/2012.04698.pdf
https://arxiv.org/pdf/2012.04698.pdf


3851

Eric Malmi, Aliaksei Severyn, and Sascha Rothe. 2020.
Unsupervised text style transfer with padded masked
language models. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8671–8680. Associa-
tion for Computational Linguistics.

Tim Miller. 2019. Explanation in Artificial Intelli-
gence: Insights from the social sciences. Artificial
Intelligence, 267:1–38.

Sharan Narang, Colin Raffel, Katherine Lee, Adam
Roberts, Noah Fiedel, and Karishma Malkan. 2020.
WT5?! training text-to-text models to explain their
predictions. arXiv:2004.14546.

B. Pal and S. Tople. 2020. To transfer or not to trans-
fer: Misclassification attacks against transfer learned
text classifiers. ArXiv, arXiv:2001.02438.

Judea Pearl. 2009. Causality: Models, Reasoning and
Inference, 2nd edition. Cambridge University Press,
USA.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain yourself!
leveraging language models for commonsense rea-
soning. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 4932–4942, Florence, Italy. Association
for Computational Linguistics.

D Raj Reddy. 1977. Speech understanding systems: A
summary of results of the five-year research effort.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial ex-
amples through probability weighted word saliency.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
1085–1097, Florence, Italy. Association for Compu-
tational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should i trust you?": Explain-
ing the predictions of any classifier. Proceedings of
the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 856–865, Melbourne, Australia. Association
for Computational Linguistics.

Mireia Ribera and Àgata Lapedriza. 2019. Can We Do
Better Explanations? A Proposal of User-Centered
Explainable AI. In ACM IUI Workshop.

Chris Russell. 2019. Efficient search for diverse coher-
ent explanations. In Proceedings of the Conference
on Fairness, Accountability, and Transparency.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and
Katrin Kirchhoff. 2020. Masked language model
scoring. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 2699–2712. Association for Computa-
tional Linguistics.

Lei Sha, Patrick Hohenecker, and Thomas Lukasiewicz.
2021. Controlling text edition by changing answers
of specific questions. ArXiv:2105.11018.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. In 2nd International Conference on Learn-
ing Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Workshop Track Proceedings.

Jacob Sippy, Gagan Bansal, and Daniel S. Weld. 2020.
Data staining: A method for comparing faithfulness
of explainers. In 2020 ICML Workshop on Human
Interpretability in Machine Learning (WHI 2020).

D. Smilkov, Nikhil Thorat, Been Kim, F. Viégas, and
M. Wattenberg. 2017. Smoothgrad: removing noise
by adding noise. In ICML Workshop on Visualiza-
tion for Deep Learning.

Congzheng Song, Alexander Rush, and Vitaly
Shmatikov. 2020. Adversarial semantic collisions.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4198–4210, Online. Association for Computa-
tional Linguistics.

Kaiser Sun and Ana Marasović. 2021. Effective atten-
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