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Abstract

Having recognized gender bias as a major is-
sue affecting current translation technologies,
researchers have primarily attempted to miti-
gate it by working on the data front. How-
ever, whether algorithmic aspects concur to
exacerbate unwanted outputs remains so far
under-investigated. In this work, we bring the
analysis on gender bias in automatic transla-
tion onto a seemingly neutral yet critical com-
ponent: word segmentation. Can segmenting
methods influence the ability to translate gen-
der? Do certain segmentation approaches pe-
nalize the representation of feminine linguis-
tic markings? We address these questions by
comparing 5 existing segmentation strategies
on the target side of speech translation systems.
Our results on two language pairs (English-
Italian/French) show that state-of-the-art sub-
word splitting (BPE) comes at the cost of
higher gender bias. In light of this finding, we
propose a combined approach that preserves
BPE overall translation quality, while leverag-
ing the higher ability of character-based seg-
mentation to properly translate gender.

Bias Statement.1 We study the effect of segmen-
tation methods on the ability of speech translation
(ST) systems to translate masculine and feminine
forms referring to human entities. In this area,
structural linguistic properties interact with the
perception and representation of individuals (Gy-
gax et al., 2019; Corbett, 2013; Stahlberg et al.,
2007). Thus, we believe they are relevant gender
expressions, used to communicate about the self
and others, and by which the sociocultural and po-
litical reality of gender is negotiated (Hellinger and
Motschenbacher, 2015).

†The authors contributed equally.
1As suggested by (Blodgett et al., 2020) and required for

other venues (Hardmeier et al., 2021), we formulate our bias
statement.

Accordingly, we consider a model that system-
atically and disproportionately favours masculine
over feminine forms to be biased, as it fails to prop-
erly recognize women. From a technical perspec-
tive, such behaviour deteriorates models’ perfor-
mance. Most importantly, however, from a human-
centered view, real-world harms are at stake (Craw-
ford, 2017), as translation technologies are un-
equally beneficial across gender groups and reduce
feminine visibility, thus contributing to misrepre-
sent an already socially disadvantaged group.

This work is motivated by the intent to shed light
on whether issues in the generation of feminine
forms are also a by-product of current algorithms
and techniques. In our view, architectural improve-
ments of ST systems should also account for the
trade-offs between overall translation quality and
gender representation: our proposal of a model that
combines two segmentation techniques is a step
towards this goal.

Note that technical mitigation approaches should
be integrated with the long-term multidisciplinary
commitment (Criado-Perez, 2019; Benjamin, 2019;
D’Ignazio and Klein, 2020) necessary to radically
address bias in our community. Also, we recog-
nize the limits of working on binary gender, as we
further discuss in the ethic section (§8).

1 Introduction

The widespread use of language technologies has
motivated growing interest on their social impact
(Hovy and Spruit, 2016; Blodgett et al., 2020), with
gender bias representing a major cause of concern
(Costa-jussà, 2019; Sun et al., 2019). As regards
translation tools, focused evaluations have exposed
that speech translation (ST) – and machine trans-
lation (MT) – models do in fact overproduce mas-
culine references in their outputs (Cho et al., 2019;
Bentivogli et al., 2020), except for feminine asso-
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ciations perpetuating traditional gender roles and
stereotypes (Prates et al., 2020; Stanovsky et al.,
2019). In this context, most works identified data
as the primary source of gender asymmetries. Ac-
cordingly, many pointed out the misrepresentation
of gender groups in datasets (Garnerin et al., 2019;
Vanmassenhove et al., 2018), focusing on the de-
velopment of data-centred mitigating techniques
(Zmigrod et al., 2019; Saunders and Byrne, 2020).

Although data are not the only factor contribut-
ing to generate bias (Shah et al., 2020; Savoldi
et al., 2021), only few inquiries devoted attention
to other technical components that exacerbate the
problem (Vanmassenhove et al., 2019) or to archi-
tectural changes that can contribute to its mitiga-
tion (Costa-jussà et al., 2020b). From an algorith-
mic perspective, Roberts et al. (2020) additionally
expose how “taken-for-granted” approaches may
come with high overall translation quality in terms
of BLEU scores, but are actually detrimental when
it comes to gender bias.

Along this line, we focus on ST systems and
inspect a core aspect of neural models: word seg-
mentation. Byte-Pair Encoding (BPE) (Sennrich
et al., 2016) represents the de-facto standard and
has recently shown to yield better results compared
to character-based segmentation in ST (Di Gangi
et al., 2020). But does this hold true for gender
translation as well? If not, why?

Languages like French and Italian often exhibit
comparatively complex feminine forms, derived
from the masculine ones by means of an additional
suffix (e.g. en: professor, fr: professeur M vs.
professeure F). Additionally, women and their ref-
erential linguistic expressions of gender are typi-
cally under-represented in existing corpora (Hovy
et al., 2020). In light of the above, purely statistical
segmentation methods could be unfavourable for
gender translation, as they can break the morpho-
logical structure of words and thus lose relevant
linguistic information (Ataman et al., 2017). In-
deed, as BPE merges the character sequences that
co-occur more frequently, rarer or more complex
feminine-marked words may result in less com-
pact sequences of tokens (e.g. en: described, it:
des@@critto M vs. des@@crit@@ta F). Due to
such typological and distributive conditions, may
certain splitting methods render feminine gender
less probable and hinder its prediction?

We address such questions by implementing dif-
ferent families of segmentation approaches em-

ployed on the decoder side of ST models built on
the same training data. By comparing the resulting
models both in terms of overall translation quality
and gender accuracy, we explore whether a so far
considered irrelevant aspect like word segmenta-
tion can actually affect gender translation. As such,
(1) we perform the first comprehensive analysis
of the results obtained by 5 popular segmentation
techniques for two language directions (en-fr and
en-it) in ST. (2) We find that the target segmen-
tation method is indeed an important factor for
models’ gender bias. Our experiments consistently
show that BPE leads to the highest BLEU scores,
while character-based models are the best at trans-
lating gender. Preliminary analyses suggests that
the isolation of the morphemes encoding gender
can be a key factor for gender translation. (3) Fi-
nally, we propose a multi-decoder architecture able
to combine BPE overall translation quality and the
higher ability to translate gender of character-based
segmentation.

2 Background

Gender bias. Recent years have seen a surge of
studies dedicated to gender bias in MT (Gonen
and Webster, 2020; Rescigno et al., 2020) and ST
(Costa-jussà et al., 2020a). The primary source
of such gender imbalance and adverse outputs has
been identified in the training data, which reflect
the under-participation of women – e.g. in the
media (Madaan et al., 2018), sexist language and
gender categories overgeneralization (Devinney
et al., 2020). Hence, preventive initiatives con-
cerning data documentation have emerged (Ben-
der and Friedman, 2018), and several mitigating
strategies have been proposed by training models
on ad-hoc gender-balanced datasets (Saunders and
Byrne, 2020; Costa-jussà and de Jorge, 2020), or
by enriching data with additional gender informa-
tion (Moryossef et al., 2019; Vanmassenhove et al.,
2018; Elaraby and Zahran, 2019; Saunders et al.,
2020; Stafanovičs et al., 2020).

Comparatively, very little work has tried to iden-
tify concurring factors to gender bias going be-
yond data. Among those, Vanmassenhove et al.
(2019) ascribes to an algorithmic bias the loss of
less frequent feminine forms in both phrase-based
and neural MT. Closer to our intent, two recent
works pinpoint the impact of models’ components
and inner mechanisms. Costa-jussà et al. (2020b)
investigate the role of different architectural de-
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signs in multilingual MT, showing that language-
specific encoder-decoders (Escolano et al., 2019)
better translate gender than shared models (Johnson
et al., 2017), as the former retain more gender in-
formation in the source embeddings and keep more
diversion in the attention. Roberts et al. (2020), on
the other hand, prove that the adoption of beam
search instead of sampling – although beneficial in
terms of BLEU scores – has an impact on gender
bias. Indeed, it leads models to an extreme operat-
ing point that exhibits zero variability and in which
they tend to generate the more frequent (masculine)
pronouns. Such studies therefore expose largely un-
considered aspects as factors contributing to gender
bias in automatic translation, identifying future re-
search directions for the needed countermeasures.

To the best of our knowledge, no prior work has
taken into account if it may be the case for seg-
mentation methods as well. Rather, prior work in
ST (Bentivogli et al., 2020) compared gender trans-
lation performance of cascade and direct systems
using different segmentation algorithms, disregard-
ing their possible impact on final results.

Segmentation. Although early attempts in neu-
ral MT employed word-level sequences (Sutskever
et al., 2014; Bahdanau et al., 2015), the need
for open-vocabulary systems able to translate
rare/unseen words led to the definition of several
word segmentation techniques. Currently, the sta-
tistically motivated approach based on byte-pair en-
coding (BPE) by Sennrich et al. (2016) represents
the de facto standard in MT. Recently, its superi-
ority to character-level (Costa-jussà and Fonollosa,
2016; Chung et al., 2016) has been also proved in
the context of ST (Di Gangi et al., 2020). However,
depending on the languages involved in the trans-
lation task, the data conditions, and the linguistic
properties taken into account, BPE greedy proce-
dures can be suboptimal. By breaking the surface
of words into plausible semantic units, linguisti-
cally motivated segmentations (Smit et al., 2014;
Ataman et al., 2017) were proven more effective for
low-resource and morphologically-rich languages
(e.g. agglutinative languages like Turkish), which
often have a high level of sparsity in the lexical
distribution due to their numerous derivational and
inflectional variants. Moreover, fine-grained anal-
yses comparing the grammaticality of character,
morpheme and BPE-based models exhibited dif-
ferent capabilities. Sennrich (2017) and Ataman
et al. (2019) show the syntactic advantage of BPE

in managing several agreement phenomena in Ger-
man, a language that requires resolving long range
dependencies. In contrast, Belinkov et al. (2020)
demonstrate that while subword units better capture
semantic information, character-level representa-
tions perform best at generalizing morphology, thus
being more robust in handling unknown and low-
frequency words. Indeed, using different atomic
units does affect models’ ability to handle specific
linguistic phenomena. However, whether low gen-
der translation accuracy can be to a certain extent
considered a by-product of certain compression
algorithms is still unknown.

3 Language Data

As just discussed, the effect of segmentation strate-
gies can vary depending on language typology
(Ponti et al., 2019) and data conditions. To in-
spect the interaction between word segmentation
and gender expressions, we thus first clarify the
properties of grammatical gender in the two lan-
guages of our interest: French and Italian. Then,
we verify their representation in the datasets used
for our experiments.

3.1 Languages and Gender

The extent to which information about the gender
of referents is grammatically encoded varies across
languages (Hellinger and Motschenbacher, 2015;
Gygax et al., 2019). Unlike English – whose gen-
der distinction is chiefly displayed via pronouns
(e.g. he/she) – fully grammatical gendered lan-
guages like French and Italian systematically ar-
ticulate such semantic distinction on several parts
of speech (gender agreement) (Hockett, 1958; Cor-
bett, 1991). Accordingly, many lexical items exist
in both feminine and masculine variants, overtly
marked through morphology (e.g. en: the tired
kid sat down; it: il bimbo stanco si è seduto M
vs. la bimba stanca si è seduta F). As the example
shows, the word forms are distinguished by two
morphemes ( –o, –a), which respectively represent
the most common inflections for Italian masculine
and feminine markings.2 In French, the morpho-
logical mechanism is slightly different (Schafroth,
2003), as it relies on an additive suffixation on top
of masculine words to express feminine gender (e.g.
en: an expert is gone, fr: un expert est allé M vs.

2In a fusional language like Italian, one single morpheme
can denote several properties as, in this case, gender and
singular number (the plural forms would be bimbi vs. bimbe).
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une experte est allée F). Hence, feminine French
forms require an additional morpheme. Similarly,
another productive strategy – typical for a set of per-
sonal nouns – is the derivation of feminine words
via specific affixes for both French (e.g. –eure, –
euse)3 and Italian (–essa, –ina, –trice) (Schafroth,
2003; Chini, 1995), whose residual evidence is still
found in some English forms (e.g. heroine, actress)
(Umera-Okeke, 2012).

In light of the above, translating gender from
English into French and Italian poses several chal-
lenges to automatic models. First, gender trans-
lation does not allow for one-to-one mapping be-
tween source and target words. Second, the richer
morphology of the target languages increases the
number of variants and thus data sparsity. Hereby,
the question is whether – and to what extent – sta-
tistical word segmentation differently treats the less
frequent variants. Also, considering the morpho-
logical complexity of some feminine forms, we
speculate whether linguistically unaware splitting
may disadvantage their translation. To test these
hypotheses, below we explore if such conditions
are represented in the ST datasets used in our study.

3.2 Gender in Used Datasets

MuST-SHE (Bentivogli et al., 2020) is a gender-
sensitive benchmark available for both en-fr and en-
it (1,113 and 1,096 sentences, respectively). Built
on naturally occurring instances of gender phenom-
ena retrieved from the TED-based MuST-C corpus
(Cattoni et al., 2020),4 it allows to evaluate gender
translation on qualitatively differentiated and bal-
anced masculine/feminine forms. An important fea-
ture of MuST-SHE is that, for each reference trans-
lation, an almost identical “wrong” reference is cre-
ated by swapping each annotated gender-marked
word into its opposite gender. By means of such
wrong reference, for each target language we can
identify ∼2,000 pairs of gender forms (e.g. en:
tired, fr: fatiguée vs. fatigué) that we compare in
terms of i) length, and ii) frequency in the MuST-C
training set.

As regards frequency, we asses that, for both
language pairs, the types of feminine variants are
less frequent than their masculine counterpart in
over 86% of the cases. Among the exceptions,
we find words that are almost gender-exclusive

3French also requires additional modification on femi-
nine forms due to phonological rules (e.g. en: chef/spy, fr:
cheffe/espionne vs. chef /espion).

4Further details about these datasets are provided in §8.

(e.g. pregnant) and some problematic or socially
connoted activities (e.g. raped, nurses). Looking
at words’ length, 15% of Italian feminine forms
result to be longer than masculine ones, whereas
in French this percentage amounts to almost 95%.
These scores confirm that MuST-SHE reflects the
typological features described in §3.1.

4 Experiments

All the direct ST systems used in our experiments
are built in the same fashion within a controlled
environment, so to keep the effect of different word
segmentations as the only variable. Accordingly,
we train them on the MuST-C corpus, which con-
tains 492 hours of speech for en-fr and 465 for
en-it. Concerning the architecture, our models are
based on Transformer (Vaswani et al., 2017). For
the sake of reproducibility, we provide extensive
details about the ST models and hyper-parameters’
choices in the Appendix §A.5

4.1 Segmentation Techniques

To allow for a comprehensive comparison of word
segmentation’s impact on gender bias in ST, we
identified three substantially different categories of
splitting techniques. For each of them, we hereby
present the candidates selected for our experiments.

Character Segmentation. Dissecting words at
their maximal level of granularity, character-
based solutions have been first proposed by Ling
et al. (2015) and Costa-jussà and Fonollosa (2016).
This technique proves simple and particularly ef-
fective at generalizing over unseen words. On the
other hand, the length of the resulting sequences
increases the memory footprint, and slows both the
training and inference phases. We perform our seg-
mentation by appending “@@ ” to all characters
but the last of each word.

Statistical Segmentation. This family com-
prises data-driven algorithms that generate statisti-
cally significant subwords units. The most popular
one is BPE (Sennrich et al., 2016),6 which pro-
ceeds by merging the most frequently co-occurring
characters or character sequences. Recently, He
et al. (2020) introduced the Dynamic Program-
ming Encoding (DPE) algorithm, which performs

5Source code available at https://github.com/
mgaido91/FBK-fairseq-ST/tree/acl_2021.

6We use SentencePiece (Kudo and Richardson, 2018):
https://github.com/google/sentencepiece.

https://github.com/mgaido91/FBK-fairseq-ST/tree/acl_2021
https://github.com/mgaido91/FBK-fairseq-ST/tree/acl_2021
https://github.com/google/sentencepiece
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competitively and was claimed to accidentally pro-
duce more linguistically-plausible subwords with
respect to BPE. DPE is obtained by training a
mixed character-subword model. As such, the com-
putational cost of a DPE-based ST model is around
twice that of a BPE-based one. We trained the DPE
segmentation on the transcripts and the target trans-
lations of the MuST-C training set, using the same
settings of the original paper.7

Morphological Segmentation. A third possibil-
ity is linguistically-guided tokenization that follows
morpheme boundaries. Among the unsupervised
approaches, one of the most widespread tools is
Morfessor (Creutz and Lagus, 2005), which was
extended by Ataman et al. (2017) to control the
size of the output vocabulary, giving birth to the
LMVR segmentation method. These techniques
have outperformed other approaches when deal-
ing with low-resource and/or morphologically-rich
languages (Ataman and Federico, 2018). In other
languages, they are not as effective, so they are not
widely adopted. Both Morfessor and LMVR have
been trained on the MuST-C training set.8

en-fr en-it
# tokens9 5.4M 4.6M
# types 96K 118K
BPE 8,048 8,064
Char 304 256
DPE 7,864 8,008
Morfessor 26,728 24,048
LMVR 21,632 19,264

Table 1: Resulting dictionary sizes.

For fair comparison, we chose the optimal vo-
cabulary size for each method (when applicable).
Following (Di Gangi et al., 2020), we employed
8k merge rules for BPE and DPE, since the latter
requires an initial BPE segmentation. In LMVR, in-
stead, the desired target dimension is actually only
an upper bound for the vocabulary size. We tested
32k and 16k, but we only report the results with
32k as it proved to be the best configuration both
in terms of translation quality and gender accuracy.
Finally, character-level segmentation and Morfes-
sor do not allow to determine the vocabulary size.
Table 1 shows the size of the resulting dictionaries.

7See https://github.com/xlhex/dpe.
8We used the parameters and commands suggested

in https://github.com/d-ataman/lmvr/blob/
master/examples/example-train-segment.sh

9Here “tokens” refers to the number of words in the corpus,
and not to the unit resulting from subword tokenization.

en-fr en-it
M-C M-SHE Avg. M-C M-SHE Avg.

BPE 30.7 25.9 28.3 21.4 21.8 21.6
Char 29.5 24.2 26.9 21.3 20.7 21.0
DPE 29.8 25.3 27.6 21.9 21.7 21.8
Morfessor 29.7 25.7 27.7 21.7 21.4 21.6
LMVR 30.3 26.0 28.2 22.0 21.5 21.8

Table 2: SacreBLEU scores on MuST-C tst-COMMON
(M-C) and MuST-SHE (M-SHE) for en-fr and en-it.

4.2 Evaluation

We are interested in measuring both i) the overall
translation quality obtained by different segmen-
tation techniques, and ii) the correct generation
of gender forms. We evaluate translation quality
on both the MuST-C tst-COMMON set (2,574 sen-
tences for en-it and 2,632 for en-fr) and MuST-SHE
(§3.2), using SacreBLEU (Post, 2018).10

For fine-grained analysis on gender translation,
we rely on gender accuracy (Gaido et al., 2020).11

We differentiate between two categories of phe-
nomena represented in MuST-SHE. Category (1)
contains first-person references (e.g. I’m a student)
to be translated according to the speakers’ preferred
linguistic expression of gender. In this context, ST
models can leverage speakers’ vocal characteristics
as a gender cue to infer gender translation.12 Gen-
der phenomena of Category (2), instead, shall be
translated in concordance with other gender infor-
mation in the sentence (e.g. she/he is a student).

5 Comparison of Segmentation Methods

Table 2 shows the overall translation quality of
ST systems trained with distinct segmentation tech-
niques. BPE comes out as competitive as LMVR
for both language pairs. On averaged results, it
exhibits a small gap (0.2 BLEU) also with DPE
on en-it, while it achieves the best performance
on en-fr. The disparities are small though: they
range within 0.5 BLEU, apart from Char standing
∼1 BLEU below. Compared to the scores reported
by Di Gangi et al. (2020), the Char gap is how-
ever smaller. As our results are considerably higher
than theirs, we believe that the reason for such dif-
ferences lies in a sub-optimal fine-tuning of their
hyper-parameters. Overall, in light of the trade-
off between computational cost (LMVR and DPE
require a dedicated training phase for data segmen-

10BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.3.
11Evaluation script available with the MuST-SHE release.
12Although they do not emerge in our experimental settings,

the potential risks of such capability are discussed in §8.

https://github.com/xlhex/dpe
https://github.com/d-ataman/lmvr/blob/master/examples/example-train-segment.sh
https://github.com/d-ataman/lmvr/blob/master/examples/example-train-segment.sh
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tation) and average performance (BPE achieves
winning scores on en-fr and competitive for en-it),
we hold BPE as the best segmentation strategy in
terms of general translation quality for direct ST.

Turning to gender translation, the gender accu-
racy scores presented in Table 3 exhibit that all ST
models are clearly biased, with masculine forms
(M) disproportionately produced across language
pairs and categories. However, we intend to pin-
point the relative gains and losses among segment-
ing methods. Focusing on overall accuracy (ALL),
we see that Char – despite its lowest performance
in terms of BLEU score – emerges as the favourite
segmentation for gender translation. For French,
however, DPE is only slightly behind. Looking at
morphological methods, they surprisingly do not
outperform the statistical ones. The greatest varia-
tions are detected for feminine forms of Category
1 (1F), where none of the segmentation techniques
reaches 50% of accuracy, meaning that they are
all worse than a random choice when the speaker
should be addressed by feminine expressions. Char
appears close to such threshold, while the others
(apart from DPE in French) are significantly lower.

These results illustrate that target segmentation
is a relevant parameter for gender translation. In
particular, they suggest that Char segmentation im-
proves models’ ability to learn correlations between
the received input and gender forms in the reference
translations. Although in this experiment models
rely only on speakers’ vocal characteristics to infer
gender – which we discourage as a cue for gen-
der translation for real-world deployment (see §8) –
such ability shows a potential advantage for Char,
which could be better redirected toward learning
correlations with reliable gender meta-information
included in the input. For instance, in a scenario
in which meta-information (e.g. a gender tag) is
added to the input to support gender translation, a
Char model might better exploit this information.
Lastly, our evaluation reveals that, unlike previous
ST studies (Bentivogli et al., 2020), a proper com-
parison of models’ gender translation potentialities
requires adopting the same segmentation. Our ques-
tion then becomes: What makes Char segmentation
less biased? What are the tokenization features de-
termining a better/worse ability in generating the
correct gender forms?

Lexical diversity. We posit that the limited gen-
eration of feminine forms can be framed as an
issue of data sparsity, whereas the advantage of

en-fr
ALL 1F 1M 2F 2M

BPE 65.18 37.17 75.44 61.20 80.80
Char 68.85 48.21 74.78 65.89 81.03
DPE 68.55 49.12 70.29 66.22 80.90
Morfessor 67.05 42.73 75.11 63.02 80.98
LMVR 65.38 32.89 76.96 61.87 79.95

en-it
BPE 67.47 33.17 88.50 60.26 81.82
Char 71.69 48.33 85.07 64.65 84.33
DPE 68.86 44.83 81.58 59.32 82.62
Morfessor 65.46 36.61 81.04 56.94 79.61
LMVR 69.77 39.64 89.00 63.85 83.03

Table 3: Gender accuracy (%) for MuST-SHE Overall
(ALL), Category 1 and 2 on en-fr and en-it.

Char-based segmentation ensues from its ability to
handle less frequent and unseen words (Belinkov
et al., 2020). Accordingly, Vanmassenhove et al.
(2018); Roberts et al. (2020) link the loss of linguis-
tic diversity (i.e. the range of lexical items used in
a text) with the overfitted distribution of masculine
references in MT outputs.

To explore such hypothesis, we compare the lex-
ical diversity (LD) of our models’ translations and
MuST-SHE references. To this aim, we rely on
Type/Token ratio (TTR) – (Chotlos, 1944; Tem-
plin, 1957), and the more robust Moving Average
TTR (MATTR) – (Covington and McFall, 2010).13

As we can see in Table 4, character-based mod-
els exhibit the highest LD (the only exception is
DPE with the less reliable TTR metric on en-it).
However, we cannot corroborate the hypothesis for-
mulated in the above-cited studies, as LD scores do
not strictly correlate with gender accuracy (Table
3). For instance, LMVR is the second-best in terms
of gender accuracy on en-it, but shows a very low
lexical diversity (the worst according to MATTR
and second-worst according to TTR).

en-fr en-it
TTR MATTR TTR MATTR

M-SHE Ref 16.12 41.39 19.11 46.36
BPE 14.53 39.69 17.46 44.86
Char 14.97 40.60 17.75 45.65
DPE 14.83 40.02 18.07 45.12
Morf 14.38 39.88 16.31 44.90
LMVR 13.87 39.98 16.33 44.71

Table 4: Lexical diversity scores on en-fr and en-it

Sequence length. As discussed in §3, we know
that Italian and French feminine forms are, al-

13Metrics computed with software available at: https://
github.com/LSYS/LexicalRichness. We set 1,000
as window size for MATTR.

https://github.com/LSYS/LexicalRichness
https://github.com/LSYS/LexicalRichness
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en-fr (%) en-it (%)
BPE 1.04 0.88
Char 1.37 0.38
DPE 2.11 0.77
Morfessor 1.62 0.45
LMVR 1.43 0.33

Table 5: Percentage increase of token sequence’s length
for feminine words over masculine ones.

though to different extent, longer and less frequent
than their masculine counterparts. In light of such
conditions, we expected that the statistically-driven
BPE segmentation would leave feminine forms un-
merged at a higher rate, and thus add uncertainty
to their generation. To verify if this is the actual
case – explaining BPE’s lower gender accuracy –
we check whether the number of tokens (charac-
ters or subwords) of a segmented feminine word
is higher than that of the corresponding masculine
form. We exploit the coupled “wrong” and “correct”
references available in MuST-SHE, and compute
the average percentage of additional tokens found
in the feminine segmented sentences14 over the
masculine ones. Results are reported in Table 5.

At a first look, we observe opposite trends: BPE
segmentation leads to the highest increment of to-
kens for feminine words in Italian, but to the lowest
one in French. Also, DPE exhibits the highest in-
crement in French, whereas it actually performs
slightly better than Char on feminine gender trans-
lation (see Table 3). Hence, even the increase in
sequence length does not seem to be an issue on
its own for gender translation. Nonetheless, these
apparently contradictory results encourage our last
exploration: How are gender forms actually split?

Gender isolation. By means of further manual
analysis on 50 output sentences per each of the
6 systems, we inquire if longer token sequences
for feminine words can be explained in light of
the different characteristics and gender productive
mechanisms of the two target languages (§3.1). Ta-
ble 6 reports selected instances of coupled femi-
nine/masculine segmented words, with their respec-
tive frequency in the MuST-C training set.

Starting with Italian, we find that BPE sequence
length increment indeed ensues from greedy split-
ting that, as we can see from examples (a) and (c),
ignores meaningful affix boundaries for both same
length and different-length gender pairs, respec-

14As such references only vary for gender-marked words,
we can isolate the difference relative to gender tokens.

en Segm. F M Freq. F/M
a) asked BPE chie–sta chiesto 36/884
b) DPE chie–sta chiesto 36/884
c) friends BPE a–miche amici 49/1094
d) DPE a–miche amici 49/1094
e) adopted BPE adop–tée adop–té 30/103
f) DPE adop–t–é–e adop–t–é 30/103
g) sure Morf. si–cura sicuro 258/818
h) grown up LMVR cresci–uta cresci–uto 229/272
i) celebrated LMVR célébr–ées célébr–és 3/7

Table 6: Examples of word segmentation. The segmen-
tation boundary is identified by ”–”.

tively. Conversely, on the French set – with 95% of
feminine words longer than their masculine coun-
terparts – BPE’s low increment is precisely due to
its loss of semantic units. For instance, as shown
in (e), BPE does not preserve the verb root (adopt),
nor isolates the additional token (-e) responsible for
the feminine form, thus resulting into two words
with the same sequence length (2 tokens). Instead
DPE, which achieved the highest accuracy results
for en-fr feminine translation (Table 3), treats the
feminine additional character as a token per se (f).

Based on such patterns, our intuition is that the
proper splitting of the morpheme-encoded gender
information as a distinct token favours gender trans-
lation, as models learn to productively generalize
on it. Considering the high increment of DPE to-
kens for Italian in spite of the limited number of
longer feminine forms (15%), our analysis con-
firms that DPE is unlikely to isolate gender mor-
phemes on the en-it language pair. As a matter of
fact, it produces the same kind of coarse splitting
as BPE (see (b) and (d)).

Finally, we attest that the two morphological
techniques are not equally valid. Morfessor occa-
sionally generates morphologically incorrect sub-
words for feminine forms by breaking the word
stem (see example (g) where the correct stem is
sicur). Such behavior also explains Morfessor’s
higher token increment with respect to LMVR.
Instead, although LMVR (examples (h) and (i))
produces linguistically valid suffixes, it often con-
denses other grammatical categories (e.g. tense and
number) with gender. As suggested above, if the
pinpointed split of morpheme-encoded gender is a
key factor for gender translation, LMVR’s lower
level of granularity explains its reduced gender ac-
curacy. Working on character’ sequences, instead,
the isolation of the gender unit is always attained.
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en-fr en-it
M-C M-SHE Avg. M-C M-SHE Avg.

BPE 30.7 25.9 28.3 21.4 21.8 21.6
Char 29.5 24.2 26.9 21.3 20.7 21.0
BPE&Char 30.4 26.5 28.5 22.1 22.6 22.3

Table 7: SacreBLEU scores on MuST-C tst-COMMON
(M-C) and MuST-SHE (M-SHE) on en-fr and en-it.

en-fr
ALL 1F 1M 2F 2M

BPE 65.18 37.17 75.44 61.20 80.80
Char 68.85 48.21 74.78 65.89 81.03
BPE&Char 68.04 40.61 75.11 67.01 81.45

en-it
BPE 67.47 33.17 88.50 60.26 81.82
Char 71.69 48.33 85.07 64.65 84.33
BPE&Char 70.05 52.23 84.19 59.60 81.37

Table 8: Gender accuracy (%) for MuST-SHE Overall
(ALL), Category 1 and 2 on en-fr and en-it.

6 Beyond the Quality-Gender Trade-off

Informed by our experiments and analysis (§5), we
conclude this study by proposing a model that com-
bines BPE overall translation quality and Char’s
ability to translate gender. To this aim, we train a
multi-decoder approach that exploits both segmen-
tations to draw on their corresponding advantages.

In the context of ST, several multi-decoder ar-
chitectures have been proposed, usually to jointly
produce both transcripts and translations with a sin-
gle model. Among those in which both decoders
access the encoder output, here we consider the
best performing architectures according to Sperber
et al. (2020). As such, we consider: i) Multitask
direct, a model with one encoder and two decoders,
both exclusively attending the encoder output as
proposed by Weiss et al. (2017), and ii) the Tri-
angle model (Anastasopoulos and Chiang, 2018),
in which the second decoder attends the output of
both the encoder and the first decoder.

For the triangle model, we used a first BPE-
based decoder and a second Char decoder. With
this order, we aimed to enrich BPE high quality
translation with a refinement for gender transla-
tion, performed by the Char-based decoder. How-
ever, the results were negative: the second decoder
seems to excessively rely on the output of the first
one, thus suffering from a severe exposure bias
(Ranzato et al., 2016) at inference time. Hence, we
do not report the results of these experiments.

Instead, the Multitask direct has one BPE-based
and one Char-based decoder. The system requires
a training time increase of only 10% and 20% com-

pared to, respectively, Char and BPE models. At
inference phase, instead, running time and size are
the same of a BPE model. We report overall trans-
lation quality (Table 7) and gender accuracy (Table
8) of the BPE output (BPE&Char).15 Starting with
gender accuracy, the Multitask model’s overall gen-
der translation ability (ALL) is still lower, although
very close, to that of the Char-based model. Nev-
ertheless, feminine translation improvements are
present on Category 2F for en-fr and, with a larger
gain, on 1F for en-it. We believe that the presence
of the Char-based decoder is beneficial to capture
into the encoder output gender information, which
is then also exploited by the BPE-based decoder.
As the encoder outputs are richer, overall trans-
lation quality is also slightly improved (Table 7).
This finding is in line with other work (Costa-jussà
et al., 2020b), which proved a strict relation be-
tween gender accuracy and the amount of gender
information retained in the intermediate represen-
tations (encoder outputs).

Overall, following these considerations, we posit
that target segmentation can directly influence the
gender information captured in the encoder output.
In fact, since the Char and BPE decoders do not
interact with each other in the Multitask model, the
gender accuracy gains of the BPE decoder cannot
be attributed to a better ability of a segmentation
method in rendering the gender information present
in the encoder output into the translation.

Our results pave the way for future research on
the creation of richer encoder outputs, disclosing
the importance of target segmentation in extracting
gender-related knowledge. With this work, we have
taken a step forward in ST for English-French and
English-Italian, pointing at plenty of new ground
to cover concerning how to split for different lan-
guage typologies. As the motivations of this inquiry
clearly concern MT as well, we invite novel stud-
ies to start from our discoveries and explore how
they apply under such conditions, as well as their
combination with other bias mitigating strategies.

7 Conclusion

As the old IT saying goes: garbage in, garbage out.
This assumption underlies most of current attempts
to address gender bias in language technologies. In-
stead, in this work we explored whether technical
choices can exacerbate gender bias by focusing on

15The Char scores are not reported, as they are not enhanced
compared to the base Char encoder-decoder model.



3584

the influence of word segmentation on gender trans-
lation in ST. To this aim, we compared several word
segmentation approaches on the target side of ST
systems for English-French and English-Italian, in
light of the linguistic gender features of the two tar-
get languages. Our results show that tokenization
does affect gender translation, and that the higher
BLEU scores of state-of-the-art BPE-based mod-
els come at cost of lower gender accuracy. More-
over, first analyses on the behaviour of segmenta-
tion techniques found that improved generation of
gender forms could be linked to the proper isola-
tion of the morpheme that encodes gender informa-
tion, a feature which is attained by character-level
split. Finally, we propose a multi-decoder approach
to leverage the qualities of both BPE and charac-
ter splitting, improving both gender accuracy and
BLEU score, while keeping computational costs
under control.
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8 Ethic statement17

In compliance with ACL norms of ethics, we wish
to elaborate on i) characteristics of the dataset used
in our experiments, ii) the study of gender as a
variable, and iii) the harms potentially arising from
real-word deployment of direct ST technology.

As already stated, in our experiments we rely
on the training data from the TED-based MuST-
C corpus18 and its derived evaluation benchmark,
MuST-SHE. Although precise information about
various sociodemographic groups represented in
the data are not fully available, based on impres-
sionistic overview and prior knowledge about the
nature of TED talks it is expected that the speakers
are almost exclusively adults (over 20), with dif-
ferent geographical backgrounds. Thus, such data
are likely to allow for modeling a range of English
varieties of both native and non-native speakers.

16https://ict.fbk.eu/
units-hlt-mt-e2eslt/

17Extra space after the 8th page allowed for ethical consid-
erations – see https://2021.aclweb.org/calls/
papers/

18https://ict.fbk.eu/must-c/

As regards gender, from the data statements
(Bender and Friedman, 2018) of the used corpora,
we know that MuST-C training data are manu-
ally annotated with speakers’ gender information19

based on the personal pronouns found in their pub-
licly available personal TED profile. As reported
in its release page,20 the same annotation process
applies to MuST-SHE as well, with the additional
check that the indicated (English) linguistic gender
forms are rendered in the gold standard translations.
Hence, information about speakers’ preferred lin-
guistic expressions of gender are transparently val-
idated and disclosed. Overall, MuST-C exhibits a
gender imbalance: 70% vs. 30% of the speakers
referred by means of he/she pronoun, respectively.
Instead, allowing for a proper cross-gender com-
parison, they are equally distributed in MuST-SHE.

Accordingly, when working on the evaluation of
speaker-related gender translation for MuST-SHE
category (1), we proceed by solely focusing on
the rendering of their linguistic gender expressions.
As per (Larson, 2017) guidelines, no assumptions
about speakers’ self determined identity (GLAAD,
2007) – which cannot be directly mapped from
pronoun usage (Cao and Daumé III, 2020; Acker-
man, 2019) – has been made. Unfortunately, our
experiments only account for the binary linguistic
forms represented in the used data. To the best of
our knowledge, ST natural language corpora going
beyond binarism do not yet exist,21 also due to the
fact that gender-neutralization strategies are still ob-
ject of debate and challenging to fully implement in
languages with grammatical gender (Gabriel et al.,
2018; Lessinger, 2020). Nonetheless, we support
the rise of alternative neutral expressions for both
languages (Shroy, 2016; Gheno, 2019) and point
towards the development of non-binary inclusive
technology.

Lastly, we endorse the point made by Gaido
et al. (2020). Namely, direct ST systems leverag-
ing speaker’s vocal biometric features as a gender
cue have the capability to bring real-world dangers,
like the categorization of individuals by means of
biological essentialist frameworks (Zimman, 2020).
This is particularly harmful to transgender indi-
viduals, as it can lead to misgendering (Stryker,
2008) and diminish their personal identity. More
generally, it can reduce gender to stereotypical ex-

19https://ict.fbk.eu/must-speakers/
20https://ict.fbk.eu/must-she/
21In the whole MuST-C training set, only one speaker with

they pronouns is represented.
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pectations about how masculine or feminine voices
should sound. Note that, we do not advocate for
the deployment of ST technologies as is. Rather,
we experimented with unmodified models for the
sake of hypothesis testing without adding variabil-
ity. However, our results suggest that, if certain
word segmentation techniques better capture cor-
relations from the received input, such capability
could be exploited to redirect ST attention away
from speakers’ vocal characteristics by means of
other information provided.
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Marta R. Costa-jussà, Christine Basta, and Gerard I.
Gállego. 2020a. Evaluating Gender Bias in Speech
Translation. arXiv preprint arXiv:2010.14465.
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Character-based Neural Machine Translation. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 357–361, Berlin, Germany. As-
sociation for Computational Linguistics.
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ster, Will Radford, and Su Lin Blodgett. 2021. How
to Write a Bias Statement: Recommendations for
Submissions to the Workshop on Gender Bias in
NLP. arXiv preprint arXiv:2104.03026.

Xuanli He, Gholamreza Haffari, and Mohammad
Norouzi. 2020. Dynamic Programming Encoding
for Subword Segmentation in Neural Machine Trans-
lation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3042–3051, Online. Association for Computa-
tional Linguistics.

Marlis Hellinger and Heiko Motschenbacher. 2015.
Gender Across Languages. The Linguistic Represen-
tation of Women and Men, volume IV. John Ben-
jamins, Amsterdam, the Netherlands.

Charles F. Hockett. 1958. A Course in Modern Linguis-
tics. Macmillan, New York, New York.

Dirk Hovy, Federico Bianchi, and Tommaso Fornaciari.
2020. “You Sound Just Like Your Father” Commer-
cial Machine Translation Systems Include Stylistic
Biases. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1686–1690, Online. Association for Computa-
tional Linguistics.

Dirk Hovy and Shannon L. Spruit. 2016. The Social
Impact of Natural Language Processing. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 591–598, Berlin, Germany. Association
for Computational Linguistics.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
Multilingual Neural Machine Translation System:
Enabling Zero-Shot Translation. Transactions of the
Association for Computational Linguistics, 5:339–
351.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Brian Larson. 2017. Gender as a variable in Natural-
Language Processing: Ethical considerations. In
Proceedings of the First ACL Workshop on Ethics in
Natural Language Processing, pages 1–11, Valencia,
Spain. Association for Computational Linguistics.

Enora Lessinger. 2020. The Challenges of Translating
Gender in UN texts. In Luise von Flotow and Hala
Kamal, editors, The Routledge Handbook of Trans-
lation, Feminism and Gender. Routledge, New York,
NY, USA.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W.
Black. 2015. Character-based Neural Machine
Translation. arXiv preprint arXiv:1511.04586.

Nishtha Madaan, Sameep Mehta, Taneea Agrawaal,
Vrinda Malhotra, Aditi Aggarwal, Yatin Gupta, and
Mayank Saxena. 2018. Analyze, Detect and Re-
move Gender Stereotyping from Bollywood Movies.
In Proceedings of the 1st Conference on Fairness,
Accountability and Transparency, volume 81 of Pro-
ceedings of Machine Learning Research, pages 92–
105, New York, NY, USA. PMLR.

Amit Moryossef, Roee Aharoni, and Yoav Goldberg.
2019. Filling Gender & Number Gaps in Neural
Machine Translation with Black-box Context Injec-
tion. In Proceedings of the First Workshop on Gen-
der Bias in Natural Language Processing, pages 49–
54, Florence, Italy. Association for Computational
Linguistics.

Graham Neubig, Matthias Sperber, Xinyi Wang,
Matthieu Felix, Austin Matthews, et al. 2018.
XNMT: The eXtensible Neural Machine Translation
Toolkit. In Proceedings of AMTA 2018, pages 185–
192, Boston, MA.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A Fast, Extensible
Toolkit for Sequence Modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Daniel S. Park, William Chan, Yu Zhang, Chung-
Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and
Quoc V. Le. 2019. SpecAugment: A Simple Data
Augmentation Method for Automatic Speech Recog-
nition. In Proceedings of Interspeech 2019, pages
2613–2617, Graz, Austria.

Edoardo Maria Ponti, Helen O’horan, Yevgeni Berzak,
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A Models

Our direct ST models are built with the Fairseq
library (Ott et al., 2019) and are based on the Trans-
former (Vaswani et al., 2017). They have 11 en-
coder and 4 decoder layers (Potapczyk and Przy-
bysz, 2020). The encoder layers are preceded by 2

en-fr en-it
BPE 60M 60M
Char 52M 52M
DPE 60M 60M
Morfessor 79M 76M
LMVR 74M 72M
BPE&Char 77M 77M

Table 9: Number of parameters (in millions). For
BPE&Char, the reported number is the total of the train-
ing parameters, but at inference time only one decoder
is used, so the size is the same of BPE.

3x3 convolutional layers with 64 filters that reduce
the input sequence length by a factor of 4 and their
attention weights are added a logarithmic distance
penalty (Di Gangi et al., 2019). The models are op-
timized on label smoothed cross-entropy (Szegedy
et al., 2016) – the smoothing factor is 0.1 – with
Adam using β1=0.9, β2=0.98 and the learning rate
is linearly increased during the warm-up phase (4k
iterations) up to the maximum value 5× 10−3, fol-
lowed by decay with inverse square root policy.
The dropout is set to 0.2 and each mini-batch con-
sists of 8 sentences, while the update frequency is 8.
The source audio is augmented with SpecAugment
(Park et al., 2019; Bahar et al., 2019) that is applied
with probability 0.5 by masking two bands on the
frequency axis (with 13 as maximum mask length)
and two on the time axis (with 20 as maximum
mask length).

The systems are trained on MuST-C (Cattoni
et al., 2020). We filtered from the training set all
the samples whose audio length is higher than 20s.
So to avoid rewarding models’ potentially biased
behaviour, as a validation set we rely on the MuST-
C gender-balanced dev set (Gaido et al., 2020). The
target text was tokenized with Moses.22 We normal-
ized audio per-speaker and extracted 40 features
with 25ms windows sliding by 10ms with XNMT23

(Neubig et al., 2018).
Trainings are stopped after 5 epochs without im-

provements on the validation loss and we average
5 checkpoints around the best on the validation set.
They were performed on 8 K80 GPUs and lasted
2-3 days.

22https://github.com/moses-smt/
mosesdecoder

23https://github.com/neulab/xnmt
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