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Abstract
Context guides comprehenders’ expectations
during language processing, and information-
theoretic surprisal is commonly used as an in-
dex of cognitive processing effort. However,
prior work using surprisal has considered only
within-sentence context, using n-grams, neural
language models, or syntactic structure as con-
ditioning context. In this paper, we extend the
surprisal approach to use broader topical con-
text, investigating the influence of local and
topical context on processing via an analysis of
fMRI time courses collected during naturalis-
tic listening. Lexical surprisal calculated from
ngram and LSTM language models is used to
capture effects of local context; to capture the
effects of broader context a new metric based
on topic models, topical surprisal, is intro-
duced. We identify distinct patterns of neural
activation for lexical surprisal and topical sur-
prisal. These differing neuro-anatomical cor-
relates suggest that local and broad contextual
cues during sentence processing recruit differ-
ent brain regions and that those regions of
the language network functionally contribute
to processing different dimensions of contex-
tual information during comprehension. More
generally, our approach adds to a growing lit-
erature using methods from computational lin-
guistics to operationalize and test hypotheses
about neuro-cognitive mechanisms in sentence
processing.

1 Introduction

Narratives unfold over time and comprehenders in-
crementally process words and sentences. In order
to understand the current word and sentence, we
have to integrate current input with the information
from the previous context.

In characterizing this process, the notion of sur-
prisal from information theory has been preva-
lent in psycholinguistic modeling, following the
work of Hale (2001) and Levy (2008). Surprisal

operationalizes how unexpected a word is as its
pointwise information content given prior context,
�log P(wi|w1...wi�1). Generally the theory of sur-
prisal, as applied in the study of human language
comprehension, proposes that probabilistic predic-
tions made by comprehenders yield variability in
word-by-word processing difficulty: when surprisal
is high, the current word is unexpected and cogni-
tive processing effort increases accordingly. This
linking has been validated in prior work connect-
ing surprisal with measurable reflexes of cognitive
effort, using probabilities conditioned on lexical
(sequential) and syntactic contexts (e.g. Brennan
et al., 2016; Lopopolo et al., 2017; Brennan and
Hale, 2019; Shain et al., 2020).

In this paper, we extend the surprisal paradigm
beyond prior work looking only at local context, to
investigate the influence of broader contextual in-
formation during incremental sentence processing.
As an illustration, consider examples (a) and (b),
which illustrate that, while a word might be ex-
tremely difficult to predict given the immediate
local context, it might be less unexpected/more
predictable given the broader topic under discus-
sion. The actual word to be predicted here is China,
which is not at all predictable given the immedi-
ate context, but more likely in a longer discourse
about traveling (airplanes, places, world, geogra-
phy, etc).

(a) I could recognize at first glance

(b) So I had to choose another profession, and I
learned to fly airplanes. I flew a little in many
places around the world. And geography it’s
true has served me well. I could recognize at
first glance

Following prior studies, we use measures of
lexical surprisal to capture the influence of local
context, and we introduce a new measure, topical
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surprisal, to operationalize the predictive role of
broader context. We use both kinds of predictors to
investigate how processing based on different con-
textual cues differs in their mapping in the brain.
Specifically, our research questions are:

• How does the previous topical context affect
our expectations about the next word?

• How do local vs. broad contextual prediction
influence our incremental language process-
ing? Do they have distinct neural correlates?

We apply computational modeling to investigate
these questions in a way that would not be feasi-
ble in a more traditional, trial-based experimental
paradigm by taking advantage of data collected
using fMRI brain imaging during continuous, natu-
ralistic listening (Hamilton and Huth, 2020). This
data collection method has emerged as a new test-
ing ground for linking processing hypotheses with
neurobiological architectures in the brain (Maguire,
2012; Willems, 2015; Kandylaki and Bornkessel-
Schlesewsky, 2019). Using lexical surprisal and
our new measure of topical surprisal as computa-
tional predictors of cognitive activity, we demon-
strate that processing of local and broad context re-
cruits different brain regions, suggesting that those
regions of the language network functionally con-
tribute to processing different dimensions of con-
textual prediction during human language compre-
hension.

2 Background and Related Work

2.1 Surprisal as a cognitive measure
Prior neurolinguistic work has used surprisal as an
index of cognitive processing effort. Behavioral
measurements like self-paced reading are one way
to infer how much effort is involved while pro-
cessing some piece of linguistic input (e.g., Futrell
et al., 2021); other methods more directly measure
activity in the brain, including functional magnetic
resonance imaging (fMRI), which we will focus on
in this paper, as well as magnetoencephalography
(MEG) (e.g., Brodbeck et al., 2018) and electroen-
cephalography (EEG) (e.g., Ettinger et al., 2016;
Brennan and Hale, 2019; Michaelov and Bergen,
2020).

In such work, the logic is generally as follows.
First, as noted in §1 we assume that when a word
is less expected given the context, processing it
during comprehension will require more work in

the brain. Then, we computationally estimate a
model of surprisal using a corpus:

surprisalM (wi) = �log PM (wi|w1...wi�1) (1)

Two common instantiations for M include ngram
models and models conditioned on prior syntactic
context (Hale, 2001).

By the first assumption, the value of Eq (1) is
taken to be a predictor of processing effort at word
wi. Therefore, the key final step is to analyze the
relationship between that estimated effort, as pre-
dicted by the model, and observed activity mea-
sured in the brain. In the case of fMRI, neural
activity is measured by detecting changes associ-
ated with blood flow (see §4). When there are
significant correlations between the predicted ef-
fort, surprisalM , and activity in some region of the
brain, this constitutes evidence for that region be-
ing involved in processing of the information that
M has used in its predictions. For example, if the
brain activity in a region is correlated with an es-
timate of surprisal that uses syntactic predictions,
that provides evidence for that region being a locus
for human syntactic processing.

In prior work following this logic, using the sur-
prisal paradigm with fMRI to localize processing
associated with lexical and syntactic context, the
findings implicate a range of core regions of the
language network. Across different languages, lex-
ical surprisal recruits a mostly left-lateralized net-
work, predominantly consisting of Inferior Frontal
Gyrus, Interior Temporal Sulcus, Middle Frontal
Gyrus, Posterior Temporal regions, extending to
some bilateral regions, namely Anterior Tempo-
ral Lobe and Superior Temporal Gyrus (Brennan,
2016; Willems et al., 2016; Lopopolo et al., 2017;
Shain et al., 2020). Syntactic surprisal has also
mapped onto a left-lateralized network consisting
of the Inferior Parietal Lobule, Inferior Frontal
Gyrus, Middle Temporal Gyrus, along with some
evidence for bilateral processing in the Anterior
Temporal Lobe (Brennan et al., 2016; Henderson
et al., 2016; Lopopolo et al., 2017; Shain et al.,
2020).

2.2 Neural language models in cognitive
neuroscience

There has been a growing trend of using neural lan-
guage models in cognitive neuroscience research,
often using neural data collected from individuals



3788

during naturalistic listening.1 As one salient ex-
ample, Wehbe et al. (2014) investigated how well
vector representations predicted brain activity for
subjects reading fiction, in their case material from
Harry Potter and the Sorcerer’s Stone, based on
within-sentence context. Also working within the
sentence using naturalistic listening, Toneva et al.
(2020) derived composed representations of “supra-
word meaning” using contextualized word repre-
sentations (ELMo, Peters et al., 2018) to capture
the compositional meaning of multi-word expres-
sions and event/argument structure. Jain and Huth
(2018) make predictions of neural activity using
LSTM representations from up to the previous 20
words of context (which would be on the order of
8-10 seconds of speech on average).

Work of this kind has a number of dimensions
of variation. One is the nature of the neural mea-
surement, e.g. fMRI versus MEG, which relates
crucially to the cognitive questions being asked,
since some questions involve temporal locality, a
strength of MEG, and others involve spatial locality,
a strength of fMRI. Another dimension is the nature
of the training data for the computational model-
ing, e.g. material from the experimental dataset
(Harry Potter, as in Wehbe et al. (2014)) versus
a broader coverage corpus such as a large collec-
tion of Reddit comments as used by Jain and Huth
(2018)). Finally, there is the nature of the model
itself; for example, how much context it takes into
account and whether it involves, for example, non-
contextual word embeddings, sequentially derived
embeddings, or something else.

In this work, we use broad coverage corpora
such as COCA (Davies, 2008) or Wikipedia to
train our models. In addition to using ngram and
LSTM models to capture within-sentence context,
we introduce topical surprisal (§3.5), based on topic
modeling, as a way to look at functional localiza-
tion of correlates of broader, non-sequential con-
textual processing using fMRI.

3 fMRI Study

3.1 Method
We follow Brennan et al. (2012) in using a spo-
ken narrative as a stimulus. Participants hear a

1Although not directly relevant to the scientific strategy
we discuss here, we note that there is also a body of work that
goes in the other direction, using methods from psycholinguis-
tics and neuroscience to improve our understanding and use
of neural language models, e.g. Toneva and Wehbe (2019);
Ettinger (2020); Misra et al. (2020).

story over headphones while they are in the MRI
scanner. As we describe in greater detail in §4,
the sequence of neuroimages collected during their
session becomes the dependent variable in a re-
gression against word-by-word predictors that have
been derived from the text of the story.

3.2 Stimuli
The English audio stimulus was Antoine de Saint-
Exupéry’s The Little Prince, translated by David
Wilkinson and read by Karen Savage. It constitutes
a fairly lengthy exposure to naturalistic language,
comprising 19,171 tokens; 15,388 words and 1,388
sentences, and lasting over an hour and a half. The
Little Prince has been used in a number of previ-
ous fMRI studies of language processing, e.g. Li
et al. (2018); Bhattasali et al. (2019); Zhang (2020);
Stanojević et al. (2021)

3.3 Participants
56 participants were scanned and 5 of them were
excluded since they had incomplete scanning ses-
sions. Participants included were fifty-one volun-
teers (32 women and 19 men, 18-37 years old) with
no history of psychiatric, neurological, or other
medical illness or history of drug or alcohol abuse
that might compromise cognitive functions. All
strictly qualified as right-handed on the Edinburgh
handedness inventory (Oldfield, 1971). All self-
identified as native English speakers and gave their
written informed consent prior to participation, in
accordance with Cornell University’s IRB guide-
lines. Participants were compensated for their time,
consistent with typical practice for studies of this
kind. They were paid $65 at the end of the session.

3.4 Presentation
After giving their informed consent, participants
were familiarized with the MRI facility and as-
sumed a supine position on the scanner gurney.
The presentation script was written in PsychoPy
(Peirce, 2007). Auditory stimuli were delivered
through MRI-safe, high-fidelity headphones (Con-
fon HP-VS01, MR Confon, Magdeburg, Germany)
inside the head coil. The headphones were secured
against the plastic frame of the coil using foam
blocks. Using a spoken recitation of the US Consti-
tution, an experimenter increased the volume until
participants reported that they could hear clearly.
Participants then listened passively to the audio
storybook for 1 hour 38 minutes. The story had
nine chapters and at the end of each chapter the
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participants were presented with a multiple-choice
questionnaire with four questions (36 questions in
total), concerning events and situations described
in the story. These questions served to confirm
participants’ comprehension. They were viewed
via a mirror attached to the head coil and answered
through a button box. The entire session lasted
around 2.5 hours.2

3.5 Deriving the predictors

Recall that surprisal measures how unexpected
each word wi is given the preceding context (Eq
1), and we use measures of surprisal as the linking
hypotheses in our study between the contextual pre-
dictions of our model and neural activity. The three
different surprisal predictors we use are described
below, along with how they were calculated. Fig. 2
shows a visual comparison of the word-by-word
predictors on a single sentence from the text.3

Ngram surprisal. The ngram surprisal values
are based on a 5gram language model and were
calculated using the kenlm library (Heafield et al.)
with Modified Kneser-Ney Smoothing. The 5gram
language model was trained on the Corpus of
Contemporary American English (COCA, Davies,
2008), which is a large, genre-balanced corpus of
American English and consists of over one billion
words of text sampled across spoken, fiction, popu-
lar magazines, newspapers, and academic texts.

LSTM surprisal. These surprisal values are
based on a long short-term memory (LSTM) lan-
guage model (Hochreiter and Schmidhuber, 1997)
trained on 90 million words of English Wikipedia
by Gulordava et al. (2018). It had two LSTM layers
with 650 hidden units each, 650 dimensional word
embeddings, a learning rate of 20, a dropout rate
of 0.2 and a batch size 128, and was trained for
40 epochs (with early stopping). Like the majority
of previous work computing LSTM-surprisal, our
input is a single sentence and we make predictions
only based on context within the sentence (Brennan
and Hale (2019); van Schijndel and Linzen (2018),
though cf. Jain and Huth (2018)). The surprisal val-
ues were calculated using the Neural Complexity
toolkit with the baseline non-adaptive model (van
Schijndel and Linzen, 2018).

2Further details about the fMRI data collection can be
found in the Appendix.

3A correlation matrix for the predictors is included in the
Appendix.

Topical surprisal. We introduce a new predic-
tor based on topic models, adapting surprisal to
operationalize the influence of context beyond the
sentence level. Topical surprisal for a word is de-
fined as the weighted average of the word’s proba-
bility given topic, where weights are the (posterior)
probability for the topic in that context.

surprisal(wi in context c) = � log
X

t2Topics
P (wi|t)P (t|c)

(2)
Fig. 1 illustrates how topical surprisal is computed
using a sample excerpt from the text.

Topics are defined and probabilities estimated
using an LDA topic model (Blei et al., 2003). Us-
ing the wrapper for Mallet LDA (McCallum) in the
Gensim toolkit (Řehůřek and Sojka), we estimated
a 100-topic model with the default hyperparame-
ters using 219,380 documents from COCA, yield-
ing P(w|t) for all word-topic pairs and making it
possible to compute the posterior topic probabili-
ties P(t|c) for any new document c. We compute
topical surprisal for all the non-function words in
the audio sample using the content in the 30-second
window prior to the word to define the LDA ”docu-
ment” c.

4 Data Analysis

fMRI data is acquired with physical, biological con-
straints and we followed a standard preprocessing
pipeline for fMRI imaging data that allowed us to
make adjustments to improve the signal to noise
ratio.4

The research questions presented above in §1
motivate two statistical analyses looking at corre-
lations between model-based predictions and ob-
served brain activity. In Analysis 1, we use ngram
surprisal (from a 5gram language model) to instan-
tiate local context and compare it against topical
surprisal, which captures the influence of broader,
topical context. As a follow-up, in Analysis 2,
we use surprisal from a state-of-the-art LSTM lan-
guage model to instantiate local context while still
using topical surprisal for broader context, in or-
der to illuminate potential differences between the
neural correlates of ngram and LSTM models.

Measurements of neural activity using fMRI are
based on an increase in blood flow to regions of
the brain, which reflects increased cerebral activity.
Because blood flow is slow relative to neural activ-
ity, this introduces a temporal lag and presents a

4See the Appendix for further preprocessing details.
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Figure 1: Real example illustrating the computation of topical surprisal. We calculate the probability of the word
years conditioned on its topical context by using the previous 30 seconds of of the story to define a “document”
c and computing its posterior topic distribution based on an LDA model for a large, diverse collection of English
text. In the figure each topic is represented by its highest probability words.

challenge for modeling the time course of process-
ing. To address this issue, predictors are convolved
using a canonical hemodynamic response function
(HRF) to model the observed time-course of the
brain’s hemodynamic response (BOLD - Blood
Oxygenation Level Dependent) in each voxel.5

Brennan (2016) provides a detailed description of
how word-by-word predictors are convolved to es-
timate the fMRI BOLD signal in studies like the
present one.

In order to look at correlations between predic-
tors and brain activity, our analyses employ the
General Linear Model (GLM; carried out using
SPM12, Friston et al., 2007).6 GLM is a hierar-
chical model with two levels that is typically used
in fMRI data analysis (Poldrack et al., 2011), and
its use within neuro-computational models of lan-
guage processing for continuous, naturalistic fMRI
studies is well-established (Brennan et al., 2012;
Brennan, 2016; Willems et al., 2016; Bhattasali
et al., 2018; Li et al., 2018; Bhattasali et al., 2019).
At the first level of the GLM model, the data for
each subject is modeled separately to calculate
subject-specific parameter estimates and within-

5For more details about the hemodynamic response, see
chapter 2 of Kemmerer (2014).

6Processing time on a Mac OS 10.13 takes 1.5 hours per
subject and increases linearly with additional subjects.

subject variance such that for each subject, a re-
gression model is estimated for each voxel against
the fMRI time series. The second-level model takes
subject-specific parameter estimates as input and
uses the between-subject variance to make statis-
tical inferences about the larger population. The
end result is a time series linear regression between
the estimated fMRI BOLD signal and observed
BOLD signals across the whole brain. Correla-
tions between time series can then be computed
with determinations of statistical significance, with
suitable corrections for multiple comparisons.

4.1 Analysis 1: ngram surprisal vs. Topical
surprisal

We regressed the word-by-word predictors against
fMRI timecourses recorded during passive story-
listening in a whole-brain analysis. The regressors
were time-locked at the offset of each word in the
audiobook. For each of the 15,388 words in the
story, their timestamps were estimated using Praat
TextGrids (Boersma and Weenink). Each word was
annotated with its 5gram surprisal and the 6,243
non-function words were annotated with its topical
surprisal values, as described in §3.5.

Additionally, we entered four regressors of non-
interest into the GLM analysis: word-offset, word
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Figure 2: Comparing the word-by-word predictors on a single sentence: ngram surprisal (in yellow), neural sur-
prisal (in red), topical surprisal (in blue). Values scaled for visualization purposes.

frequency, pitch, and intensity, which serve to im-
prove the sensitivity, specificity and validity of ac-
tivation maps (Bullmore et al., 1999; Lund et al.,
2006). These were added to ensure that conclu-
sions about lexical surprisal and topical surprisal
would be specific to the cognitive processes they
were taken to instantiate, as opposed to more gen-
eral aspects of speech perception. These regressors
were not orthogonalized.

4.2 Analysis 2: LSTM surprisal vs. Topical
surprisal

Analysis 2 uses the same predictors as in Analy-
sis 1, except that we use an LSTM language model
to calculate lexical surprisal. Each word is anno-
tated with its corresponding LSTM surprisal value
(as described in §3.5), instead of 5gram surprisal,
along with topical surprisal value given to the non-
function words. These regressors were also not
orthogonalized.

4.3 Group-level Analysis

In the second-level group analysis, each contrast
was analyzed separately at the group-level. An 8
mm FWHM Gaussian smoothing kernel was ap-
plied on the contrast images from the first-level
analysis to counteract inter-subject anatomical vari-
ation.

5 Results and Discussion

To begin with necessary details, behavioural results
in the comprehension task confirmed that subjects
were listening attentively to the auditory story pre-
sentation: across 51 participants, average accurate
responses to the comprehension questions was 90%
(SD = 3.7%). All whole-brain effects reported be-
low survived a p < 0.05 Family-Wise-Error voxel
correction for multiple comparisons which resulted
in T-scores > 5.3. All brain region labels are from
the Harvard-Oxford Cortical Structure Atlas.

Turning to the results of our analyses, functional
localization identified using fMRI — via signifi-
cant correlation with surprisal models — is inter-
preted to show which brain regions are recruited
in processing the different types of contextual in-
formation captured by those models. To summa-
rize, we observe a functionally distinct network
that shows the difference between the influence of
broad contextual cues and local contextual cues
during sentence processing.

5.1 Analysis 1: Group-level results for ngram
surprisal vs. topical surprisal

Whole-brain contrasts show that broad contextual
cues and local contextual cues implicate different
brain regions with no overlap (see Fig. 3). We
observe a right-lateralized pattern of activation for
topical surprisal (instantiating broad context) with
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Figure 3: Whole brain contrast image with significant clusters for 5gram surprisal (in orange) and topical surprisal
(in blue) after FWE voxel correction with p < 0.05. Table with significant clusters of peak activation included in
Supplementary Materials.

Figure 4: Whole brain contrast image with significant clusters for LSTM surprisal (in orange) and topical surprisal
(in blue) after FWE voxel correction with p < 0.05. Table with significant clusters of peak activation are included
in Supplementary Materials.

neural activation in the Precuneus and Middle Tem-
poral Gyrus. For 5gram surprisal, the significant
clusters are in the bilateral Anterior Temporal Lobe
and left Inferior Frontal Gyrus.

5.2 Analysis 2: Group level results for LSTM
surprisal vs. topical surprisal

Regression analyses localized the activation pat-
terns for local and broad context to different areas
(see Fig. 4). The peak activation for LSTM sur-
prisal (instantiating local context) was observed
in bilateral Anterior Temporal Lobe, along with a
small cluster in left Superior Temporal Gyrus. Sig-
nificant clusters for topical surprisal (instantiating
broad context) were seen in the right Precuneus
and right Middle Temporal Gyrus.

5.3 Discussion
In terms of Marr’s (1982) levels, studies of the kind
described here involve a linkage between proposals
at the algorithmic-representational level and pro-

cessing at the implementation level. Specifically,
the logic of surprisal-based studies in computa-
tional cognitive neuroscience is based on the idea
that when a word is less expected, it gives rise
to increased brain activity due to increased cogni-
tive load. Different instantiations of surprisal are
used to model aspects of processing taking place
during language comprehension, and correlations
of surprisal with increased brain activity provide
evidence about those aspects of the human compre-
hension process. Surprisal defined using ngrams
embodies the use of sequential contextual repre-
sentations during sentence processing. Syntactic
surprisal embodies the use of hierarchical syntactic
representations.

The present neuroimaging study introduces a
new model, topical surprisal, which concerns the
use of broader contextual information during pro-
cessing — the topical probability of a word as de-
fined in Eq (2) can be interpreted as an expected
value of the word’s probability given the topic be-
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ing discussed, under the posterior topic distribution
for the context. Our goal in this paper was to con-
trast context within a sentence with broader topical
context. This can be viewed as a natural step in
a progression from narrow ngram surprisal to sen-
tential (syntactic and LSTM) surprisal to broader
context that comprehenders might be taking into
account.

The results in §5 based on our new model show
that the patterns of activation for topical surprisal
differ from those of lexical surprisal and syntactic
surprisal, notably involving the right hemisphere.
The centrality of the right Middle Temporal Gyrus
and right Precuneus is consistent with previous
studies demonstrating the role of those regions in
broader contextual prediction during language com-
prehension: studies on narrative shifts (Whitney
et al., 2009), contrasting sentences and narratives
(Xu et al., 2005), contrasting coherent and incoher-
ent narratives (Maguire et al., 1999), and sentences
with and without preceding context (Raposo and
Marques, 2013) that have found these same brain
regions are involved in processing broader context
and discourse-level information. The converging
evidence confirms that our formalization of topical
surprisal represents a cognitively plausible metric.
Moreover, the neural correlates for topical surprisal
corroborate previous work on lexical access and
semantic integration (Binder et al., 2009; Graves
et al., 2010; Hickok and Poeppel, 2007; Hagoort
and Indefrey, 2014), suggesting that this broader
contextual prediction is involved in these psycholin-
guistic processes beyond the sentence level.

Our novel approach to investigating contextual
fit beyond the sentence level is also broadly consis-
tent with prior results demonstrating how cortical
hierarchy overlaps with language regions by us-
ing increasingly larger temporal receptive windows
Lerner et al. (2011). Our results can be taken to sup-
port the argument that smaller versus larger tempo-
ral receptive windows implicate regions associated
with lower-level and higher-level tasks respectively,
a connection we plan to explore further.

Looking just at the ngram and LSTM models
of lexical surprisal, our results provide additional
corroboration for previous findings in the cognitive
neuroscience literature involving sequential and
syntactic processing (Willems et al., 2016; Brennan,
2016; Lopopolo et al., 2017; Shain et al., 2020).
They also constitute an addition to the literature
on understanding the linguistic properties captured

by deep learning architectures. Numerous authors
have shown that LSTM models capture not only
sequential but also longer-distance structural de-
pendencies (Linzen et al., 2016; Gulordava et al.,
2018; van Schijndel and Linzen, 2018; Kuncoro
et al., 2018; Futrell et al., 2019). In our study, we
find that, while overlapping in the bilateral Anterior
Temporal Lobe, the ngram and syntactic surprisal
models also give rise to differently localized brain
activity: the ngram model implicates the left In-
ferior Frontal Gyrus (IFG), while the LSTM sur-
prisal model implicates the left Superior Tempo-
ral Gyrus (STG). The key observation here is that
left-lateralized STG activity is uncontroversially
correlated with syntactic processing (Pallier et al.,
2011; Thompson and Meltzer-Asscher, 2014; Bhat-
tasali et al., 2019; Shain et al., 2020). In contrast,
the functional role of left IFG has variously been
interpreted as involving combinatorial, sequential,
or syntactic processes (Sahin et al., 2009; Snijders
et al., 2009; Pallier et al., 2011; Brennan et al.,
2016). The patterns of activity in this study there-
fore provide support from the implementation level
for the idea that LSTMs are capturing aspects of
syntactic representation that ngram models do not.
Narrowing down the nature of those differences
(e.g., sequential versus structural, or short- versus
long-distance syntactic dependencies) remains a
subject for future work.

6 Conclusion

The present study posed the questions of how
broader topical context influences expectations in
human sentence comprehension, and how local
versus broader contexts might be processed dif-
ferently in the brain. To address those questions we
have introduced topical surprisal, a straightforward
and intuitive extension to the highly productive
surprisal-based paradigm in computational psycho-
and neurolinguistics that employs topic modeling
to estimate word probabilities conditioned on con-
texts beyond the sentence level.

Using analysis of fMRI brain imaging during nat-
uralistic listening, we showed that the processing of
broader topical context gives rise to neural activity
in different brain regions than local contextual pre-
diction as modeled using ngrams or an LSTM. The
brain regions we identified turn out to be consistent
with prior studies looking at neural correlates for
processing of narratives and discourse.

In addition, we explored the neuro-anatomical
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Figure 5: Visual comparison between two different experimental paradigms for cognitive neuroscience research

correlates of ngram and LSTM processing and ob-
tained results that are consistent with claims in the
deep learning literature regarding the sensitivity of
LSTMs to long-distance syntactic structure.

More generally, this paper adds another data
point demonstrating the relevance of tools from
computational linguistics in cognitive neuroscience
research (Brennan and Hale, 2019; Jain and Huth,
2018; Toneva et al., 2020) and the value of nat-
uralistic stimuli in contextually situated and eco-
logically valid research (Maguire, 2012; Brennan,
2016; Hamilton and Huth, 2020).

Finally, we note that the paradigm we have em-
ployed here — computational modeling with previ-
ously collected natural-listening data — promotes
reusability of datasets and replicability of results,
and safeguards against unexpected delays in data
collection such as a pandemic. Even more impor-
tant, it offers a rapid experimental cycle dramati-
cally better suited to computational research than
traditional, trial-based methods in psycholinguis-
tic and neurolinguistic research (Figure 5). As
such, computational experimentation with natural-
istic stimuli presents an invitation to computational
linguists to collaborate with cognitive neuroscien-
tists and apply their skills in operationalizing and
testing hypotheses about neurocognitive mecha-
nisms in sentence processing.

Ethical Considerations

This scientific study was reviewed and approved by
the Cornell University Institutional Review Board,
and human subject participation was conducted ac-
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ple is drawn from a university population and may
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Appendix for Using surprisal and fMRI to map the neural bases of broad
and local contextual prediction during natural language comprehension

1 Data Collection
Imaging was performed using a 3T MRI scanner
(Discovery MR750, GE Healthcare, Milwaukee,
WI) with a 32-channel head coil at the Cornell MRI
Facility. Blood Oxygen Level Dependent (BOLD)
signals were collected using a T2 -weighted echo
planar imaging (EPI) sequence (repetition time:
2000 ms, echo time: 27 ms, flip angle: 77deg, im-
age acceleration: 2X, field of view: 216 x 216 mm,
matrix size 72 x 72, and 44 oblique slices, yield-
ing 3 mm isotropic voxels). Anatomical images
were collected with a high resolution T1-weighted
(1 x 1 x 1 mm3 voxel) with a Magnetization-
Prepared RApid Gradient-Echo (MP-RAGE) pulse
sequence.

2 Preprocessing
Primary preprocessing steps were carried out in
AFNI version 16 (Cox, 1996) and include mo-
tion correction, coregistration, and normalization
to standard MNI space. After the previous steps
were completed, ME-ICA (Kundu et al., 2012) was
used to further preprocess the data. ME-ICA is a
denoising method which uses Independent Compo-
nents Analysis to split the T2*-signal into BOLD
and non-BOLD components. Removing the non-
BOLD components mitigates noise due to motion,
physiology, and scanner artifacts (Kundu et al.,
2017).

3 Correlation Matrix for Predictors
Fig. 1 shows the correlation matrix for the three
surprisal predictors.

4 Group-level results
Table 1 shows the significant clusters of activation
for topical surprisal using brain region labels from
the Harvard-Oxford Cortical Structure Atlas.

Figure 1: Correlation matrix (Pearson’s r) of the con-
volved regressors included in the GLM models re-
ported in Analysis 1 and Analysis 2.

Regions Cluster size MNI Coordinates p-value T-score
(in voxels) x y z (corrected) (peak-level)

R Middle Temporal Gyrus 497 50 -50 18 0.000 8.46
R Precuenus 253 10 -62 30 0.011 5.83

Table 1: Significant clusters for topical surprisal after
FWE voxel correction with p < 0.05. Peak activation
is given in MNI coordinates and p-values are reported
at peak-level after voxel correction.
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