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Abstract
We propose a new task and dataset for a
common problem in social science research:
“upsampling” coarse document labels to fine-
grained labels or spans. We pose the problem
in a question answering format, with the an-
swers providing the fine-grained labels. We
provide a benchmark dataset and baselines
on a socially impactful task: identifying the
exact crowd size at protests and demonstra-
tions in the United States given only order-
of-magnitude information about protest atten-
dance, a very small sample of fine-grained ex-
amples, and English-language news text. We
evaluate several baseline models, including
zero-shot results from rule-based and question-
answering models, few-shot models fine-tuned
on a small set of documents, and weakly su-
pervised models using a larger set of coarsely-
labeled documents. We find that our rule-
based model initially outperforms a zero-shot
pre-trained transformer language model but
that further fine-tuning on a very small subset
of 25 examples substantially improves out-of-
sample performance. We also demonstrate a
method for fine-tuning the transformer span on
only the coarse labels that performs similarly
to our rule-based approach. This work will
contribute to social scientists’ ability to gener-
ate data to understand the causes and successes
of collective action.

1 Introduction

A common data collection task in social science is
applying fine-grained labels to documents, includ-
ing extracting specific passages from text. In many
cases, social scientists already have many coarsely-
labeled documents and a small number of hand-
annotated documents. An automated technique for
“upsampling” from coarse labels to more detailed
information could help researchers produce better
tailored datasets. However, this process does not
fit the tools that applied researchers have access to:

OWOSSO	 --	 On	 Saturday,	 supporters	 of	 Bernie
Sanders	held	the	first	of	two rallies	at	City	Hall	in
anticipation	 of	 Michigan's	 presidential	 primary
election	 Tuesday.	 The	 rally	 featured	 a	 crowd	 of
roughly	30	to	40	people	and	kicked	off	at	2	p.m.
In	 2016's	 presidential	 primary,	 Sanders	 beat
Hillary	Clinton	by	a	slim	margin	of	49.8.

Coarse Label: size category 1 (10–100 attendees)
Gold Span: "30 to 40"

Figure 1: Documents in our corpus have “coarse labels”
reporting the order of magnitude of the protest size and
“gold spans” reporting the exact size of the protest. The
frequency of number words (in bold) shows why this
task is not trivial.

training a document classifier on coarse labels will
not produce the fine-grained answers. Innovations
in zero-shot and few-shot classifiers and informa-
tion extraction (IE) techniques show promise, but
new methods are required that can also draw on the
existing coarse document annotations to improve
fine-grained extraction.

We introduce a new task and dataset for improv-
ing information extraction systems’ performance
when given many coarsely-labeled documents and
a small number of documents annotated with the
spans of interest.1 We draw on a dataset on dissent
and collective action (hereafter, “protests”) in the
United States compiled by the Crowd Counting
Consortium (2020) (CCC) to construct our train-
ing and evaluation data. Protests are an important
avenue for social change and of major interest for
social science researchers. Current work suggests
that attendance is a major factor in the success of
a protest movement (Chenoweth and Margherita,
2019), but good data on protest attendance is diffi-
cult to collect. CCC compiles structured data about
protests from expert annotators using news report-

1Replication archive available at https://
github.com/benradford/few-shot-upsampling
-for-protest-size-detection.

https://github.com/benradford/few-shot-upsampling-for-protest-size-detection
https://github.com/benradford/few-shot-upsampling-for-protest-size-detection
https://github.com/benradford/few-shot-upsampling-for-protest-size-detection
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ing, including the exact text span from the article
that describes the protest’s size and the order of
magnitude of the crowd size. An example is given
in Figure 1. The task we propose is to locate the
span within a document that reports the size of a
protest, given a training set of documents labeled
with the order of magnitude of the protest (“coarse
labels”) and a small number of document pieces
(25) with exact span information (“gold spans”).

Drawing on recent work in question answer-
ing, we repurpose existing models to generate fine-
grained labels given a large set of coarsely-labeled
documents and a small set of documents with fine-
grained labels. We provide results from three base-
line models, finding that a heuristic, rule-based
system outperforms a zero-shot transformer-based
question-answering (QA) model. Fine tuning on a
small set (25) of gold spans substantially improves
performance. We also introduce a new multitask
model that reaches equivalent performance despite
fine-tuning on no gold spans.

2 Task and Data

For each protest in the CCC dataset, we collect the
following data: the raw article text (scraped from
the CCC-provided URLs), the exact string report-
ing the protest size, and a “size category” provided
by CCC that reports the order of magnitude size of
the crowd. The task is to predict the size text string,
given plentiful training data with the size category
and the gold spans for a small set of partial docu-
ments (25 paragraphs). The test set includes only
the full article texts and order-of-magnitude infor-
mation. To make the task tractable, we exclude
protests that are coded from multiple documents
and documents from which multiple protests are
coded. From 48,736 total protests reported by CCC
between January 21, 2017 and October 31, 2020,
we eliminate multi-document/multi-protest reports
and successfully scrape text for 11,005 protests.
We eliminate documents where the CCC-reported
size text is not located within the document, leav-
ing 3,849 protests/documents. We split these data
into four parts:

• Coarse label training set: text with coarse,
order-of-magnitude labels {0,1,2,3} but no
exact answer spans (2,694 full articles).

• Gold span training set: short texts with ex-
act answer spans but no order-of-magnitude
labels (25 paragraphs).

• Validation set: documents with order-of-
magnitude labels and exact answer spans (200
full articles).

• Test set: documents with order-of-magnitude
labels and exact answer spans (930 full arti-
cles).

The task is challenging because models are not
evaluated on the largest portion of the data (coarse
document labels) but rather on a fine-grained span
prediction task for which only limited data is avail-
able. The task can thus be framed in several ways,
depending on which parts of the data are used and
in what ways:

• Zero shot: use an off-the-shelf model to de-
tect protest sizes without any fine tuning on
our data, either coarse or fine.

• Few-shot on gold spans: fine tune a baseline
model on the small number of gold span la-
belled data.

• Coarse labels: use a coarse-to-fine model to
identify spans given only document-level la-
bels.

• Coarse labels + gold spans: train a model
using both coarse order-of-magnitude labels
and limited fine-grained span data.

3 Related Work

The task we propose relates to several strands of
research. One framing is as a question-answering
task (QA), where the same question (“How many
people protested?”) is asked about each document.
A large set of NLP tasks can be framed as question-
answering models (McCann et al., 2018) and QA
models trained on language models can generalize
to new domains with few or no labeled examples
(Brown et al., 2020; Radford et al., 2019). QA
models have also been successfully used when the
training data is noisy (Lin et al., 2018). Given the
flexibility of QA models and their strong perfor-
mance in new domains, we use one as the base of
our models.

A different framing is as a “rationale” problem
for a document classifier. Lei et al. (2016) train a
classifier on document-level labels and use atten-
tion weights to extract rationales for the classifica-
tion. Our task differs from the canonical document
classification task because a responsive model is
evaluated on the extracted spans, not on the coarse
label prediction task.

Distant supervision uses noisy labels, often ap-
plied automatically or with heuristic labels, to train
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systems (Ratner et al., 2017). The classic example
of distant supervision uses a database of relations
to label binary relations in text (Mintz et al., 2009).
Weak supervision, more generally, uses labels that
are noisy or coarse to train fine-grained models
(Khetan et al., 2018; Robinson et al., 2020). Some
work on “noisy labels” relates to our task, where
labels are presented at a higher level of aggregation
rather than with noise. Nayak et al. (2020) propose
a model that uses coarse, document-level sentiment
labels to train a fine-grained, sentence-level senti-
ment classifier. Their task differs from ours in the
nature of their labels: in moving from document-
level to sentence-level labels, they predict labels of
the same type (sentiment scores). In our task, we
also change the labels themselves, from a crowd
size order of magnitude to a token-level label of
whether a word describes the exact protest size.

4 Modeling Strategy

We first attempt the task using a rule-based model
(the “heuristic keyword model”) and an off-the-
shelf zero-shot QA system. We then introduce a
multi-task neural network model based on a pre-
trained transformer language model. We fine-tune
and evaluate this model on the coarse labels and
gold spans, as well as on noisy labels we generate
through a rule-based procedure.

The two standard performance metrics for ques-
tion answering tasks are exact match and F1 (Ra-
jpurkar et al., 2018). We compute exact match as
the sum of exact matches (predicted spans exactly
matched in the set of correct target spans) divided
by the total number of documents. We compute F1

per document based on token-level precision and
recall, then average across documents.

4.1 Heuristic Keyword Model

Our heuristic model is a rule-based system that uses
keyword matching and dependency parses to return
a single number-containing phrase from the arti-
cle. We first locate all number-containing phrases
(digits or number words) in the text with regular
expressions. Using a rule-based system, we convert
these number phrases to a numeric form (e.g. “sev-
eral dozen”→ 36) and then compare the phrase’s
numerical value to the protest’s reported order of
magnitude. If the phrase does not match the or-
der of magnitude, we eliminate it from our candi-
date list. To further reduce the candidate list, we
look for number phrases that occur within the same

sentence as a set of keywords such as “crowd”,
“gathered”, or “protesters”.2 If multiple sentences
have keyword matches, we return the first one. The
CCC data’s size spans include modifiers alongside
the raw numerical values (e.g. “about 20”, “more
than 50”). We use dependency parse information
generated by spaCy to extract the wider span.3

4.2 Zero-Shot QA Model
We begin with a pre-trained RoBERTa model (Liu
et al., 2019) that we subsequently fine-tune for
question answering using the Stanford Question
Answering Dataset (SQuAD) 2.0 as described in
Appendix A (Rajpurkar et al., 2018).4 The QA
model architecture is depicted on the left side of
Figure 2. Because we do not tune this model on our
dataset, we consider its predictions to be zero-shot.

Model Exact F1

Heuristic rules 0.54 0.61
RoBERTa QA
zero-shot 0.17 0.27
+ gold spans 0.67 0.65
+ coarse labels 0.48 0.54
+ coarse labels + heuristic spans 0.66 0.63

Table 1: Exact match (“Exact”) and F1 performance on
test set data. All RoBERTa QA and multitask models
are fine-tuned on SQuAD 2.0. Multitask models itali-
cized. Full results given in Appendix B.

4.3 Fine-tuned QA Model
To use the coarse labels, we add an additional ob-
jective to the QA model that is trained to predict
the crowd size order of magnitude. The model
first predicts the start and end token vectors for a
given context-question pair. We compute the cu-
mulative sum (over tokens) of the predicted start
token vector and the reverse cumulative sum for the
predicted end token vector. The resulting vectors
are element-wise multiplied to produce an attention
mask with high values in the range of tokens be-
tween the predicted start and end tokens. We apply

2The complete list is “protesters”, “demonstrators”, “gath-
ered”, “crowd”, “rallied”, “attended”, “picketed”, “protest”.

3Specifically, (1) for each sentence matching a keyword
(2) identify the word in the sentence that is a number word
or numeric, and (3) also include child nodes that had the
following labels: adjectival modifier, modifier of quantifier,
compound, adverbial modifier. We used spaCy version 2.3.2
with the en core web lg model to perform the dependency
parsing and sentence segmentation.

4We use roberta-base from HuggingFace (Wolf et al.,
2020).
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Token Type IDs
Attention Mask

RoBERTa  Context 
& Question

Hidden states
Out: (512 x 768)

Dense + softmax
Out: (512 x 1)

Dense + softmax
Out: (512 x 1)

Start token
prediction: 

Multiply

Cumulative sum

Reverse
cumulative sum

Multiply

End token
prediction: 

Max pooling

Dense
Out: (1)

Coarse label
prediction: 

L1 penalty

Figure 2: Multitask model architecture: standard
RoBERTa QA (left) and attention mask-based regres-
sion for coarse label prediction (right).

an L1 penalty to this mask to ensure the attention
focuses on a small number of tokens. The attention
mask is then element-wise multiplied with the to-
ken hidden states produced by RoBERTa. Global
max pooling and a single linear regression layer ap-
plied to these attended-to hidden states predict the
coarse label (as shown in the right side of Figure 2).

The loss function for the multitask
model, an unweighted combination of cross-
entropy loss and mean squared error, is
−
∑n

i=1 {xilog(x̂i) + yilog(ŷi)} + (ẑ − z)2,
where xi ∈ {0, 1} indicates whether token i is
the start of an answer span, yi ∈ {0, 1} indicates
whether token i is the end of an answer span, z is
the document’s coarse label, and n is the number
of tokens (512, here). The model can be fit to data
including any combination of these three targets.

5 Results

Results on the test set are given in Table 1.
RoBERTa QA refers to RoBERTa fine-tuned on
SQuAD 2.0. With only fine-tuning on SQuAD 2.0,
the model scores 17% exact match accuracy and
27% F1. On their own, the heuristic-derived spans
outperform zero-shot RoBERTa QA. “+ Heuris-
tic spans” indicates that the given model was fine-
tuned on the spans identified by the heuristic model.

Fine-tuning the multitask model on the coarse la-
bels alone results in a 180% increase in exact match
accuracy and 100% increase in F-score. An exam-
ple prediction made by the multitask coarse labels

 A group of around 10  to  50 protesters established a  camp in
Predicted start

 A group of around 10  to  50 protesters established a  camp in
Predicted end

 A

 gr
ou

p  of

 ar
ou

nd  10  to  50

 pr
ot

es
te

rs

 es
ta

bli
sh

ed  a

 ca
m

p  in

Coarse label mask

Figure 3: Example target span from document excerpt
with predicted start tokens (top), predicted end tokens
(middle), and attention mask (bottom). Results from
model c in Table 1. Actual span in bold.

model is shown in Figure 3.5 However, the highest
scores are achieved by fine-tuning the RoBERTa
QA model on just the 25 gold spans: 67% exact
match accuracy and 65% F-score.

The greatest performance by a multitask model
without any gold spans is achieved by the model
fine-tuned on both the coarse labels and the heuris-
tic spans: 66% exact match and 63% F1, just below
the top performing model with access to the gold
spans. We interpret the success of this model and
the coarse labels model over the base RoBERTa
QA model as evidence that our attention masking
strategy was successful at upsampling from coarse
document-level labels to specific token-level spans.

6 Discussion and Conclusion

Social scientists often find themselves with
coarsely-labeled text data for which upsampling
may provide valuable additional information. We
anticipate applications in extracting fine-grained
policy proposals from party manifestos with
document-level annotations (Lehmann et al., 2017),
the specific armed actors engaged in civil war vi-
olence from documents labeled with “rebel” or
“government” (Lyall, 2010), or the specific phrases
in news text that lead to their censorship (King
et al., 2013). We also see applications in upsam-
pling ranges of causalities from NGO reports or
Wikipedia articles to the exact sizes, upsampling
years to more specific dates, or using rounded num-
bers from financial disclosures or government re-
ports as coarse supervision for extracting the exact
amount from text.

Improvements in zero- and low-shot models
should encourage applied researchers to explore
computational approaches to text analysis even
when training data is scarce, noisy, or coarse—

5The model just misses an exact match by omitting
“around” from the predicted span.
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common challenges that are often perceived as
intractable. At the same time, NLP researchers
should continue to improve models that can learn
to extract fine-grained information given coarse
training data. Multitask QA models show promise
in doing so, but future work can further integrate
work from the weak/distant supervision literature,
including modeling the noisiness of the labels.
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Impact Statement

Studies of protests have the potential for serious
ethical concerns. Some tasks, such as identifying or
de-anonymizing the participants in a protest could
produce major harms. Our application, identifying
the number of attendees at a protest, has less poten-
tial for harm. Our collection of information on the
size of protests will generally accord with the de-
sires of protesters. Social scientists have long seen
protests as an important tool for social movements
to overcome collective action problems: by making
support for a position visible in the streets, a protest
assures potential supporters of the protest that their
opinions are held by others and that the group could
potentially achieve its ends with more support (Ku-
ran, 1989; Petersen, 2001; Tarrow, 2011). Provid-
ing better information on the size of protests fur-
thers the signalling and information-disseminating
objectives of the protesters themselves. While we
might not agree with the causes of all protesters
in the United States, we believe that on-balance,
our work benefits those with less power more than
it does those with greater power, who can likely
already collect the information they seek manually.

The data that we draw on was collected by the
Crowd Counting Consortium, which relies on vol-
unteers and paid research assistants to collect the
data. Their protocol was reviewed by the University
of Denver IRB and deemed exempt because they
do not collect personally identifiable information
and use only public data.6

A second consideration in our work involves the
role of copyrighted news text in our project. Our
method uses copyrighted news text that we scraped

6https://sites.google.com/view/
crowdcountingconsortium/faqs

from the web. While scraping websites is legal in
the United States,7 redistributing copyrighted text
is more difficult to justify and depends on how the
use fits into the fair use doctrine. Balancing copy-
right holders’ rights with public and educational
benefit is at the core of the fair use doctrine.8 Our
attempt to balance the harms to copyright holders
and the harms to broader public and scientific ben-
efit is to publish a URL list and scraper so that
our corpus can be re-created by future researchers.
Additionally, in cases where a researcher is attempt-
ing to replicate our work for educational purposes,
we will make our scraped corpus available for the
narrow purpose of replicating our work.
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A Fine-tuning RoBERTa on SQuAD 2.0

A.1 SQuAD 2.0 Fine-Tuning
In order to facilitate extensions to the standard QA
model, we perform the fine-tuning of RoBERTa
on SQuAD 2.0 ourselves (Abadi et al., 2015). We
fine-tune on the SQuAD 2.0 training set for three
epochs using the settings recommended by Nandan
(2020). We use a batch size of 12 due to memory
limitations. We use the Adam optimizer with a
learning rate of 5e− 5. Our model achieves 0.78
and 0.74 exact match on the training and evaluation
sets, respectively. We use this model only as a
basis for subsequent fine-tuning and therefore do
not attempt to match state-of-the-art performance
on the SQuAD 2.0 evaluation set. The model is
trained on two RTX 2080 Ti GPUs. Model size and
training time details are provided in Table 2.

We allow the QA model to identify impossible-
to-answer questions by predicting the sequence
start token (“<s>”) as both the answer span start
and end token.

To fit within the RoBERTa base model’s 512
token limit, we pre-process all text inputs via a
shingling procedure. We limit contexts to 450 to-
kens thereby allowing questions of up to 62 tokens
in length. We then pad to a uniform 512 tokens.
When contexts exceed 450 tokens, we use a sliding
window of 450 tokens that we step through the con-
text 225 tokens at a time. We guarantee all samples
generated from large contexts contain precisely 450
tokens by adjusting the first and last window posi-
tions such that they do not extend before or after
the first or last context token, respectively. We
aggregate predictions across shingles by assum-
ing one predicted span per document and select-
ing the predicted span from the shingle for which
maxi∈[1,...,512](x̂i)+maxi∈[1,...,512](ŷi) is the great-
est.

A.2 Task-Specific Fine-Tuning
The selection of learning rate for these models, 5e-
6 (exactly one order of magnitude lower than the
default used for SQuAD fine-tuning), was due to
our sensitivity to overfitting on the very small set
of span examples. All models were trained for 150
batches, each batch comprising 12 samples chosen
from the training datasets with replacement. When
multiple datasets are used to train the same model,
batches alternate between them. We selected the
number of batches for training by observing exact
match accuracy on the validation set over a range of

iteration steps from 1 to 400 and selecting the earli-
est batch iteration at which validation set accuracy
appeared to plateau.

B Results

The full set of fine-tuning data combinations is
given in Table 3. All models c through i are
trained using the same hyperparameters and strat-
egy (Adam optimizer, 5e-6 learning rate, and 150
batches of size 12 examples each).
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Parameters Training Time
(a) Heuristic rules – –
(b) RoBERTa + SQuAD 2.0 (zero-shot) 1.25M 200 min
(c) + coarse labels 1.25M + 20 min
(d) + heuristic spans 1.25M + 20 min
(e) + coarse labels + heuristic spans 1.25M + 20 min
(f) + gold spans 1.25M + 20 min
(g) + gold spans + coarse labels 1.25M + 20 min
(h) + gold spans + heuristic spans 1.25M + 20 min
(i) + gold spans + coarse labels + heuristic spans 1.25M + 20 min

Table 2: Model size in parameters. Training time (approximate) on 2× RTX 2080 Ti GPUs. “+ 20 min” indicates
the model takes an additional 20 minutes to fine-tune after the initial fine-tuning on SQuAD 2.0. These estimates
may be high due to our validation set performance evaluation between batches.

Test set Validation set
Exact Match F1 Exact Match F1

(a) Heuristic rules 0.54 0.61
(b) RoBERTa + SQuAD 2.0 (zero-shot) 0.17 0.27 0.19 0.27
(c) + coarse labels 0.48 0.54 0.54 0.58
(d) + heuristic spans 0.51 0.50 0.56 0.51
(e) + coarse labels + heuristic spans 0.66 0.63 0.72 0.66
(f) + gold spans 0.67 0.65 0.71 0.68
(g) + gold spans + coarse labels 0.67 0.65 0.68 0.66
(h) + gold spans + heuristic spans 0.62 0.61 0.66 0.62
(i) + gold spans + coarse labels + heuristic spans 0.65 0.64 0.72 0.67

Table 3: Exact match and token-level F1 performance by each model on test and validation set data.


